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Abstract. Multiobjective evolutionary algorithms (MOEAs) have at-
tracted growing attention recently. Problem-specific operators have been
successfully used in single objective evolutionary algorithms and it is
widely believed that the performance of MOEAs can be improved by
using problem-specific knowledge. However, not much work have been
done along this direction. Taking a network topology planning problem
as an example, we study how to incorporate problem-specific knowl-
edge into the multiobjective evolutionary algorithm based on decompo-
sition (MOEA/D). We propose objective-guided operators for the network
topology planning problem and use them in MOEA/D. Experiments
are conducted on two test networks and the experimental results show
that the MOEA/D algorithm using the proposed operators works very
well. The idea in this paper can be generalized to other multiobjective
optimization problems.

Keywords: Multiobjective Optimization, Evolutionary Algorithm,
MOEA/D, Network Topology Planning.

1 Introduction

Multiobjective optimization problems (MOPs) present a greater challenge than
single-objective optimization problems since objectives in a MOP contradict
one another so that no single solution in the decision space can optimize all
the objectives simultaneously. Therefore, a decision maker often wants to find
an optimal tradeoff among these objectives. Pareto optimal solutions are best
tradeoffs if there is no decision makers’ preference information. A number of
different Multiobjective evolutionary algorithms (MOEAs), such as NSGA-II [1]
and MOEA/D [2][3], have been developed for approximating the Pareto optimal
solution set.
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It is widely believed that problem-specific knowledge should be utilized in
designing of an evolutionary algorithm in order to improve the algorithm perfor-
mance. In single objective evolutionary optimization, many successful applica-
tions of problem-specific knowledge have been reported. However, not much work
have been done along this direction in MOEAs. One of the major reasons is that
most existing problem-specific techniques are for single objective optimization.
It is not very natural to use them in Pareto dominance based MOEAs, which
are most popular methods now. By decomposing a MOP into many single objec-
tive optimization subproblems, the recent MOEA/D algorithm provides a good
framework for using single objective optimization techniques for multiobjective
optimization. Many different variants have been proposed and applied on differ-
ent MOPs [4][5]. In this paper, we take topology planning problem as an example
and study how to incorporate problem-specific knowledge into MOEA/D.

Planning a network topology involves multiple objectives including minimiz-
ing the total network cost, maximizing the transport efficiency and the network
reliability, etc. In transparent optical networks (TONs), more objectives should
be considered, such as the security under intentional attacks [6] and energy-
efficiency for a green network planning [7][8].

Network topology planning is normally formulated as bi-objective optimiza-
tion problems. Kumar et al. firstly used the Pareto Converging Genetic Algo-
rithm (PCGA) to solve the problem [9], then applied a multi-island approach
with Pareto ranking method [10]. The PCGA was also used in the problem with
consideration of realistic traffic models [11][12].

In this paper, we study a network topology planning problem in TONs. It
is formulated as a tri-objective optimization problem. The MOEA/D algorithm
with generic graph operators is firstly designed to tackle the problem. Then,
we propose objective-guided operators and use them in the MOEA/D algorithm
for this problem. The main idea is to design operators using problem-specific
knowledge for all objectives, and then use them with different probabilities for
each scalar subproblem in MOEA/D. Due to the decomposition approach in
MOEA/D, the probabilities can be easily determined with the weight vectors
associated with subproblems. The proposed algorithms are evaluated on two net-
works with different sizes. The experimental results demonstrate the effectiveness
of the MOEA/D algorithm using the objective-guided operators. Our algorithm
provides a new approach for using problem-specific knowledge in MOEAs.

The rest of the paper is organized as follows. The problem is formulated
in Section 2. Section 3 describes the MOEA/D algorithm using generic graph
operators. The MOEA/D algorithm using objective-guided operators is proposed
in Section 4. The experimental results are presented in Section 5 and the paper
is concluded in Section 6.

2 Problem Formulation

Topological design of a transparent optical networks (TON) for meeting the re-
quirements of consumers is a fundamental task before its deployment. Network
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topology design involves determining the layout of links between nodes to satisfy
the requirements of average delay, cost and reliability. In packet-switching net-
works, the average delay between a source and a destination can be estimated
from queuing theory. Normally, the transferring delay is affected by the number
of intermediate hops and the traffic load on links made of a path. However, due
to the circuit-switching nature of optical networks, the average delay is mainly
determined by the hops a lightpath traverses.

