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Abstract. We consider the choice of clustering criteria for use in multiobjective
data clustering. We evaluate four different pairs of criteria, three employed in re-
cent evolutionary algorithms for multiobjective clustering, and one from Delattre
and Hansen’s seminal exact bicriterion method. The criteria pairs are tested here
within a single multiobjective evolutionary algorithm and representation scheme
to isolate their effects from other considerations. Results on a range of data sets
reveal significant performance differences, which can be understood in relation
to certain types of challenging cluster structure, and the mathematical form of
the criteria. A performance advantage is generally found for those methods that
make limited use of cluster centroids and assess partitionings based on aggregate
measures of the location of all data points.

1 Introduction

Multiobjective clustering algorithms frame the data clustering problem as a multiobjec-
tive optimization problem in which a partitioning is optimized with respect to a number
of conflicting criteria. This can be seen as a step beyond traditional clustering tech-
niques, which commonly optimize a single criterion only [11]. It is also a step beyond
techniques for internal cluster validation [9], which typically consider combinations of
criteria, but usually do so by combining criteria in a linear or non-linear form.

The use of multiple objectives in data clustering has two key advantages. First, the
framework of multiobjective optimization provides a natural way of defining a good
partitioning: An exact definition of the clustering problem is elusive, but, loosely, a
good partitioning can be described as one that meets at least the following two criteria:
(i) data points within the same cluster are similar; while (ii) data points within different
clusters are dissimilar. Second, single criteria for clustering are biased with respect to
the number of clusters (i.e., the criteria naturally increase or decrease for partitionings
with a larger number of clusters). One of the consequences of this is that the large ma-
jority of single-objective algorithms require the number of clusters to be specified as
an input parameter. Multiobjective approaches to data clustering can tackle this issue
in a novel way: by selecting two criteria that have opposite biases with respect to the
number of clusters, these techniques are able to counter-balance this bias. In princi-
ple, multiobjective algorithms are therefore capable of exploring a range of solutions
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with different number of clusters, which can support the user in identifying the most
appropriate number of clusters [7].

Previous research on multiobjective clustering [4,7,8] has shown that bicriterion clus-
tering methods often outperform their single-objective counterparts: an algorithm that
optimizes two objectives, X and Y, simultaneously, will usually generate certain solu-
tions that are better than the solutions generated by an algorithm that optimizes X or Y
only. However, little research (if any) has been done to compare the different choices of
(pairs of) criteria in terms of their conceptual aims, or their empirical performance, in bi-
criterion clustering. In this manuscript, we investigate this issue by comparing four pairs
of clustering criteria that have been proposed in previous work on multiobjective clus-
tering. We discuss the conceptual similarities and differences between these choices,
and provide empirical results on the use of the criteria in an existing multiobjective
evolutionary algorithm for data clustering.

2 Background and Methods

The principle of multiobjective data clustering was first introduced in 1980, when De-
lattre and Hansen described an exact algorithm for bicriterion clustering [4]. This algo-
rithm was able to identify the set of partitionings corresponding to an optimal trade-off
between two objectives, namely the split and the diameter of a partitioning. Given com-
putational resources at the time (as well as the algorithm’s reliance on graph colour-
ing [10]), the method was evaluated on small data sets with tens of data items only.
More recently, the idea of multiobjective clustering has been extended to a wider set of
clustering criteria [1,2,7,8,9,12], which have been optimized using heuristic approaches
to multiobjective optimization, principally evolutionary algorithms (EMO).

Here, based on this previous work, four versions of multiobjective clustering were
implemented that differed solely in the clustering criteria used. An existing multiob-
jective clustering algorithm was used as the basis of the implementation, that is the
underlying multiobjective evolutionary algorithm (PESA-II, [3]), as well as the en-
coding, variation operators, initialization and parameter settings are consistent with
those described in [8]. The pairs of objectives used within the different versions are as
follows.

MOCK [8]: The first method uses the objectives employed in the multiobjective evo-
lutionary clustering algorithm MOCK (Multiobjective clustering with automatic
k-determination). The first of these, overall deviation, measures the compactness of
the clusters in the partitioning. It is given as:

(Min.)
∑

ck∈C

∑

i∈ck

d(i, μk),

where C is the given set of clusters, μk is the centroid of cluster ck and d(, ) is a
distance measure defined between data points. The second objective, connectivity,
assesses to what extent data points that are close neighbours are found in the same
cluster. It is given as:

(Min.)
∑

ck∈C

∑

i∈ck

∑

l∈1..L

δ(i, l),
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where L is a parameter specifying the number of neighbours to use (here, the de-
fault L = 20 is used), and δ(i, l) is a function which is 0 when data item i and its
lth nearest neighbour are in the same cluster and 1/l otherwise.

