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Abstract. Objective-space discretization is a popular method to con-
trol the elitist archive size for evolutionary multi-objective optimization
and avoid problems with convergence. By setting the level of discretiza-
tion, the proximity and diversity of the Pareto approximation set can
be controlled. This paper proposes an adaptive archiving strategy which
is developed from a rigid-grid discretization mechanism. The main ad-
vantage of this strategy is that the practitioner just decides the desir-
able target size for the elitist archive while all the maintenance details
are automatically handled. We compare the adaptive and rigid archiv-
ing strategies on the basis of a performance indicator that measures front
quality, success rate, and running time. Experimental results confirm the
competitiveness of the adaptive method while showing its advantages in
terms of transparency and ease of use.

Keywords: Multiobjective optimization, estimation of distribution al-
gorithms, elitist archive.

1 Introduction

Optimization problems in practice may involve more than a single objective, and
often conflicting ones. A utopian solution, that optimizes all objectives at the
same time, is unachievable. A solution x can be better than another solution y
in some objectives, but worse in others. The optimum for such multi-objective
optimization (MO) problems is thus a set of equally preferable trade-off solutions
rather than a single optimal point. We formalize the terminologies and notations
for MO used in this paper as follows:

1. Multi-objective optimization. m objective functions fi(x), i ∈ M =
{0, 1, . . . ,m−1}, without loss of generality, must all be minimized. A solution
vector x = (x0, x1, . . . , xk−1) in the decision space has an corresponding
image vector f(x) = (f0(x), f1(x), . . . , fm−1(x)) in the objective space.

2. Pareto dominance. A solution x0 dominates a solution x1 (denoted x0 �
x1) if and only if (∀i ∈ M : fi(x

0) ≤ fi(x
1)) ∧ (f (x0) �= f(x1)).
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3. Pareto set. A Pareto set P of size n is called a Pareto set if and only if
¬∃x0,x1 ∈ P : x0 � x1.

4. Pareto optimality. A solution x0 is said to be Pareto optimal if and only
if ¬∃x1 : x1 � x0.

5. Pareto-optimal set. The set PS of all Pareto-optimal solutions: PS =
{x0|¬∃x1 : x1 � x0}.

6. Pareto-optimal front. The set PF in the objective space of all image
vectors corresponding to the solutions in PS in the decision space: PF =
{f(x) = (f0(x), f1(x), . . . , fm−1(x))|x ∈ PS}.

The optimal solution for a multi-objective optimization problem is the Pareto-
optimal set PS and its corresponding image PF . The actual size of PS and PF

may be infinite or too numerous to be obtained by finite computational resources.
In practice the desired result is often a representative solutions subset S of PS

having a reasonable size, from which decision makers are able to consider and
make their final choice. This subset S should have its image f(S) well-spread
along the Pareto-optimal front PF , which means diversity in the quality of
trade-off solutions regarding all related objectives.

Different works have shown that elitism is crucial for the convergence of
multi-objective optimization evolutionary algorithms (MOEAs) [1,2]. While eli-
tist preservation for single objective optimization is a trivial task, in which the
only best solution needs to be kept and updated along the run, multi-objective
optimization requires more complicated elitism strategies. A separate data struc-
ture, called the elitist archive, is often used to keep track of the best Pareto set,
in which every solution is not dominated by any other solution in the whole pop-
ulation nor by any other elitist solution in earlier generations. When the number
of solutions on the Pareto front is large, the archive may grow to an extreme size.
Large archives are furthermore computationally expensive to maintain. Because
computational resources are always limited, an upper bound for the archive size
is definitely compulsory. Problems occur when this upper bound is reached and
new non-dominated solutions continue to be found. One way to differentiate
MOEAs is how they treat this elitist archiving problem.