Besides the traditional design objectives, energy and security-related issues
have gained much attention in recent years. For the green sustainable commu-
nication purpose, energy consumption of telecom networks should be reduced
as much as possible. Since both switching and transmission on fibers consume
power, one should try to minimize the number of intermediate hops and reuse
the network link which has been already “on” in routing of lightpaths. From
the view of topological design, we should try to minimize both the hops and the
number of links. Apparently, they are two contradictory objectives.

Random failures of nodes and links are main factors for reliability of a net-
work. When security is demanded, intentional attacks should be emphasized in
topology design. It has been shown that a scale-free complex network is robust
from random failures, but fragile under intentional attacks, e.g., removing nodes
by node degrees in descending order. So, in this paper, we consider the topology
design problem with new objectives including energy-saving and security.

The network topology problem is formally defined below.
1) Design Parameters

– N : the total number of nodes in a network;
– Cost: a cost matrix in which Cost(i, j) provides the cost of the link between

node i and j. Normally, the cost of link between node i and j can be estimated
by their physical distance and the cost factor per unit distance;

2) Objectives

– network cost : the sum of cost of all links;
– average path length: the average hops of each path. Since there may be

unreachable node pairs in a network, we use the concept of network efficiency
to calculate the objective value. The network efficiency is defined as the mean
value of inverse values of shortest path lengths in a graph. Given a graph
G=(V,E), the average path length is measured by:

Lp(G) = 1− 1

n(n− 1)

∑

i�=j∈V

1

li,j
(1)

where n=|V | and li,j is the shortest path length from node i to node j;
– Vulnerability under intentional attacks : we use the robustness measure R

proposed by Schneider et al. [13], which is defined as:

R =
1

N + 1

N∑

Q=0

s(Q) (2)
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where N is the number of nodes in a network and s(Q) is the fraction of
nodes in the largest connected cluster after removing Q nodes. The range of
R is [0, 0.5], where R = 0 corresponds to a network with all nodes isolated,
and R = 0.5 corresponds to a fully connected network. The vulnerability of
a network under intentional attacks is calculated by:

V u(G) = 1− 2R (3)

The average delay is measured by the average path length, while minimizing the
average path length also contributes to the saving of energy. To calculate the
shortest path lengths, the Dijkstra’s shortest-path algorithm is used. To calculate
the robustness measure R, a greedy attacking strategy is applied. That is, each
time the node with the maximal nodal degree is selected and removed from the
network and the size of the largest connected cluster is calculated.

3 MOEA/D for Network Topology Planning

The original MOEA/D algorithm [2] can be directly applied to solve the net-
work topology planning problem. We call it as MOEA/D-direct algorithm. Each
individual in the population encodes a possible network topology. A network
topology is represented by its binary adjacency matrix A where Ai,j = 1 if there
is a link between node i and j. Generic graph operators are used.

Let the adjacency matrices of two parents be A and B and the adjacency
matrix of offspring be C. The crossover operator produces an offspring C as
follows:

Ci,j =

{
Ai,j , r ≤ pc
Bi,j , otherwise

(4)

where r is a uniformly random value in [0, 1]. The parameter pc is used to control
the amount of information inherited from each parent. The offspring inherits
from A with a probability of pc and from B with a probability of (1− pc).

In the mutation operator used in this paper, the bits in the adjacency ma-
trix are flipped with a mutation probability pm. Since undirected networks are
considered in this paper, the adjacency matrices are symmetric. Thereafter, the
crossover and mutation operators are applied only for elements when i < j, and
we always let Cj,i = Ci,j .

The generated network topology may not be connected. In reality, a network
may not be connected at its initial construction stage due to insufficient finance.
Thus, disconnected networks are considered as valid solutions to the problem in
this paper so that the algorithm can be simplified.