DH [10]: The second method employs the clustering criteria used in Delattre and
Hansen’s seminal biclustering algorithm. The first objective is the complete link
clustering criterion, which minimizes the largest cluster diameter observed in a
partitioning. The objective is formally given as

(Min.) maxck∈Cmaxi,j∈ck
d(i, j),

where C is the given partitioning of the data. The second objective is the single
link clustering criterion, which maximizes the minimum split (distance) between
clusters present in a partitioning. This is given as

(Max.) minck∈C,cl∈C,l �=kmini∈ck,j∈cl
d(i, j).

BMM1 [1]: The third pair of objectives is taken from a multiobjective evolutionary
algorithm originally designed for fuzzy clustering. For the case of crisp partition-
ing (considered here), the clustering objectives used simplify to the within-cluster
sum of squares, and the minimum distance observed between cluster centroids.
Formally, the within-cluster sum of squares is given as

(Min.)
∑

ck∈C

∑

i∈ck

d(i, μk)2,

where μk is the cluster centroid of cluster ck. Evidently, this is very similar to the
measure of overall deviation defined above with the difference that the distance
values are here squared. The minimum distance between cluster centroids is given
as

(Max.) minck∈C,cl∈C,l �=kd(μk, μl),

where μk and μl are the cluster centroids of cluster ck and cl, respectively.
BMM2 [12]: The fourth method also uses the intra-cluster sum of squares (see above)

as its first objective. The second objective is the summed pairwise distance between
cluster centroids. Formally, this is given as

(Max.)
∑

ck∈C,cl∈C,l �=k

d(μk, μl),

where μk and μl are the cluster centroids of cluster ck and cl, respectively.

3 Conceptual Characteristics

Key similarities and differences between MOCK, DH, BMM1 and BMM2 are summa-
rized in Table 1 and are discussed in this section.
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Table 1. Characteristics of the different clustering criteria: (i) Computational complexity asso-
ciated with evaluating a partitioning of N data points in D dimensions into K clusters; L gives
the number of neighbours used in MOCK’s connectivity measure; (ii) Resolution of the criteria
(the extent to which information about all data points is taken into account); (iii) Use of cluster
centroids

Complexity Resolution Centroids
Overall deviation (MOCK) Θ(DN) Complete Yes
Maximum diameter (DH) Θ(N2) Partial No
Within-cluster sum of squares (BMM1, BMM2) Θ(DN) Complete Yes
Connectivity (MOCK) Θ(LN) Complete No
Minimum split (DH) Θ(N2) Partial No
Minimum centroid distance (BMM1) Θ(DK2) Partial Yes
Sum of centroid distances (BMM2) Θ(DK2) Complete Yes

3.1 Similarities between the Objectives

There are some clear similarities in the way clustering objectives have been combined
in the techniques considered. In all four cases, the pair of objectives has been selected
to assess both of the key properties of a good partitioning (see Introduction): that (i)
data points within the same cluster are similar; while (ii) data points within different
clusters are dissimilar.

In MOCK, homogeneity of clusters is assessed using the measure of overall de-
viation. A similar role is played by the maximum diameter criterion in Delattre and
Hansen’s method and by the within-cluster sum of squares in Bandyopadhyay et al.’s
methods (methods BMM1 and BMM2).

In MOCK, separation between clusters is considered implicitly through the measure
of connectivity, which penalizes data points whose nearest neighbours do not reside in
the same cluster. In Delattre and Hansen’s technique the distance between clusters is
assessed using the criterion of minimum split, which identifies the closest pair of data
points that are not in the same cluster. Finally, Bandyopadhyay et al. measure cluster
distance based on the distance of cluster representatives, either considering the entire
set of cluster centres (method BMM2 [12]) or the minimum distance only (method
BMM1 [1]).

3.2 Differences between the Objectives

Despite these clear similarities, there are also some fundamental differences between
the criteria considered.