Laumanns et al. [3] propose ε-dominance and ε-Pareto set to address the
problem of convergence and diversity of the approximate set. The ε-Pareto set is
proved to have bounded size. However, Hernández-Dı́az et al. [4] point out that
the box-domination scheme for maintaining an ε-Pareto set prevents the archive
from achieving its intended upper bound. The authors then present Pareto-
adaptive ε-dominance (paε-dominance) with a curve-fitting scheme to determine
several parameters in order to generate a more suitable grid depending on the
problem being solved at hand. paε-dominance limits the types of Pareto fronts it
can handle to the curves of the family {xp

1+xp
2+. . .+xp

n = 1 : 0 ≤ x1, x2, . . . , xn ≤
1, 0 < p < ∞}, and the objective space should thus be continuous. A notable
adaptive grid archiving (AGA) strategy is presented by Knowles and Corne [5].
AGA uses a grid, which can adapt its position and size, to estimate the density
of the archived solutions in the objective space. When the archive is full, and a
new non-dominated solution is generated in a less crowded region, a solution in
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a more crowded region will be removed. If the new solution lies in an already
crowded region, it will be ignored. AGA thus can control the size of the elitist
archive, but its convergence cannot be guaranteed [5]. Furthermore, without a
priori knowledge of true Pareto front ranges, determining how many regions the
objective space should be divided into (to generate the grid) before the run is
started is an uninformed decision, and thus could easily make the grid become
too coarse-grained or too fine-grained.

In this paper, we present a new adaptive elitist archiving strategy for MOEAs.
The work is based on a straightforward rigid objective-space discretization ap-
proach that was already used in earlier research [6]. With the proposed adap-
tive elitist archiving strategy, an optimization practitioner can straightforwardly
decide her desirable archive size, and let the algorithm automatically adapt its
structure. Our paper is organized as follows. In Section 2 we describe two archiv-
ing strategies: the rigid-grid discretization, and the adaptive grid discretization.
Section 3 shows experimental results comparing the performance of the two
strategies under different parameter settings. Section 4 concludes our paper.

2 Elitists Archiving Strategies

2.1 Rigid Grid Discretization

MOEAs with competent operators (e.g., selection, modelling, and variation op-
erators) can generate good solutions which are distributed along the true Pareto-
optimal front. Because the number of non-dominated solutions may exceed the
capacity of the elitist archive, archiving strategies are needed to decide which
solutions should be stored and which solutions can be discarded. To limit the
elitist archive to reasonable sizes while ensuring that non-dominated solutions
are potentially well distributed across their ranges, the objective space is dis-
cretized into equal hypercubes, and each hypercube is allowed to contain only
one solution at a time (see, e.g. [6]). The discretization is performed by dividing
each objective dimension fi into equal segments of unit length λi; for the sake
of simplicity, here λi are set to the same λ for all objectives. Because the edge-
lengths λi of hypercubes are determined before an MOEA run, and are fixed
during the run, we refer to this method as rigid-grid discretization (RGD).

When the MOEA generates a non-dominated solution, it will go through an
acceptance test to enter the elitist archive. If the new solution is (Pareto) dom-
inated by any archive solutions, it is discarded. A new non-dominated solution
can enter the elitist archive if and only if it occupies an empty hypercube or it
dominates the solution that currently resides in the same hypercube. If the new
non-dominated solution does not dominate the occupant, that new solution is
considered as a dominated solution and is discarded as well. When a new solu-
tion is accepted into the archive, all solutions dominated by it are removed from
the archive to ensure that the archive is always a Pareto set. The pseudo-code
for adding a non-dominated solution into the archive is described in Fig. 1.

While keeping non-dominated solutions well-spread, RGD also prevents the
elitist archive from degeneration. Degeneration happens if an MOEA prunes a
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UpdateElitistArchive(A,x0,λ)