Parents for crossover are selected using a strategy slightly different from that
in the original MOEA/D algorithm, whose details can be found in [2]. To gen-
erate the i-th offspring, we select an index k randomly from the neighborhood
B(i), and then use the i-th individual as the first parent and the k-th individ-
ual as the second parent. After the offspring is generated, its objective values
are calculated. Then, the i-th and the k-th individual are updated if the new
individual is better than them.
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The population is initialized uniformly at random. When an individual is
initialized, any two nodes are connected with a probability pr. Assume Npop

individuals will be generated at the initial stage, then the probability pr for the
i-th individual is set to i/Npop. After an individual is generated, its objective
values are calculated and all individuals in the population are updated according
to their weighted objective values.

4 MOEA/D with Objective-Guided Operators

It is commonly believed that algorithms using problem-specific knowledge can
achieve much better performance than a generic algorithm. Therefore, heuris-
tic local search algorithms should be used within a MOEA or genetic operators
should be designed specially for a specific application problem. However, heuris-
tic operations often optimize only one objective at a time. For MOPs, we need
to optimize multiple objectives simultaneously. Using an operator to optimize
one objective has been proposed in [14] for multiobjective 0/1 knapsack prob-
lems. Using different operators for different parts of the Pareto Front (PF) in
MOEA/D has been investigated in [15].

However, There is still lack of general guidelines for designing problem-specific
operators in a MOEA. In this paper, we propose objective-guided operators to
utilize problem-specific knowledge in MOEAs. Since an operator that optimizes
only one objective can often be designed easily, the main idea is to design one
operator for each objective and then use them alternatively.

More specifically, we design the following operators for the studied problem.

– Operator for objective 1: The first objective is to minimize the total
network cost. Thus, the operator selects a node i0 randomly at first. The
most expensive link connected with it is then removed;

– Operator for objective 2: The second objective is to minimize the av-
erage path length. For this objective, we randomly select a node from the
network and compare its degree with its neighboring nodes. The node with
the maximal degree is called a local hub node. We select two local hub nodes
which are not connected, then add a link between them. By connecting ‘hub’
nodes, the average path length can be shortened with a few new links;

– Operator for objective 3: The third objective is to reduce the vulnerabil-
ity of the network to the maximal extent. We firstly find the node with the
minimal degree in the network, then connect it to an unconnected node with
the minimal cost. Since the link cost is proportional to the distance between
two nodes, the node with the minimal cost will be the nearest node from it.

MOEA/D decomposes a MOP into a number of scalar optimization subproblems.
Each subproblem has a weight vector which sets weights on different objectives.
The weight vector represents the preference of the subproblem on different ob-
jectives. Since different subproblems have different preference on objectives, we
can not apply the objective-guided operators on different subproblems in the
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same way. Instead, we use them based on the preference of the objectives. We
design an objective-guided mutation operator which is illustrated as follows.

In MOEA/D, the i-th individual xi is to find the optima of the i-th subproblem
with the weight vector λi = (λi

1, . . . , λ
i
m) where m is the number of objectives.

Normally, λi
j ∈ [0, 1] and

∑m
j=1 λ

i
j = 1. The j-th element in the weight vector

represents the preference on the j-th objective. Thus, in the objective-guided
mutation operator, we use different operators according to the value of the weight
vector. In implementation, we generate a new offspring y from the i-th individual
using the following steps:

For k = 1, . . . , rnum, do
Apply the j-th operator on xi with
probability= λi

j ;

where the j-th operator is designed for the optimization of the j-th objective.
rnum is a control parameter which determines the number of iteration in the
objective-guided mutation operator.

5 Evaluation

5.1 Experiment Setting

To demonstrate the effectiveness of the MOEA/D algorithm using objective-
guided operators (called as MOEA/D-guided), we conduct experiments on two
networks with different sizes. The parameter setting is shown in Table 1.

Table 1. Parameters of Algorithms

Variable Description Value

N total number of nodes in a network 33, 340
Npop population size (also number of subproblems) 66
Neval number of function evaluations 50000
T size of neighborhood in MOEA/D 5
pc probability in crossover operation 0.5
pm probability in mutation operation 0.05
rnum iteration number in objective-guided mutation 10

The performance metrics include [2]:

– Set Coverage (C-metric): Let A and B be two approximations to the PF of
a MOP. C(A,B) is defined as the percentage of the solutions in B that are
dominated by at least one solution in A, i.e.

