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Abstract. Currently, a majority of existing algorithms for sparse op-
timization problems are based on regularization framework. The main
goal of these algorithms is to recover a sparse solution with k non-zero
components(called k-sparse). In fact, the sparse optimization problem
can also be regarded as a multi-objective optimization problem, which
considers the minimization of two objectives (i.e., loss term and penalty
term). In this paper, we proposed a revised version of MOEA/D based
on iterative thresholding algorithm for sparse optimization. It only aims
at finding a local part of trade-off solutions, which should include the
k-sparse solution. Some experiments were conducted to verify the effec-
tiveness of MOEA/D for sparse signal recovery in compressive sensing.
Our experimental results showed that MOEA/D is capable of identifying
the sparsity degree without prior sparsity information.

Keywords: sparse optimization, multi-objective optimization, hard/
half thresholding algorithm, evolutionary algorithm.

1 Introduction

Compressive sensing (CS) is a novel sampling theory for reconstructing sparse
signals or images from incomplete information. In recent years, it has found nu-
merous applications, such as signal recovery, image processing as well as medical
imaging [1]. A fundamental problem in CS is to find a sparse solution for under-
determined linear systems, which generally have infinite number of solutions. A
sparse solution is often defined as the one with the minimal number of nonzero
components among all solutions. Finding sparse solution involves the following
NP-hard sparse optimization problem [2]:

min ‖x‖0, s.t. Ax = y (1)

where x ∈ RN is a N -dimensional signal vector, A is a M × N measurement
matrix with M � N , y ∈ RM is a measurement vector, and ‖x‖0 stands for the
number of nonzero components of x.
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In the area of sparse optimization, greedy strategies and regularization meth-
ods are two commonly-used methods for finding sparse solutions [3–6]. The
well-known greedy methods include matching pursuit (MP) [3] and orthogonal
matching pursuit (OMP) [5]. In both algorithms, a k-sparse solution is itera-
tively constructed component by component in a greedy manner until k nonzero
components are determined. Greedy strategies only provide approximate solu-
tions for sparse optimization problems. In contrast, sparse optimization methods
based on regularization frameworks, such as �0, �1 and �0.5 [7], are more efficient
to recover k-sparse solutions since they can recover the exact sparse solution. It-
erative hard thresholding algorithm (iHardT) [8] and iterative half thresholding
algorithm (iHalfT) [7] are two representative thresholding algorithms based on
regularization frameworks.

The main difficulty in previous sparse optimization methods lies in the fact
that the sparsity degree k is unknown in many real applications. To overcome this
problem, an estimate of sparsity degree is often used both in greedy methods and
in thresholding algorithms. In fact, a sparse optimization problem can also be
modeled as a multi-objective optimization problem. Two conflicting objectives
- the loss term (‖Ax − y‖) and the penalty term (‖x‖0) should be minimized
simultaneously. The solutions balancing both objectives are called trade-offs.
In both greedy methods and regularization methods, the main goal is only to
find one k-sparse solution, which belongs to the set of trade-off solutions for the
multi-objective optimization problem. So far, not much work has been done for
solving sparse optimization problems by multi-objective methods.

Since the early 1990s, evolutionary multi-objective algorithms (MOEAs) have
received a lot of research interests [9]. The well-known representatives are
NSGA-II [10] (Pareto-based), MOEA/D [11](decomposition-based), and IBEA
[12](indicator-based). The main advantages of MOEAs lie in (i) the ability of
finding multiple trade-off solutions with even spread in a single run, and (ii)
the high possibility of finding global optima. In this work, we proposed a re-
vised version of MOEA/D with thresholding algorithm for sparse optimization.
In the proposed algorithm, the sparse multi-objective optimization problem is
decomposed into multiple single objective subproblems. Each subproblem is as-
sociated with one sparsity level and a trade-off solution. It is optimized by ex-
isting thresholding algorithms in each generation. Moreover, the sparsity levels
of subproblems are adaptively changed during the search. In our experiments,
we tested the performance of the revised MOEA/D for sparse signal recovery in
CS.

The remainder of this paper is organized as follows. In Section 2, the sparse
optimization problem in CS is introduced. Section 3 gives an overview on two
well-known iterative thresholding algorithms. MOEA/D with iterative threshold-
ing algorithm for sparse optimization is presented in Section 4. The experimental
results are reported and analyzed in Section 5. The final section concludes the
paper.
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2 Sparse Multi-objective Optimization

2.1 Sparse Optimization

A general sparse optimization problem in the CS can be formulated as the fol-
lowing bi-objective optimization problem

min{‖y −Ax‖2, J(x)} (2)

where ‖y −Ax‖2 is the loss function. J(x) is the penalty term for sparsity. The

typical examples of J(x) are ‖x‖0, ‖x‖1 =
∑N

i=1 |xi| and ‖x‖0.50.5 = (
∑N

i=1 |xi| 12 )2,
which correspond to three well-known regularization frameworks, denoted by
�0, �1, and �0.5, respectively.

