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Abstract. This paper examines the interaction of decision model com-
plexity and utility in a computational intelligence system for algorithmic
trading. An empirical analysis is undertaken which makes use of recent
developments in multiobjective evolutionary fuzzy systems (MOEFS) to
produce and evaluate a Pareto set of rulebases that balance conflicting
criteria. This results in strong evidence that controlling portfolio risk
and return in this and other similar methodologies by selecting for inter-
pretability is feasible. Furthermore, while investigating these properties
we contribute to a growing body of evidence that stochastic systems
based on natural computing techniques can deliver results that outper-
form the market.

1 Introduction

Algorithmic trading is an important part of the global financial services indus-
try. In 2008 over 40% of executed market orders were attributed to algorithmic
trading methods in major developed stock markets. Growth in the volume of
trades generated by automatic signals has risen 30-40% per annum since, with
the financial crisis over the period having little effect on the uptake of technol-
ogy [1]. Financial portfolio management is a complex task that takes place in a
highly dynamic and competitive environment with arguably immeasurable un-
certainty. These factors make the problem quite different from other applications
of computational intelligence in control, pattern recognition, etc, even though
the tools and methods used are the same. It is therefore of value to examine the
relationships between system design and parameters and specific and extensive
performance markers and tools in financial applications distinctly.

This paper applies an evolving fuzzy system based on the representation de-
scribed in [2] and from a technical viewpoint significantly extends that earlier
research to make the models which are learned even closer to those used by fi-
nancial practitioners. This is done by adding fundamental data (accounting and
macro economic information) and by making use of a multiobjective EA to im-
plement criteria for model parsimony. Here we make a contribution to answering
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Fig. 1. Practical problem: design a control system to consolidate the tasks of the human
portfolio analyst

questions about whether subjective criteria (such as human interpretability) can
produce value in the application of heuristic, and specifically computational in-
telligence, approaches to problem solving in financial trading - a complex and
dynamic activity performed on the basis of incomplete information. We find that
by controlling rule intelligibility we are able to strongly influence the risk and
return profile of portfolios managed by the algorithm. This angle is simply not
able to be considered in classical modeling as it is currently espoused in finance
because a trading model is viewed in simple terms essentially as a formula rather
than an intelligent agent.

The particular methodology used to produce interpretable models is as justi-
fied as other techniques capable of representing expressive models computation-
ally because it too has been found to perform at a standard equivalent to other
state of the art machine learning approaches on standard benchmarks [3]. Many
other multiobjective approaches are described in the literature [4]. The conclu-
sions made here are also to some extent applicable to other methods. In addition,
certain aspects of the particular approach make it particularly suitable for this
analysis, notably the the structure that is imposed on the decision model rep-
resentation to cause the optimzation process to in some respects imitate human
reasoning in the application domain.

Rule based approximate reasoning systems can be applied to approximate
human thinking when combined with a self-learning methodology. Efforts to
automate human thinking in this way has been found to lead to improved per-
formance in real world applications: for example in emulating a skilled human
operator who controls complex machinery “without a formal quantitative model
in mind” [5]. Figure 1 illustrates the rationale of the system presented here
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in adapting approximate reasoning principles to financial modeling. A financial
analyst generally performs a sequence of specific activities: generating or select-
ing/tuning a range of indicators (these are often called rules in financial parlance
and should not be confused with the term rulebase as it is used here) from raw
data measurements or feeds; testing resultant models using historic data; build-
ing a portfolio using the model and lastly there is constant process of updating
the approach based on portfolio management performance.

In the remainder of the paper we describe the design of the system in perform-
ing the tasks illustrated in Figure 1, provide empirical results on performance of
different portfolios while varying model complexity, and make conclusions appli-
cable more generally regarding the complexity of decision models in the financial
problem domain.

2 Methodology

The approach mimics a real financial analyst (see Figure 1). The key tasks are:
data measurement; transformation to generate unit strategies based on historic
price and volume data (technical analysis) and information about the firms un-
derlying the stocks (fundamental analysis); selecting and combining the numer-
ous models in the previous step into a genotype comprising a fuzzy rulebase and
a vector of parameters for the strategies; and lastly the implementation of deci-
sions on portfolio contents. A multiobjective EA facilitates the study of model
complexity.