λ = (λ0, λ1, . . . , λm−1)
1 if ∃x1 ∈ A : x1 � x0 then

1.1 A′ ← A
2 else if ∃x1 ∈ A : IsSameBox(f(x0), f(x1),λ) ∧ x0 �� x1

2.1 A′ ← A
3 else

3.1 D ← {x1 ∈ A | x0 � x1}
3.2 A′ ← A ∪ {x0} \D

4 return A′

IsSameBox(f0, f1,λ)
f0 = (f0

0 , f
0
1 , . . . , f

0
m−1),

f1 = (f1
0 , f

1
1 , . . . , f

1
m−1),

λ = (λ0, λ1, . . . , λm−1)
1 for i← 0 to m− 1 do

1.1 if 
f0
i /λi� �= 
f1

i /λi� then
1.1.1 return false

2 return true

Fig. 1. Pseudo-code for adding a non-dominated solution x0 into the elitist archive A

non-dominated solution xg from its elitist archive at iteration g, and at a later
generation g′, the archive accepts a solution xg′

which would be dominated by
xg if xg were still in the archive. This for instance is the case for the archiving
strategies adopted in the well-known MOEAs NSGA-II and SPEA2 [7]. With
RGD, there is no need to additionally prune the elitist archive; RGD just decides
whether or not a solution is qualified to enter the archive. An occupant of a
hypercube is removed if and only if it is dominated by a better solution which is
newly accepted into the elitist archive. Because the ranges of the Pareto-optimal
front are limited, the maximal number mλ of non-dominated solutions which
can be put into the grid corresponding to a discretization level λ is bounded.
The elitist archive size is thus always less than or equal to mλ. If the MOEA
does not generate any better solutions, the elitist archive will stay the same. The
MOEA thus converges in this sense.

Experimental results showed the effectiveness of this rigid grid discretization
technique on various benchmark problems [6]. However, it requires practitioners
to set the discretization levels (i.e. the hypercube sizes) before the run. If infor-
mation about the ranges of feasible solutions in the objective space is not prior
knowledge, then setting fixed values is problematic and raises problems such as
making the archive too coarse-grained or too fine-grained. A too coarse-grained
discretized objective space misses many valuable solutions, and a too fine-grained
archive requires a considerable amount of computational resources to maintain.
Furthermore, manually setting the hypercube sizes is not a transparent manner
to control the ultimate archive size from the perspective of decision makers.

2.2 Adaptive Grid Discretization

In real-life scenarios, a practitioner may not have prior knowledge about the
ranges of the Pareto-optimal front, and she still needs to control the elitist archive
size around an allowable size t due to limitations in computational resources. We
resolve this problem by proposing an adaptive grid discretization mechanism
(AGD). Regarding available resources, the practitioner can decide her budget
for the elitist archive before an MOEA run, and the objective space will be
adaptively discretized to maintain the archive around the target size t.

The archive functions much like in the rigid case: non-dominated solutions enter
the archive, and dominated solutions are removed.When the archive size deviates
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Multi-ObjectiveEvolutionaryAlgorithm()

1 P← Initialize()

2 F← {f(x) = (f0(x), f1(x), . . . , fm−1(x))|x ∈ P}
3 A← ∅
4 λ← (0, 0, . . . , 0)
5 while ¬TerminationConditionsSatisfied() do

5.1 (S, FS)← MakeSelection(P, F)
5.2 O← GenerateNewSolutions(S,A)

5.3 FO ← {f(x) = (f0(x), f1(x), . . . , fm−1(x))|x ∈ O}
5.4 for i← 0 to |O| − 1 do

5.4.1 A← UpdateElitistArchive(A,O[i],λ)
5.5 if |A| > tup then

5.5.1 (A,λ)← AdaptGridDiscretization(A)

5.6 (P, F)← MakeReplacement((S, FF), (O, FO))

AdaptGridDiscretization(A)
1 low ← 1
2 high ←MAX
3 A′ ← A
4 maxi ← max{f0

i , f
1
i , . . . , f

|A|−1
i }, i ∈ {0, 1, . . . , m− 1}

5 mini ← min{f0
i , f

1
i , . . . , f

|A|−1
i }, i ∈ {0, 1, . . . ,m− 1}

6 for count← 0 to N − 1 do

6.1 mid = low+high
2

6.2 λi =
maxi−mini

mid , i ∈ {0, 1, . . . ,m− 1}
6.3 λ← (λ0, λ1, . . . , λm−1)
6.4 A← ∅
6.5 for j ← 0 to