C(A,B) =
|{u ∈ B|∃v ∈ A : v dominates u}|

|B| (5)
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– Distance from Representatives in the PF (IGD-metric): Let P ∗ be a set of
uniformly distributed points along the PF. Let A be an approximation to
the PF, the average distance from A to P ∗ is defined as:

D(A,P ∗) =
∑

v∈P∗ d(v,A)

|A| (6)

where d(v,A) is the minimum Euclidean distance between v and the points
in A. Here the definition is slightly different than that in [2] in order to
consider the effect of size of solution set.

– Size of Solution Set: number of non-dominated solutions found.

The quality of two solution sets with respect to Pareto dominance can be com-
pared using the C-metric. The D-metric could measure both the diversity and
convergence of a solution set in a sense. Since the actual Pareto fronts of the
test networks are not known, we use an approximation of the PF as P ∗. The
approximation of PF is obtained from all non-dominated solutions found in all
the runs of the two algorithms. The size of solution set reveals the ability of
algorithm to find non-dominated solutions.

5.2 Experiment Results

Figure 1 shows the distribution of solution set found in one run on a network
with 33 nodes. It can be seen that the MOEA/D-guided algorithm has obtained
better distributed solutions and most solutions obtained by the MOEA/D-direct
algorithm are dominated by those by the MOEA/D-guided algorithm.

On a network with 340 nodes, the results are quite different. As shown in
Figure 2, the solutions of the two algorithms have very different distributions.
The MOEA/D-direct algorithm has produced very few solutions with low values
of objective 1 (network cost). The MOEA/D-guided algorithm has generated a
lot of solutions distributed in the objective space with low values of objective
1 and relatively large values of objective 2 and 3. Thus, we can still conclude
that the MOEA/D-guided algorithm has better exploration ability than the
MOEA/D-direct algorithm on this test instance.

The performance metrics are averaged over 10 independent runs. The results
are shown in Figure 3. With the increase of the function evaluation number,
the C-metric of MOEA/D-guided vs MOEA/D-direct increases too. It implies
that more solutions of MOEA/D-direct are dominated by solutions of MOEA/D-
guided if more computational efforts are made. In the case of network with 33
nodes, the C-metric of MOEA/D-direct versus MOEA/D-guided is zero and not
shown in Figure 3a.

The D-metric values of MOEA/D-guided are lower than those of MOEA/D-
direct in the case of 33 nodes. It means that the solution set of MOEA/D-
guided is more close to the approximated Pareto front. The D-metric values of
MOEA/D-guided are higher than those of MOEA/D-direct in the case of 340
nodes. However, the values are getting closer with the increase of function evalu-
ation number. Obviously, the complexity of the problem has increased when the
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Fig. 1. Results on network with 33 nodes
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Fig. 2. Results on network with 340 nodes
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Fig. 3. C-metric, D-metric and Size of Solution Set

network scale increases. The higher D-metric values in MOEA/D-guided may
be explained by the solution set size. AS shown in Figure 3d, the final solu-
tion sets of MOEA/D-guided in both cases are larger than those of MOEA/D-
direct. With solutions distributed more widely, the distance from one solution
to the approximated Pareto front is more likely large. The larger solution set of
MOEA/D-guided also demonstrates its stronger exploration ability.

6 Conclusion

In this paper, we have investigated how to utilize problem-specific knowledge in
multi-objective evolutionary algorithms. Specifically, we have studied the net-
work topology planning problem using the MOEA/D algorithm. The algorithm
was firstly applied on the problem using generic graph operators. Then the
objective-guided operators were proposed and a way to use them in MOEA/D
was proposed. The main idea is to design one operator for each objective and
use the operators based on the weight vectors of subproblems in MOEA/D. Ex-
perimental results on networks of different scale have shown the superiority of
the MOEA/D-guided algorithm which uses objective-guided operators.

Future work includes further improvement of the algorithm on large-scale
problem instances. Other problem-specific operators may be incorporated and
other approaches to exploit problem-specific knowledge can be investigated.
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