2.1 Measurement, Information Set, and Initial Models

The information set defines the universe of discourse that can be represented
from the environment. Technical (price/volume) and fundamental information
on underlying firms is incorporated.

Fundamental Strategies. A set of fundamental variables found to be useful
in other emprical studies was selected. The relationship between the variables
considered and price changes has been found to be farily transient further ac-
centuating the need for an adaptive methodology able to be achieved with a
heuristic approach. Dividend yield measures the cash flow benefit with regard to
the share investment. The power of dividend yield to forecast stock return has
been noted in [6] as being “temporary” component of prices. Price to Book Value
has been used in fundamental factor models for some time. The price Earnings
ratio (PE) divides the share price, over the total earnings per share, in some
periods and markets the PE ratio is a predictor of higher return with reduced
risk, see [7]. Earnings per share (EPS) is calculated by taking the ratio of the
profit of the firm over its market share. Stocks that have a higher earnings per
share generate more income relative to the stock price and thus places upward
pressure on the share price [8]. The debt to equity ratio looks at the liabilities
per share; it has been shown to be positively correlated with stock price [9].
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In a falling or volatile market liabilities may be of more importance. The last
three fundamental variables ( earnings before interest and tax, return on assets,
and return on equity) divide firm income into classifications provide more fine
grained picture.

Each variable is processed to obtain a rate of change measurement in the
form of an oscillator (O). The oscillator measures the change relative to an
earlier point O = (vt − vt−m)/vt−m. The parameter m measures this period and
belongs to the set 10, 20, 30, . . . , 260.

Technical Strategies. Technical strategies use price and volume data. They are
widely used in industry and theoretical justifications postulate the importance
of behavioural factors and their detection using technical rules [10]. Technical
trading rules may also be able to pick up institutional trading activity [11].

The technical inputs is given in table 1. The abbreviations have meaning:
SMA, single moving average; DMA, double moving average; PPO, price oscil-
lator; OBV, on balance volume indicator; RSI, relative strength index; MFI,
money flow index; Vol. DMA, volume double moving average; PVO, percentage
volume oscillator; DMI, directional movement index; %R, percent R. For the
OBV indicator the value obvt for each day t is calculated by initially at t = 0
obv0 = v0, then for each subsequent day t: if pt > pt−20 then obvt = obvt−1 + vt;
else if pt < pt−20 then obvt = obvt−1−vt, else if if pt > pt−20 then obvt = obvt−1.

2.2 Decision Model Representation

A solution aggregates the inputs from the processing described in the previous
subsections and is represented using a set of fuzzy rules and an integer vector of
parameters (time horizons - see restrictions in Table 1).

A rulebase is a mapping
D : �n → Ω,

from vector of observations x = {x1, . . . , xn} ∈ �n to a signals {ω1, . . . , ωc} ∈ Ω
to buy or sell. The form of the rules is based on [13], the output is interpreted
as a degree of certainty the buy or sell signal is correct, given antecedent and
training data. A rule rk in a ruleset M has the format: Rk : if x1 is A1 ∧ . . . ∧
xn is An; then (zk,1, . . . , zk,c) where x1 . . . xn are feature observations that are
described by linguistic labels A1 . . . An, these are common in the different rules
and precalculated as in [2].

zk,i =
Sum of matching degrees of rule with ωi

Sum of total matching degrees for all rules
.

The mapping D uses the max operation to aggregate rules and the product
t-norm to aggregate the antecedent conjunctions. The degree of certainty for

i-th signal is D : evali(x) = maxMk=1

{
zk,i

∏n
j=1 {μj(xj)}

}
, In this way, we

specify a search space of possible rules to correspond to trading rules that a
human expert trader could construct using the same information. A rule is
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Table 1. Technical indicators and restrictions on parameters