∣
∣A′∣∣− 1 do

6.5.1 A← UpdateElitistArchive(A,A′[j],λ)

6.6 if |A| < tlow then
6.6.1 low ← mid

6.7 else
6.7.1 high← mid

7 return A,λ

Fig. 2. Pseudo-code for adaptive grid discretization. Initially, λ is assigned a zero
vector (0, 0, . . . , 0), which means that no objective-space discretization is used. MAX
is the maximal number of segments which a dimension can be divided into. N is the
maximum number of steps in the binary search for objective-space discretization. In
this paper, we set MAX = 225 and N = 25.

too much from the target size t, the edge-lengths need to be re-determined. Be-
cause we do not want to perform the objective-space discretization every time a
single non-dominated solution is generated, we allow the elitist archive to grow
to an upper bound tup before pruning it. To prevent the adaptation process from
deleting too many solutions, we set an lower bound of tlow for the elitist archive
size. As soon as the archive size reaches the upper bound, the objective space
adaptation process is triggered. AGD first determines the ranges of all current
archived solutions in the objective space, and then performs a binary search, tar-
geted at tlow, for how many segments each range should be divided into. The final
discretization must satisfy the condition that the archive size is greater than the
lower bound and less than the upper bound (i.e. tlow < t < tup). The details of
AGD are described in Fig. 2. In this paper, we set tlow and tup as 0.75∗t and 1.25∗t,
respectively. We calibrated these values by hand taking into account that if tup is
too large or tlow is too small then the actual archive size may deviate too much
from the target, while setting the bounds closer to t increases the computational
overhead for re-discretization too much.
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AGD can be seen as a sequence of RGDs with different discretization levels λ.
When changing to a new discretization, degeneration of the elitist Pareto front can
happen because some non-dominated solutions are removed, but during an RGD,
degeneration does not happen. Ultimately, there is an iteration g when solutions
in the elitist archive already cover the ranges of the Pareto-optimal front, i.e. the
MOEA is nearing the Pareto-optimal front, and the current discretization levelλg

ensures that the maximal number of non-dominated solutions which can be put
into the grid is close to the target size t of the elitist archive (i.e., mλg ≈ t, and
mλg ≤ tup). From that iteration g, there is no need to re-discretize the objective
space any more. If the MOEA does not generate any better solutions, the elitist
archive will stay the same. The MOEA thus again converges in this sense.

3 Experiments

3.1 Benchmark Problems

In this paper, we select the MAMaLGaM (Multi-objective Adapted Maximum-
Likelihood Gaussian Model [6]) as the MOEA to be combined with the two
elitist archiving strategies above. It should be noted however that because these
archiving mechanisms work independently from the generation of new solutions,
they can be readily implemented in other MOEAs, including those aimed at
discrete parameter spaces. We carry out a performance assessment of the two
archiving strategies over 8 benchmark problems described in Table 1. ZDTi, i ∈
{1, 2, 3, 6} are well-known test problems proposed by Zitzler et al. [2]. GMi, i ∈
{1, 2} are generalizations of the MED (Multiple Euclidean Distances) problems
[8]. Developed from the well-known Rosenbrock function, BDi, i ∈ {1, 2} were
recently introduced in the MOEA literature [9]. Details about construction and
difficulty of these benchmarks can be found in the referenced research.

We refer to an approximation set S as the combination of the elitist archive
and all the non-dominated solutions in the current population. We consider
the outcome of an MOEA to be the final approximation set upon termination.
To compare the quality of approximation sets, we use a performance indicator,
denoted DPF→S .