Over the last a few years, thresholding algorithms based on regularization have
been widely used in sparse optimization. In these algorithms, a regularization
optimization problem is obtained by combining the loss function and the sparsity
function of (2) in a linear manner:

min ‖y −Ax‖2 + λJ(x) (3)

where A and y are the same as above. λ > 0 is the regularization parameter,
which is very sensitive to the performance of thresholding algorithms. The larger
the value of λ, the solution of (3) is more sparse.

Among the aforementioned regularization frameworks, the solutions of �0 reg-
ularization problem are sparsest. But �0 regularization problem is difficult to
solve since it is a NP-hard combinatorial optimization problem. To overcome
this difficulty, �1 regularization, the relaxation of �0 regularization, was sug-
gested [13]. Since �1 regularization problem is a convex quadratic optimization
problem, there exist efficient algorithms for sparse solutions. �0.5 regularization, a
special case of �q(0 < q < 1), is the other popular framework for sparse optimiza-
tion, which allows fast method for sparse solutions as they can be analytically
expressed. Compared with �1 regularization, �0.5 thresholding algorithms need
less measurements to recover sparse signals, but it is more difficult to solve .

2.2 Pareto Optimality

As shown in (2), a sparse optimization problem is in nature a bi-objective opti-
mization problem, which should have many trade-off solutions. In this work, we
focus on the following bi-objective sparse optimization problem:

min
x∈RN

{(f1(x), f2(x))} (4)

where f1(x) = ‖x‖0 and f2(x) = ‖y −Ax‖2 . A and y are the same as in (1).
In the context of multi-objective optimization, the optimality of solutions is

defined in terms of Pareto dominance. For any two solutions x(1) and x(2) in RN ,
x(1) is said to dominate x(2) if and only if fi(x

(1)) ≤ fi(x
(2)) for all i ∈ {1, 2}, and

there exists at least one index j ∈ {1, 2} such that fj(x
(1)) < fj(x

(2)). A solution
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x∗ is said to be Pareto-optimal if there doesn’t exist such a solution in RN which
dominates x∗. The set of all Pareto-optimal solutions in the objective space is
called Pareto-optimal front. A solution x∗ is said to be weakly Pareto-optimal if
no solution in RN is strictly better than x∗ regarding all objectives.

2

1

Fig. 1. Weakly Pareto-optimal solutions in sparse optimization

Fig. 1 illustrates the distribution of weakly Pareto-optimal solutions in the
sparse optimization problem (4). Note that the number of these solutions is
finite because the first objective ‖x‖0 takes integer numbers in [0, N ]. Note that
part of trade-off solutions are not Pareto-optimal but weakly Pareto-optimal.
For example, all points on the right side of point K in Fig. 1 are only weakly
Pareto-optimal. In many existing sparse optimization methods, the goal is to find
the ’knee’ Pareto-optimal solution K (k-sparse) with y = Ax. Unfortunately, the
value of sparsity k is usually unknown.

3 Iterative Thresholding Algorithms

In this section, we briefly introduce two efficient iterative thresholding algorithms
for sparse optimization - iterative hard thresholding algorithm (iHardT) [14]
and iterative half thresholding algorithm [7] (iHalfT), which are based on �0
regularization and �0.5 regularization respectively.

– In iHardT, an iterative procedure is performed as follows:

x(n+1) = Hk(x
(n) +AT (y −Ax(n))) (5)

where Hk(·) is a nonlinear thresholding operator that retains the largest k
components of a vector in magnitude and sets others as zeros. Note that
AT (Ax(n) − y) is actually the gradient vector of ‖Ax− y‖2.

– In iHalfT, the important components of a vector are retained by a more
complex rule as follows:

x(n+1) = Hλ,μ,0.5(x
(n) − μAT (y −Ax(n))) (6)
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where Hλ,μ,0.5(x) = (ρλ,μ,0.5(x1)), ρλ,μ,0.5(x2), · · · , ρλ,μ,0.5(xN ))) is the
thresholding operator. The details of ρλ,μ,1/2(·) is referred to the litera-
ture [7].