Name Formula Restrictions

Price Change 1 δ = 20

Price Change 2 ln

(
pt

pt−δ

)
δ = 50

Price Change 3 δ = 100

SMA Buy
pt

mat
lenma ∈ {10, 20, 30}

SMA Sell
mat
pt

lenma ∈ {10, 20, 30}
DMA Buy 1 lenma2 ∈ {10, 20, 30}

lenma2 ∈ {40, 50, 60}
DMA Buy 2

ma1t
ma2t

lenma1 ∈ {60, 70, . . . , 120}
lenma2 ∈ {130, 140, . . . , 240}

DMA Buy 3 lenma1 ∈ {60, 70, . . . , 120}
lenma2 ∈ {130, 140, . . . , 240}

DMA Sell 1 lenma2 ∈ {10, 20, 30}
lenma2 ∈ {40, 50, 60}

DMA Sell 2
ma2t
ma1t

lenma1 ∈ {60, 70, . . . , 120}
lenma2 ∈ {130, 140, . . . , 240}

DMA Sell 3 lenma1 ∈ {60, 70, . . . , 120}
lenma2 ∈ {130, 140, . . . , 240}

PPO 1 lenma2 ∈ {10, 20, 30}
lenma2 ∈ {40, 50, 60}

PPO 2
ma1t−ma2t

ma1t
× 100 lenma1 ∈ {60, 70, . . . , 120}

lenma2 ∈ {130, 140, . . . , 240}
PPO 3 lenma1 ∈ {60, 70, . . . , 120}

lenma2 ∈ {130, 140, . . . , 240}
DMI see [12]

%R %R =
pt−min[pt−1,...,pt−10]

max[pt−1,...,pt−10]−min[pt−1,...,pt−10]

RSI RSI = 100 − 100
1+RS

RS =
totalgains÷n
totallosses÷n

MFI MFI = 100 − 100
1+MR

MR =
∑ MF+

MF−
MF+ = pi × vt, wherepi > pi−1, and

MF− = pi × vt, wherepi < pi−1

Vol. DMA Buy 1
vma1t
vma2t

lenvma1 = 5, lenvma2 = 20

Vol. DMA Buy 2 lenvma1 = 20, lenvma2 = 100

Vol. DMA Sell 1
vma2t
vma1t

lenvma1 = 5, lenvma2 = 20

Vol. DMA Sell 2 lenvma1 = 20, lenvma1 = 100

OBV Buy

(
pt−max

[
pt−1,...pt−n

])
pt

+

(
max

[
obvt−1 ,...obvt−n

]
−obvt

)
obvt

OBV Sell

(
min

[
pt−1,...,pt−n

]
−pt

)
pt

+

(
obvt−min

[
obvt−1 ,...,obvt−n

])
obvt

PVO 1
ma1t−ma2t

SMt
× 100 lenma1 = 5, lenma1 = 20

PVO 2 lenma1 = 20, lenma1 = 100

Bol 1 Bol =
pt−mat

2×sd(Pt,...,Pt−δ )
δ = 20

Bol 2 δ = 50

considered in this paper to be a statement in structured language that speci-
fies that if some condition(s) hold, then a particular action ought to be taken.
IF [Conditions], THEN do [buy/sell a particular stock] Each rulebase comprises
several such statements. The genotype representation and operators are provided
in [2].

2.3 Learning Process

The learning model uses a pareto based algorithm (SPEA2, [14]) to obtain a set
of solutions balancing objectives of solution simplicity and in sample prediction
accuracy. We can express the task to learn rules as an optimization problem in
which there are two main criteria. These are to minimize the number of false
signals produced by the strategies (accuracy), and reduce the model complexity:

minimize z = ferror(x), fcomplexity(x).
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The accuracy objective performance is the error in determining buy and sell
signals from a set of examples in training data T :

ferror(x) = 1− # correct signals

# false signals + # correct signals
.

The number of correct signals is the count of the number of times the rulebase
correctly anticipated a rise or fall in the share price, a false signal is the number of
times the rulebase falsly predicted a rise or fall in the share price. The complexity
of a strategy specified by a rulebase is defined by the number of rules and, within
each rule, by the number of clauses.