DPF→S(S) =
1

|PF |
∑

f0∈PF

min
x∈S

{d(f (x),f0)} (1)

where PF is the Pareto-optimal front, f (x) is a point in objective space, which
is the objective value vector of a solution x ∈ S, and d(·, ·) computes Euclidean
distance.DPF→S is also referred to in literature as inverse generational distance.
It can be inferred from Equation 1 that the proximity and diversity of S with
respect to the Pareto-optimal set PS is measured in the objective space with
regard to the Pareto-optimal front PF . Because the Pareto-optimal fronts of all
test problems here are continuous and thus are infinitely large, for the sake of
computability, we approximated the true PF by uniformly sampling along it a
subset of 5000 points.
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The smaller DPF→S value an approximation set S has, the better its quality
is. In practice the Pareto-optimal front may not be known, and thus the perfor-
mance indicator DPF→S cannot be used. However, for benchmarking purposes,
where PF is available, this indicator has a two-fold advantage: it can measure
both the proximity and diversity of S with respect to PF . In our experiments, an
MOEA run with its final S having DPF→S ≤ 0.01 is considered as a successful
run because such approximation set are quite close to the true Pareto-optimal
fronts. Fig. 3 shows the default Pareto-optimal fronts and the adaptive elitist
archives with different desirable target sizes t for all the problems.
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Fig. 3. For all problems: the default front and the elitist archive of 3 different archive
size settings. Horizontal axis is f0 objective value. Vertical axis is f1 objective value.

Table 1. The MO problem test suite

Name Objectives IR
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∣
∣
∣
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∣
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∣
∣

∣
∣
∣
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3.2 Results

All the presented results here are averaged over 30 runs. Each run has a budget of
106 fitness evaluations. MAMaLGaM terminates when it uses all the allowable
evaluations, or when all the distribution multipliers ≤ 0.5. Details about the
operations of MAMaLGaM and its components can be found in [6].

Fig. 4 shows convergence graphs of the DPF→S indicator values from the be-
ginning until termination for MAMaLGaM with the two elitist archiving strate-
gies on all benchmark problems. When the elitist archive has limited volume (i.e.,
the target size is too small, t = 10, or the grid is too coarse-grained, λ = 0.1), it
is less likely to achieve the desirable convergence (DPF→S ≤ 0.01). Otherwise,
when having archives of adequate capacity, the MOEA achieves good conver-
gence behavior for both variants of archiving mechanisms. Fig. 4 also shows that
the greater the elitist archive is, the better DPF→S indicator values it can ob-
tain. MAMaLGaM with rigid grid of λ = 0.001 shows its superiority in most of
problems because it maintains the largest number of non-dominated solutions.
Table 2 shows the average numbers of solutions in the archive for each bench-
mark problems. Because of allowing more solutions in the elitist archive, and
thus in the approximation sets, the rigid grid MOEAs do perform slightly better
than the their relatively corresponding adaptive versions (i.e., λ = 0.1 vs t = 10,
λ = 0.01 vs t = 100, λ = 0.001 vs t = 1000). The DPF→S indicator values
of RGD are thus slightly better than those of AGD. Note however, that this is
a consequence of our choice for setting λ and t, and not because of inferiority
of AGD. Doubling t would give similar DPF→S indicator values. Also, if we

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0  200000  400000  600000  800000  1e+06

ZDT1

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0  200000  400000  600000  800000  1e+06

ZDT2

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0  200000  400000  600000  800000  1e+06

ZDT3

 0.001

 0.01

 0.1

 1

 10

 0  200000  400000  600000  800000  1e+06

ZDT6

 0.0001

 0.001

 0.01

 0.1

 1

 0  200000  400000  600000  800000  1e+06

GM1

 0.0001

 0.001

 0.01

 0.1

 1

 0  200000  400000  600000  800000  1e+06

GM2

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0  200000  400000  600000  800000  1e+06

BD1

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0  200000  400000  600000  800000  1e+06

BD2

rigid 0.1
rigid 0.01

rigid 0.001

adaptive t=10
adaptive t=100

adaptive t=1000
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lems. Horizontal axis: number of evaluations (both objectives per evaluation). Vertical
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unsuccessful runs, giving double occurrences of lines if some runs were unsuccessful.
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Table 2. Elitist archive sizes, success rates (i.e. the percentage of times MAMaLGaM
obtained DPF →S indicator ≤ 0.01), and average running times (measured in seconds)
of MAMaLGaM with 2 variants of elitist archiving strategies on all problems.