4 MOEA/D for Sparse Optimization

4.1 Motivations

In most existing regularization methods, the bi-objective optimization problem
(2) is often converted into a single objective regularization optimization prob-
lem, which could be NP-hard, or have many local optimal solutions. Due to
these characteristics, these methods may suffer from being local optimizers and
having sensitivity to regularization parameter, and replying on the estimation of
sparsity degree. To determine the sparsity degree, regularization methods should
be repeatedly applied to solve regularization problems with various sparsity lev-
els. The set of all resultant solutions should be weakly Pareto-optimal and may
contain the ’knee’ Pareto-optimal solution shown in Fig. 1.

Since sparse optimization problem is a multi-objective optimization prob-
lem, the use of MOEAs to find multiple weakly Pareto-optimal solutions should
be a straightforward choice. Among all MOEAs, a recent popular algorithm -
MOEA/D is very suited for multi-objective sparse optimization problem due to
the fitness assignment based on decomposition. The main idea in MOEA/D is to
optimize multiple subproblems. Each subproblem is associated with one Pareto-
optimal solution. For sparse optimization, the objective functions of subproblems
can be defined by:

min g(s)(x) = ‖y −Ax‖2, (7)

s.t. ‖x‖0 = s,

where the sparsity level s ranges from 0 to N . Note that only the optimal solu-
tions of g(s) with sparsity level s close to sparsity degree k are preferred.

In this work, we suggested a revised version of MOEA/D based on threshold-
ing algorithms to find part of weakly Pareto-optimal solutions near the ’knee’
solution. Unlike previous variants of MOEA/D, this version evolves all sub-
problems such that the corresponding solutions are in the neighborhood of the
preferred ’knee’ solution. The detail of MOEA/D is described in the following
subsection.

4.2 MOEA/D with Thresholding Algorithm

In MOEA/D, a set of pop subproblems are defined by g(si)(x), i = 1, . . . , pop,
where si is an integer number between an estimation interval [smin, smax] includ-
ing sparsity degree k. For each subproblem g(si)(x), a solution x(i) is associated
and maintained. The general framework of MOEA/D for sparse optimization
is outlined in Algorithm 1. The following are the detailed illustrations for the
major steps in MOEA/D.
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Algorithm 1. MOEA/D for Sparse Optimization

1: Input pop- population size, #ls- maximal no. of steps in local search
2: Output P - sparse solutions, S- sparsity levels
3: Step 1: Initialization
4: initialize S = {s1, . . . , spop} and P = {x(1), . . . , x(pop)} randomly.
5: Step 2: Variation and Local Search
6: for all i ∈ {1, . . . , pop} do
7: perturb x(i) via mutation;
8: apply iterative thresholding algorithm to improve x(i) w.r.t sparsity level si.
9: end for
10: Step 3: Non-dominated Sorting
11: determine all non-dominated solutions in P and save them into Q.
12: Step 4: Sparsity Update
13: Step 4.1 sort S in an increasing order, i.e., si1 < si2 < . . . < sipop .

14: Step 4.2 determine the set of new potential sparsity levels S̃ = {�sij+0.5(sij+1−
15: sij )�|sij+1 − sij ≥ 2, j = 1, . . . , pop− 1}
16: Step 4.3 insert sparsity level in S̃ if |S̃| �= 0:
17: Step 4.3.1 si1 ← a level in S̃ randomly if |Q| > 0.5pop.
18: Step 4.3.2 sipop ← a level in S̃ randomly if |Q| ≤ 0.5pop.

19: Step 4.4 offset sparsity level if |S̃| = 0:
20: Step 4.4.1 si1 ← min{sipop + 0.5pop, smax} if |Q| = pop.
21: Step 4.4.2 sipop ← max{si1 − 0.5pop, smin} if |Q| = 1.

22: Step 4.5 replace x(i1) or x(ipop) by one solution in the half best in P if updated.
23: Step 5: Stopping Criteria
24: If stopping criteria is fulfilled, then output P and S; otherwise go to Step 2.

– In Step 2, each solution x(i) is first perturbed by a mutation operator,
and then improved by a local search procedure, i.e., iterative thresholding
algorithm. In this work, we use either iHardT in (5) or iHalfT in (6) for
this purpose. The parameter #ls is used to control the maximal number
of iterations allowed in each step of local search. x(i) is used as the starting
solution and then updated by the improved solution obtained in the previous
step. To perturb the starting solution, one of its non-zero component is set
to zero randomly. Then, we use the greedy constructive strategy in OMP to
complete the solution until si non-zero components are determined.

– In Step 3, the set of all non-dominated solutions in P are determined and
saved in Q. Note that weakly Pareto-optimal solutions for sparse optimiza-
tion problem are excluded in Q. The size of Q will tell us if the sparsity k is
among S.