One defining characteristic of a clustering criterion is the extent to which its calcula-
tion takes into account the cluster assignment of all data points within a data set. This
can be most easily understood using the examples of the within-cluster sum of squares
and the maximum diameter criterion. The within-cluster sum of squares is calculated as
the sum of the distances of all data items to their cluster centre. A change in the cluster
assignment of any single data item will therefore usually result in a change to the value
of the criterion. In contrast, the maximum diameter of a partitioning is defined as the
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largest dissimilarity observed between data items that reside in the same cluster. This
means that changes in the cluster assignment of individual data items will often have
no effect on the value of the criterion, provided that the maximum diameter remains
unchanged.

A second defining characteristic is the presence or absence of the concept of cluster
centroids in the calculation. Methods that use a cluster centroid make certain implicit
assumptions on the shape of the surrounding clusters: it is clear that the definition of
a cluster centroid makes relatively little sense for a nonconvex cluster. Out of the ob-
jectives discussed, overall deviation, within-cluster sum of squares and the measures of
cluster dissimilarity in BMM1 and BMM2 all rely on the definition of a cluster cen-
tre. On the other hand, MOCK’s connectivity measure, as well as both of Delattre and
Hansen’s clustering criteria, make no such assumptions on the presence of a centroid
and the shape of the underlying cluster.

3.3 Computational Complexity

A further significant difference between the clustering criteria is their computational
complexity.

As discussed above, Delattre and Hansen’s measure of cluster homogeneity does not
make use of a cluster centroid. This comes at the expense of quadratic complexity, as
all pairwise dissimilarities between data items need to be considered. In contrast, meth-
ods of cluster homogeneity that do utilize a centroid (i.e., overall deviation in MOCK,
within-cluster sum of squares in BMM1 and BMM2) have linear complexity.

For measures of cluster separation, the differences in complexity are even more
significant. Again, Delattre and Hansen’s is the computationally most expensive: the
identification of the minimum split requires the pairwise comparison of all data items,
resulting in quadratic complexity. MOCK’s objective (connectivity) ranks second in
complexity: it requires the one-off calculation of N sorted lists of length N (complex-
ity Θ(N×N log N ), but has linear complexity for all further evaluations. The objectives
in BMM1 and BMM2 have a complexity of only Θ(DK2), where K is the number of
clusters in the partitioning.

4 Empirical Performance Analysis

4.1 Experimental Setup

For the empirical comparison of the four methods, a benchmark set of Gaussian Clusters
in 2, 10 and 100 dimensions was used. This benchmark set has been described previ-
ously [8], and the data and results are summarized as supplementary material [6]. In
addition, eight two-dimensional data sets available at http://cs.joensuu.fi/sipu/datasets/,
were used; these are summarized in Table 2. These feature a variety of challenging clus-
ter properties which we discuss in the next section. The Euclidean distance measure was
used for all data sets.

The results returned by each method were evaluated by monitoring the size of the
non-dominated set, their quality with respect to the set of eight clustering criteria, as
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Table 2. Two-dimensional data sets (also see http://cs.joensuu.fi/sipu/datasets/)

Name N D K Name N D K

Jain 373 2 2 Compound 399 2 6
Aggregation 788 2 8 Path-based 300 2 3
Flame 244 2 2 r15 600 2 15
Spiral 312 2 3 d31 3100 2 31
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Fig. 1. Size of the solution sets of non-dominated solutions. Representative results over 21 runs
for data sets r15 and d31. The data shows a general trend with an ordering of the solutions sets S
returned by the methods as |SBMM2| > |SMOCK | > |SBMM1| > |SDH |.

well as their accuracy with respect to the known class labels for the data. The latter
was assessed using the Adjusted Rand Index (AR, [5]), which is an established exter-
nal technique of cluster validation that can be used to compare a clustering to a set of
known true class labels. It is normalized with respect to the number of clusters in the
partitioning, and is therefore well suited for the comparison of partitionings with differ-
ent numbers of clusters as done in this work [9]. It takes values between 0 and 1, with
1 indicating a partitioning that accurately matches all known class labels.

4.2 Results

A set of 21 runs was obtained for each combination of data set and pair of objectives.
Each run generated a set of non-dominated solutions, which was then analyzed with
respect to the performance measures discussed above. Full results are available as sup-
plementary material [6]. In the following, we will show selected results obtained by
the methods, with the aim of highlighting key strengths and limitations of the four
combinations of objectives used.