BD1 BDs
2 GM1 GM2 ZDT1 ZDT2 ZDT3 ZDT6

Elitist Archive Sizes

λ = 0.1 22 16 21 21 21 16 24 17
λ = 0.01 200 166 201 197 200 194 210 165

λ = 0.001 2000 1751 1975 1954 1996 1852 2020 1576

t = 10 8 8 8 8 8 8 8 9
t = 100 98 97 100 108 90 102 103 105

t = 1000 1017 974 1035 1052 957 1003 1045 964

Success Rates

λ = 0.1 100 3 100 100 93 80 90 100
λ = 0.01 100 43 100 100 100 96 100 100

λ = 0.001 100 66 100 100 100 93 100 100

t = 10 90 0 100 100 26 80 50 93
t = 100 100 66 100 100 100 96 100 100

t = 1000 100 66 100 100 100 93 100 100

Average Running Times

λ = 0.1 542 358 241 286 1101 1070 1073 1774
λ = 0.01 2015 1069 2589 2417 1161 1127 1126 2677

λ = 0.001 4892 4492 5211 5161 1903 1714 1778 4196

t = 10 536 552 160 160 1110 1105 1087 1224
t = 100 1180 719 1045 1139 1116 1106 1094 2530

t = 1000 4231 3834 4502 4498 1479 1424 1458 3925

terminate an MOEA run when it reaches the successful threshold (DPF→S ≤
0.01), it can be seen that the adaptive and rigid archives have similar convergence
behavior.

Table 2 shows the percentage of runs that an MOEA finds a final approxima-
tion set with performance indicator value DPF→S ≤ 0.01, which is considered
as successful. It can be seen that MOEAs with tiny archives have lower success
rate, which also means poorer reliability, in convergence. When the elitist archive
has adequate capacity, regardless of being a rigid or adaptive, the optimization
process will, in most of the times, converge successfully to fronts that are quite
close to the true Pareto-optimal front. This is however more dependent on the
capabilities of the other operators in MAMaLGaM rather than AGD.

Table 2 also demonstrates that the rigid and the adaptive archiving strategies
have similar running times, which can partly reflect their computational costs. It
is apparent that the greater elitist archive an MOEA has, the more expensive it
is to maintain. While the match is tied for performance (indicator values), reli-
ability (success rate), and efficiency (computational cost), the adaptive strategy
wins over the rigid grid in terms of transparency with respect to desired archive
size. For the rigid-grid discretization, the practitioner can indirectly and rela-
tively influence the archive size by adjusting the λ value, but she hardly controls
its actual growth without prior knowledge about the ranges of the objectives for
the Pareto-optimal fronts. If our adaptive archive is employed, the practitioner
simply decides the desirable target size of the elitist archive, thus its capacity,
and then let all the details be handled behind the scenes.
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4 Conclusions

In this paper, we have presented and compared two elitist archiving techniques
for evolutionary multi-objective optimization: a rigid objective space discretiza-
tion and an adaptive version. The two variants are showed to have similar conver-
gence behavior, success rate, and running time on various benchmark problems.
The advantage of the adaptive archiving strategy resides in its straightforward-
ness and transparency through which the practitioners can decide their desirable
archive size and all the archiving processes are then automatically handled. Ac-
cording to the ranges of different dimensions in the objective space, our technique
is able to select appropriate discretizations such that the final approximation set
is well-spread with good proximity concerning the Pareto-optimal front provided
that the MOEA is capable of generating such good solutions. Experimental re-
sults on benchmark problems support our above claims.

Although we only tested our adaptive archiving technique with the MAMaL-
GaM, it can be implemented into other state-of-the-artMOEAs straightforwardly
because it works independently from how new solutions are generated. Our tech-
nique is not limited to continuous search spaces as its design is not based on any
assumptions about the continuity of functions. Our technique has potential to be
applied successfully to a broad spectrum of optimization problems.
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