– Step 4 is the core step of MOEA/D for sparse optimization, which adap-
tively updates the set S of pop sparsity levels. Step 4.1 and Step 4.2
determine the set S̃ of candidate sparsity levels. Each of them is located in
the middle of adjacent two sparsity levels in S.

– In Step 4.3 and Step 4.4, the minimum si1 or the maximum sipop among
all sparsity levels in S are updated by the candidate sparsity levels randomly
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chosen from S̃. As the search progresses, subproblems with pop consecutive
sparsity levels are expected to obtain.

– In Step 4.4, we also increase the maximal sparsity level sipop or decrease the
minimal sparsity level si1 since all sparsity levels in S may locate on one side
of the sparsity degree k. If all members of S are on the left side of k, then
we need to increase the maximal sparsity level. In this case, all members of
population are non-dominated. Otherwise, the minimal sparsity level should
be decreased if only one is non-dominated.

– Step 4.5 updates the solutions of the selected candidate sparsity level by
the member of P with the better value of f2.

5 Computational Experiments

5.1 Experimental Settings

In our experiments, we considered to recover noiseless real-valued signals. The
elements in sensor matrix AM×N and a k-sparse signal x∗ are randomly gen-
erated. MOEA/D was tested on four small instances with the length of signal
512 and sparsity degree 130, and four large instances the length of signal 1024
and sparsity degree 130. All instances are named by N -M -k. The initial range
of sparsity degree is assumed to be [50, 250]. For all instances, pop in MOEA/D
is set to 10. In local search, #ls used in iHardT or iHalfT is set to 20. The total
number of iterations is set to 10000 for the small instances and 20000 for the
large instances. MOEA/D was implemented by C++ and tested on the operating
system Windows XP with Intel Quad CPU 2.66 GHz.

5.2 Experimental Results

Table 1 summarizes the average values of mean square error (MSE) between the
sparse signals and the recovered signals found by MOEA/D with two thresh-
olding algorithms in 20 runs. The comparison of MOEA/D with iHardT and
iHalfT was also provided. From these results, we can see that MOEA/D with
both thresholding algorithms can find 130-sparse solutions for the first three

Table 1. Comparison of MOEA/D with iHardT and iHalfT for 8 instances with spar-
sity level 130 in terms of average mse to the true sparse solution

Instance MOEA/D+iHardT MOEA/D+iHalfT iHardT iHalfT

512-350-130 3.23255e-014 3.98776e-014 3.17919e-014 3.74779e-014
512-320-130 4.82847e-014 4.83276e-014 4.39184e-014 4.21504e-014
512-290-130 4.79143e-014 5.60058e-014 3.25566e-014 4.80787e-014
512-260-130 N/A 7.26465e-014 N/A N/A
1024-500-130 5.81117e-014 6.25171e-014 6.53619e-014 5.54127e-014
1024-400-130 8.05214e-014 8.43726e-014 8.79100e-014 8.54657e-014
1024-350-130 7.95822e-014 8.87359e-014 N/A 6.20355e-014
1024-300-130 N/A N/A N/A N/A
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instances since the MSE values of the solutions found by MOEA/D are quite
small. This indicates the obtained solutions are very close to the sparse solutions
(less than 10−13). However, for the instance 512-260-130, all four algorithms ex-
cept iHalfT failed to find the 130-sparse solution. When M is small, the sparse
optimization problem becomes too difficult to solve. This also happened for the
instance 1024-300-130, where all four algorithms failed to find 130-sparse solu-
tion. Overall, MOEA/D with iHalfT works better than MOEA/D with iHardT.

Fig. 5.2 plots the weakly solutions found by MOEA/D with two thresholding
algorithms for two instances 512-350-130 and 512-260-130 in one of 20 runs. It
can be seen from Fig. 5.2 (a) that the 130-sparse solution is also the ’knee’ solu-
tion along the weakly Pareto front for the instance 512-350-130. Fig. 5.2(b) shows
that MOEA/D with iHalfT still found that 130-sparse solution for the instance
512-260-130 while MOEA/D with iHardT failed. This indicates that iHalfT is
superior to iHardT in MOEA/D for the instances with less measurements. This
observation is also consistent with the results in Table 1.
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Fig. 2. Weakly Pareto-optimal solutions found by MOEA/D for the instance 512-350-
130 (a) and the instance 512-260-130 (b).

6 Conclusions

In this work, we suggested a revised version of MOEA/D for sparse signal recov-
ery in CS. It attempts to find a local part of Pareto front, which should include
the k-sparse solution. Our experimental results showed that MOEA/D with both
iHardT and iHalfT is effective for sparse optimization without prior sparsity in-
formation. In the future work, we plan to apply the proposed algorithm to deal
with nonlinear sparse optimization problems.
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