A rulebase has two main sources of complexity which are the number of rules,
and inputs quantified per rule. Therefore, fcomplexity may be decomposed into
these components (which are modeled as separate objectives using the mul-
tiobjective evolutionary algorithm). In this paper we consider two complexity
objectives, the number of rules, and the average number of inputs used per rule
(#inputs/#rules) in the rulebase. Given two fuzzy rulebase solutions, x1 and
x2, we can say that x1 dominates x2 if it is less than or equal to the other in
all objectives being minimized or otherwise that it dominates in particular one
of the objectives. The final source of complexity is from the definition of the
linguistic variables - we set this deterministically prior to running the optimizer
so it is not an objective here. The approach is verified using classical benchmarks
such as Iris in [3].

3 Financial Portfolio Management

These experiments used historic data from the Standard and Poor ASX 200 oil
and gas stocks between April 2000 and November 2009. All data was sourced
from Data International. Instead of raw price data we used a total return index
adjusted for stock splits, mergers and dividend payments. The oil and gas sector
is very volatile in this period (global financial crisis and reversal as a result of
the resources trade with China). There was a period of growth followed by fall
and a subsequent recovery, this allowed for an evaluation of the system in three
different epochs. Transaction costs were 0.25% to buy or sell, population size for
SPEA was 100 and the archive size was 10. In the business model, transactions
inspired by the decision model were applied to re-balance portfolios to sell and
buy recommended stocks at fixed intervals of 20 trading days, for adaptation
the optimization process was run before each re-balance using the previous year
of data for “training”.

Two benchmarks are used for comparison the first is a a buy and hold approach
(BH) and the second is a standard active alpha strategy [1]. The alpha is based
on the single-factor pricing model which relates a stocks excess return, ri,t− rf,t
to market return as follows

ri,t − rf,t = αi + βi [rm,t − rf,t] + ei,t,
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Table 2. Metrics of performance for the portfolios managed by solutions with varying
structural complexity (SC) and linguistic complexity (LC) along with the 2 benchmark
portfolios. Confidence bounds are at the 90% level based on 30 test runs.

HP Ret An. Ret σ IR Sel. Net Sel.

Benchmarks

BH 6.1325 0.2899 0.3654 0.5836 0.2956 0.1703
Alpha 12.7924 0.3873 0.3988 0.7931 0.4095 0.2697

Low LC

Low SC 16.0 [± 4.74] 0.366 [± 0.0375] 0.501 [± 0.0279] 0.699 [± 0.0694] 0.438 [± 0.0405] 0.262 [± 0.0369
Medium SC 10.4 [± 2.94] 0.314 [± 0.0351] 0.418 [± 0.0218] 0.621 [± 0.0773] 0.345 [± 0.0362] 0.199 [± 0.0351]
High SC 12.7 [± 4.55] 0.318 [± 0.0421] 0.453 [± 0.0297] 0.617 [± 0.0811] 0.368 [± 0.0450] 0.208 [± 0.0407]

Medium LC

Low SC 16.5 [± 5.99] 0.368 [± 0.0372] 0.490 [± 0.0587] 0.667 [± 0.0621] 0.419 [± 0.0522] 0.246 [± 0.0366]
Medium SC 13.3 [± 3.04] 0.355 [± 0.0330] 0.526 [± 0.0581] 0.647 [± 0.0617] 0.421 [± 0.0408] 0.235 [± 0.0311]
High SC 10.8 [± 2.32] 0.337 [± 0.0287] 0.491 [± 0.0396] 0.615 [± 0.0563] 0.388 [± 0.0359] 0.215 [± 0.0292]

High LC

Low SC 12.7 [± 1.80] 0.375 [± 0.0179] 0.394 [± 0.0152] 0.764 [± 0.0377] 0.394 [± 0.0204] 0.256 [± 0.0178]
Medium SC 31.6 [± 7.65] 0.482 [± 0.0279] 0.490 [± 0.0179] 0.912 [± 0.0456] 0.543 [± 0.0332] 0.370 [± 0.0290]
High SC 30.8 [± 7.67] 0.477 [± 0.0292] 0.491 [± 0.0214] 0.903 [± 0.0504] 0.537 [± 0.0341] 0.364 [± 0.0302]

