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Abstract. Recent progress in the development of Evolutionary Algorithms made
them one of the most powerful and flexible optimization tools for dealing with
Multi-Objective Optimization problems. Nowadays one challenge in applying
MOEAs to real-world applications is that they usually need a large number of
fitness evaluations before a satisfying result can be obtained. Several methods
have been presented to tackle this problem and among these the use of approxi-
mate models within MOEA-based optimization methods proved to be beneficial
whenever dealing with problems that need computationally expensive objective
evaluations. In this paper we present a study on a general approach based on an in-
expensive fuzzy function approximation strategy, that uses data collected during
the evolution to build and refine an approximate model. When the model becomes
reliable it is used to select only promising candidate solutions for real evaluation.
Our approach is integrated with popular MOEAs and their performance are as-
sessed by means of benchmark test problems. Numerical experiments, with a low
budget of fitness evaluations, show improvement in efficiency while maintaining
a good quality of solutions.

Keywords: Evolutionary Multi-objective Optimization, Expensive Optimization
Problems, Fuzzy Function Approximation.

1 Introduction

Evolutionary algorithms (EAs) proved to be very powerful and flexible techniques for
finding solutions to many real-world search and optimization problems. In fact they
have been used in science and engineering as adaptive algorithms for solving practical
problems and as computational models of natural evolutionary systems. In particular
great effort was recently devoted to develop EAs to solve Multi-Objective Optimization
(MOO) problems. Algorithms in this particular class of problems are named Multi-
objective evolutionary algorithms (MOEAs) and they aim at finding a set of representa-
tive Pareto optimal solutions in a single run, see [16] for details and examples. Despite
the great successes achieved, evolutionary algorithms have also encountered many chal-
lenges. For most evolutionary algorithms, a large number of fitness evaluations (perfor-
mance calculations) are needed before a well acceptable solution can be found. In many
real-world applications, fitness evaluation is not trivial. There are several situations in
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which fitness evaluation becomes difficult and computationally efficient approximations
of the fitness function have to be adopted. A detailed survey on proposals to speedup
the evaluation of a single configuration can be found in [8]. The most popular models
for fitness approximation are polynomials (often known as response surface method-
ology), the Kriging model, whereby Gaussian process models are parameterized by
maximum likelihood estimation, most popular in the design and analysis of computer
experiments, and artificial neural networks (ANNs). In particular in [8], it is stated that
ANNs are recommended under the condition that a global model is targeted and that
the dimension is high. The reason is that ANNs need a lower number of free parameters
compared to polynomials or Gaussian models. As an example, in [6] an inverse neural
network is used to map back from a desired point in the objective space (beyond the
current Pareto surface) to an estimate of the decision parameters that would achieve it.
The test function results presented look particularly promising, though fairly long runs
(of 20,000 evaluations) are considered.

A multi-objective evolutionary algorithm, called ParEGO [9], was devised to obtain
an efficient approximation of the Pareto-optimal set with a budget of a few hundred
evaluations. The ParEGO algorithm is based on Kringing model, and it begins with
solutions in a latin hypercube and updates a Gaussian process surrogate model of the
search landscape after every function evaluation, which it uses to estimate the solution
with the largest expected improvement. A recent work, [15], presents MOEA/D-EGO,
that is based on Fuzzy clustering and Gaussian stochastic process modeling extends the
ParEGO algorithm to generate many candidate solutions at the same time, in such a way
it is possible to evaluate them all using parallel computing. In [12] an improved Archive-
based Micro Genetic Algorithm (referred to as AMGA2) for constrained MOO is pro-
posed. AMGA2 borrows and improves upon several concepts from existing MOEAs.
Benchmarking and comparison demonstrate its improved search capability in the range
between 5000 and 20000 function evaluations.

Recently, in [2] a MOEA with hierarchical fuzzy approximation was studied to
speed-up the Design Space Exploration (DSE) of embedded computer architectures.
The Evolutionary-Fuzzy methodology, named MOEA+FUZZY, exploits the knowledge
of the embedded computer architecture with a hierarchical design of the fuzzy approxi-
mator system, this way, in comparisons with other MOEA for computational expensive
optimization problems, like ParEGO, showed to save a great amount of time and also
gives more accurate results.