In terms of the size of the solution sets returned by the methods, we find that BMM2
and MOCK return respectively the most and second most non-dominated partitionings.
DH returns the least solutions, followed by BMM1. We postulate that this ordering is
due to the different levels of resolution of the objectives used. As discussed in the pre-
vious section, measures with partial resolution (such as minimum split) are calculated
based on the position of a few, extreme data points only. Consequently, many different
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Fig. 2. Best solutions (as judged by the Adjusted Rand Index) identified by the four methods on
the two-dimensional data sets. Results are over 21 runs.

partitionings will result in the same objective value such that plateaus are introduced
into the search space. Our results indicate that this also reduces the number of Pareto
optimal solutions. Figure 1 shows representative results for data sets r15 and d31.
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Fig. 3. Illustrative example: Non-spherical clusters. Best two cluster solution returned on the
Jain data set by the first run of each method. The nonconvex shape of the clusters introduces
problems for methods BMM1 and BMM2, which implicitly assume a convex shape through the
use of cluster centroids in both objectives.

Internal validation of clustering results, based on the eight different criteria of clus-
tering quality, indicates that, as expected, all of the four methods outperform their con-
testant techniques at optimizing their individual pair of objectives (results not shown).

Figure 2 summarizes the results of external cluster validation (based on the Adjusted
Rand Index) for the two-dimensional data sets. From these data, it is clear that the
choice of objectives has significant impact on the quality of the best solutions returned.
This is further confirmed by the results obtained for the Gaussian data sets (see sup-
plementary material [6]). Out of the four methods tested, MOCK shows the best peak
performance for the majority of the data sets. The performance differences observed
can be understood in more detail by considering the objectives’ performance with re-
spect to cluster structures that pose challenges. Using the clustering results obtained
for the Jain, Flame and Spiral data, Figures 3 to 5 highlight the effects of nonconvex
clusters, chaining between clusters [4] and highly elongated clusters. Key observations
from this analysis are limitations of Bandyopadhyay et al.’s techniques with respect to
unequally sized and nonconvex clusters (a direct consequence of the use of cluster cen-
troids in both objectives), limitations of Delattre and Hansen’s technique with respect
to chaining / overlap between cluster, and limitations of MOCK’s connectivity measure
for extremely elongated clusters (which may be overcome through adjustment of the
parameter L in the connectivity measure).



40 J. Handl and J. Knowles

 14

 16

 18

 20

 22

 24

 26

 28

 0  2  4  6  8  10  12  14  16

MOCK

 14

 16

 18

 20

 22

 24

 26

 28

 0  2  4  6  8  10  12  14  16

DH

 14

 16

 18

 20

 22

 24

 26

 28

 0  2  4  6  8  10  12  14  16

BMM1

 14

 16

 18

 20

 22

 24

 26

 28

 0  2  4  6  8  10  12  14  16

BMM2

Fig. 4. Illustrative example: Non-spherical clusters with chaining. Best two cluster solution
returned on the Flame data set by the first run of each method. The chaining between clusters
poses problems for method DH. As the objectives used in DH do not consider the location of all
data points, they are more sensitive to this type of noise. The presence of non-spherical clusters
makes this data set problematic for methods BMM1 and BMM2.
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Fig. 5. Illustrative example: Highly elongated clusters. Best three-cluster solution returned on
the Spiral data set by the first run of each method. Again, the non-spherical shape of the clusters
is problematic for methods BMM1 and BMM2. MOCK also shows a poor performance on this
data, as the clusters are so elongated that the connectivity measure ceases to work (some of the L
nearest neighbours of each data point are located in another cluster).
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5 Conclusion

This manuscript has focused on the comparison of four pairs of criteria for multiob-
jective clustering. One pair of criteria — from Delattre and Hansen’s early bicriterion
clustering algorithm — has not previously been evaluated except on very small data
sets. The results show that, despite some conceptual similarities in the clustering criteria
compared here, significant performance differences can be observed when they are em-
ployed within a multiobjective evolutionary algorithm for clustering. Overall, the pair
of objectives employed in the multiobjective clustering algorithm MOCK emerges as
the strongest combination. We offer two explanations for this result: (i) the limited use
of cluster centroids in MOCK’s objectives (use in one rather than both objectives) and
(ii) the consideration of all data points in the calculation of both of MOCK’s objectives.
Here, results were all generated using PESA-II; future work may seek to generalize our
findings to alternative metaheuristic or exact methods.
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