index i indicates the stock and t refers to a day, e is an error term and ri,t is the
stocks return on day t, rf,t is the risk free rate, rm,t is the market return. In an effi-
cient market it would be possible to price stocks based solely on their risk compo-
nents, here the excess return above the market. In the ideal theoretic case returns
of any stock above the risk-free rate can be fully explained by the risk component,
meaning that βi would be one andαi zero. If the alpha is actually positive the stock
is outperforming relative to its level of risk and should be bought (conversely if it
is negative the stock should be sold). In testing, the alpha portfolio produced an
annual return of 38% compared with the buy and hold strategy which resulted in
29.56%. The information ratio of the alpha portfolio was 0.78 and for the buy and
hold it was 0.58. Other metrics are given in table 2.

With some levels of complexity, the system was able to out perform both
the active and passive benchmarks. Table 2 shows performance metrics achieved
while varying linguistic and structural complexity parameters. Linguistic com-
plexity refers to the granularity of the membership functions, and structural
complexity refers to the relative number of rules and inputs per rule (this was
controlled by selecting solutions from the Pareto front with different trade-offs
between performance and complexity objectives).

As well as volatility, we consider risk using two more refined metrics. The first
of these, the information ratio (IR), is superior to the commonly used Sharpe
ratio (return/volatility) as it considers excess return. It is calculated as the
portfolios average return in excess of the benchmark portfolio over the standard
deviation of this excess return. It is used to evaluate the active stock-picking

ability of the rulebase. The IR is calculated as: IR =
√
260α
σe

, where σe is the
standard error of alpha in the capital asset pricing model expression of portfolio
return given in the previous section and used to manage the alpha benchmark.
Selectivity and Net Selectivity [15] provide further refinement of overall perfor-
mance adjusted for risk. Any returns that a portfolio earns above the risk free
rate are adjusted for both the returns that a market benchmark portfolio would
earn if it had the same level of systematic risk and the same level of total risk.

Figure 3 shows differences in portfolio return and volatility due to complex-
ity. Linguistic complexity is indicated by the number of membership functions



Enhancing Profitability through Interpretability in Algorithmic Trading 49

(a)

(b)

Fig. 2. The risk profile of portfolios managed with solutions of differing complexity.
(a) shows Return vs. Volatility by complexity. (b) shows the Information Ratio of the
portfolios and the benchmarks.
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(i.e. 3 to 13 MF) and structural complexity by numbers (0 to 9 Pareto). Simpler
models resulted in of lower return and (often) higher volatility, there was also
lower stability between the different runs. The stability between different runs is
an important risk as the method is stochastic. For more complex models higher
return was observed at the cost of higher volatility (though here the informa-
tion ratio shows the increase in volatility is justified by the return). In all cases
there is a crux where increasing complexity above a certain level does not lead
to gain and performance deteriorates. But only the average to higher linguistic
complexity models provide the potential to out perform the benchmarks with
appropriate levels of structural complexity.

4 Conclusion

In this paper we have described an evolutionary fuzzy system for portfolio man-
agement that first of all makes novel contributions by significantly building on
earlier work in [2]. The experiments show the system performs well. There was
considerable variation however for different levels of complexity and this can be
used to hone performance. Almost all related research in finance is focused on
relatively simple rules, we find such rules did not result in excess return above the
benchmarks while the more complex models could. Therefore, it seems likely that
controversy in some circles regarding the possibility of finding profitable rules
somewhat misses the point, recent systems based on machine learning methods
probably are able to do well by harnessing complexity. Another observation is
that as the system approximates human reasoning, additional complexity may
indicate to some extent why it is a fact that industry practitioners commonly
attempt to generate profits by trading based on past data, despite there being
in academia almost a consensus that there is limited possibility to do so.

When computational intelligence is used in algorithmic trading, it can lead
to novel ways of controlling performance. For instance, as solution complexity is
found to be a strong driver of risk and return, performance can be reliably shaped
through identifying the locus where additional return starts to generate higher
risk. It is also possible to use model complexity parameters improve stability
and thus limit problems associated with the stochastic nature of the learning
process which are often viewed as a drawback compared to other static modeling
approaches in algorithmic trading.
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