In this work we present a study on a general implementation of the MOEA+FUZZY
approach that can be applied to every optimization problem, using a general strategy to
efficiently build a fuzzy function approximator. Details on MOEA+FUZZY approach
are given in section 2. Our study aims to assess efficiency and performance of MOEAs
combined with our +FUZZY approach when only a low budget of fitness evaluations is
available. To this end we integrated proposed approach with popular MOEAs and tested
four synthetic benchmarks. The setup of experiments is described in Section 3, while
numerical results are presented in Section 4. Finally Section 5 gives our conclusion and
directions for future work.
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2 MOEA+FUZZY : Multi-Objective Evolutionary Optimization
with Fuzzy Function Approximation

In this section we give a detailed presentation of our Evolutionary-Fuzzy strategy which
has the ability to avoid the real evaluation of individuals that it foresees to be not good
enough to belong to the Pareto-set and to give them fitness values according to a fast
estimation of the objectives obtained by means of a Fuzzy System (FS). The main idea
is that data collected for previously evaluated candidate solutions can be used during
the evolution to build and refine an approximate model, and through it to avoid evalu-
ating less promising candidate solutions. By doing so, expensive evaluations are only
necessary for the most promising population members and the saving in computational
costs is considerable.

The proposed approach could be informally described as follows: in a first phase
the MOEA evolves normally; in the meanwhile the FS learns from real fitness function
evaluations until it becomes expert and reliable. From this moment on the MOEA stops
using the real function evaluation and uses the FS to estimate the objectives. From
this moment on only if the estimated objective values are good enough to enter the
Pareto-set will the associated individual be exactly evaluated. This avoids the insertion
in the Pareto set of non-Pareto system individuals. It should be pointed out, however,
that a “good” individual might be erroneously discharged due to the approximation
and estimation error. At any rate, this could affect the overall quality of the solution
found only after long runs as will be shown in Section 4. The reliability condition is
essential in this flow. It assures that the approximator is reliable and that it can be used
in place of the real function evaluation. To test reliability during the training phase
the difference (approximation error) between the actual fitness function output and the
predicted (approximated) fuzzy system output is evaluated. If this difference is below
a user defined threshold and a minimum number of samples have been presented, the
approximator is considered to be reliable. This strategy avoid to pre-set the number of
samples needed by the approximator before the EA exploration starts, that is difficult
when the objective function is not known.

The MOEA and the FS represent the main components of the proposed approach.
Whereas the first one is used to select individuals to be explored, the second one is used
to evaluate them. In our approach MOEAs could be chosen among ones presented in
the literature, while the next subsection focus on fuzzy system generation strategy.

2.1 Strategy to Build a Fuzzy Approximation System during Evolutionary
Process

The MOEA+Fuzzy approach uses a Fuzzy System (FS), which has been demonstrated
to be a universal approximator [14]. In this work fuzzy systems are generated with a
method that is based on the well-known Wang and Mendel method [13]. It consists of
five steps:

– Step 1 Divides the input and output space of the given numerical data into fuzzy
regions;

– Step 2 Generates fuzzy rules from the given data;
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– Step 3 Assigns a degree to each of the generated rules for the purpose of resolving
conflicts among them (rule with higher degree wins);

– Step 4 Creates a combined fuzzy rule base based on both the generated rules and,
if there were any, linguistic rules previously provided by human experts;

– Step 5 Determines a mapping from the input space to the output space based on the
combined fuzzy rule base using a defuzzifying procedure.

The main advantages of this method are that allows to build rules step by step and
that do not require a priori knowledge about function to be approximated. In addition
from Step 1 to 5 it is evident that this method is simple and straightforward, in the
sense that it is a one-pass build-up procedure that does not require time-consuming
training. Our single-threaded implementation needs just about 10−2 seconds both to add
a new rule and to perform an evaluation of an individual even a relatively big system,
with thousands of fuzzy rules and tens of input variables, on an Intel Core i5 machine.
In our implementation the output space could not be divided in Step 1, because we
had no information about boundaries. For this reason we used Takagi-Sugeno fuzzy
rules [11], in which each i-th rule has as consequent M real numbers siz , with z ∈
[1,M ], associated with all the M outputs. TSj being the set of fuzzy sets associated
with the variable xj , the fuzzy rules Ri of the single fuzzy subsystem are defined as:

Ri : if x1 is Si1 and . . . and xN is SiN then yi1 = si1, . . . , yim = siM

where Sij ∈ TSj . Let αjk be the degree of truth of the fuzzy set Sjk belonging to TSj

corresponding to the input value x̄j . If mj is the index such that αjmj is the greatest of
the αjk , the rule Ri will contain the antecedent xj is Sjmj . After constructing the set of
antecedents the consequent values yiz equal to the values of the outputs are associated.
The rule Ri is then assigned a degree equal to the product of the N highest degrees
of truth associated with the fuzzy sets chosen Sij . The rules generated in this way are
”and” rules, i.e., rules in which the condition of the IF part must be met simultaneously
in order for the result of the THEN part to occur. For the problem considered in this
paper, i.e., generating fuzzy rules from numerical data, only ”and” rules are required
since the antecedents are different components of a single input vector. In this work
fuzzy sets shape is Gaussian with normal distribution. Steps 2 to 4 are iterated with the
MOEA: after every evaluation a fuzzy rule is created and inserted into the rule base,
according to its degree in case of conflicts. More specifically, if the rule base already
contains a rule with the same antecedents, the degrees associated with the existing rule
are compared with that of the new rule and the one with the highest degree wins. In
Step 5 the defuzzifying procedure to calculate the approximated output value ŷ is the
one suggested in [13]. According to this method the defuzzified output is determined as
follows

ŷj =

K∑

r=1
mr ȳrz

K∑

r=1
mr

(1)

where K is the number of rules in the fuzzy rule base, ȳrz is the output estimated by
the r-th rule for the z-th output and mr is the degree of truth of the r-th rule. In our
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implementation the defuzzifying procedure and the shape of the fuzzy sets were chosen
a priori. This choice proved to be effective as well as a more intelligent implementation,
which could embed a selection procedure to choose the best defuzzifying function and
shape to use online. The advantage of our implementation is a lesser computational
requirement of the algorithm and a faster evaluation.

3 Experimental Setup

For implementation of the MOEA+Fuzzy strategy described above we used the PISA
suite [3]. PISA stands for Platform and programming language Independent interface
for Search Algorithms and allows to implement application-specific parts (representa-
tion, variation, objective function calculation) separately from the actual search strategy
(fitness assignment, selection). Several multi-objective evolutionary algorithms as well
as other well-known benchmark problems, such the widely used set of continuous test
functions the ZTL [17] and DTLZ [5], are available for download at the PISA website
[1]. Due to space restrictions, not all results can be presented here. Instead, we will
focus on four test problems ZDT3, ZDT6, DTLZ3 and DTLZ6, that summarize main
issues encountered in our tests. Table 1 lists the synthetic test problems chosen for this
study. Test problem ZDT3 was selected because it is discontinuous, while DTLZ3 be-
cause it is multi-modal and difficult to solve. ZDT6 and DTLZ6 were selected because
they involve a highly skewed distribution of points in the search space corresponding to
a uniform distribution of points in the objective space, thus challenge an optimization
algorithm’s ability to find the global Pareto-optimal frontier. Detailed description of test
problems can be found in their respective references. Using problems presented above
we tested the proposed methodology integrating it with the 2 most popular MOEAs,
SPEA2 [18] and NSGA-II [4], and a novel version of ε-constraint evolutionary algo-
rithm ECEA [10]. In this work we tested two different set-ups of our approach in order
to assess it after different ranges of real function evaluations:

1. +FUZZY1. Fuzzy system has 9 sets for each input variable and reliability thresh-
olds are distance of 1.0 and maximum of 5000 evaluations. The minimum number
of evaluations is 200.

2. +FUZZY2. Fuzzy system has 25 sets for each input variable and reliability thresh-
olds are distance of 0.5 and maximum of 10000 evaluations. The minimum number
of evaluations is 1000.

The first set-up is intended for a very low budget of real evaluations, from some hun-
dreds to few thousand, while the second should perform better with longer runs.

Table 1. Test problems

Name Variables Objectives Remarks
ZDT3 10 2 Discontinuous
ZDT6 10 2 Skewed

DTLZ3 12 3 Multi-modal
DTLZ6 12 3 Skewed
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The performance measure we considered is the Hypervolume [19], that is the only
one widely accepted and, thus, used in many recent similar works. This index measures
the hypervolume of that portion of the objective space that is weakly dominated by the
Pareto set to be evaluated. In order to measure this index the objective space must be
bounded, then a bounding reference point that is (at least weakly) dominated by all
points should be used. In this work we applied a standard linear normalization proce-
dure, i.e. all values are normalized to the minimum and maximum value observed on
the test problem. We took as bounding point vectors [1.1,1.1] and [1.1,1.1,1.1] for two
and three objectives, respectively.

To present an uniform comparison between different problems, in Section 4 we show
the percentage of a reference hypervolume covered by algorithms under investigation.

The reference hypervolume is calculated from a reference Pareto-set, that was ob-
tained in following way: first, we combined all approximations sets generated by the
algorithms under consideration after 50000 function evaluations (i.e. 500 generations
with a population of 100 individuals), and then the dominated objective vectors are re-
moved from this union. At last, the remaining points, which are not dominated by any
of the approximations sets, form the reference set. The advantage of this approach is
that the reference set weakly dominates all approximation sets under consideration.

Identical setting is used for all the algorithms. The parameter settings used for each
algorithm are as follows: number of generations = 500; population size = 100; number
of parents = 100; number of offsprings = 100; individual mutation probability = 1.0;
individual recombination probability = 1.0; variable mutation probability = 1.0; variable
swap probability = 0.5; variable recombination probability = 1.0; mutation distribution
index = 20.0; recombination distribution index = 15.0.

4 Numerical Results

Using the experimental setup described in section 3, for each test problem, algorithms
ran twenty times with different random seed. Median values for performance indicators
are presented to represent the expected (mid-range) performance. For the analysis of
multiple runs, we compute the quality measures of each individual run, and report the
median and the standard deviation of these. Since the distribution of the algorithms we
compare are not necessarily normal, we use the Kruskal-Wallis test [7] to indicate if
there is a statistically significant difference between distributions. We recall that the
significance level of a test is the maximum probability α, assuming the null hypothesis,
which the statistic will be observed, i.e. the null hypothesis will be rejected in error
when it is true. The lower the significance level the stronger the evidence. In this work
we assume that the null hypothesis is rejected if α < 0.01.

Table 2 presents median number of real function evaluations for MOEA+FUZZYs.
As expected for ZDT problems MOEAs need less function evaluations to converge,
for this reason we chose different pre-fixed amounts of real function evaluations for
comparison reported in Table 3. To make an uniform comparison we calculated me-
dian values of +FUZZY algorithms taking into account all runs, even those with a
number of function evaluations lower than maximum threshold selected. This means
that absolute performance of MOEA+FUZZYs is sometimes slightly underestimated.
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Table 2. Real function evaluations of MOEA+Fuzzy after 500 generations with a population of
100 individuals

Test Problem / Real function evaluations of MOEA+Fuzzy
Algorithm ZDT3 ZDT6 DTLZ3 DTLZ6

median stddev median stddev median stddev median stddev
SPEA2+FUZZY1 3095 3710 374 72 5354 60 3480 378
SPEA2+FUZZY2 2246 509 1184 119 10571 112 10001 2107

NSGA-II+FUZZY1 2387 4305 338 126 5256 75 3661 339
NSGA-II+FUZZY2 2251 418 1218 131 10594 110 8549 1871

ECEA+FUZZY1 297 38 298 32 10001 0 684 77
ECEA+FUZZY2 1268 155 1294 203 10001 2 1969 2645

Table 3. Comparison of median hypervolume percentage covered after a fixed amount of real
function evaluations

Test problem / Maximum number of real function evaluations*
Algorithm ZDT3 ZDT6 DTLZ3 DTLZ6

400 1200 2000 400 1200 2000 2000 3000 5000 2000 3000 5000
SPEA2 81.26 95.90 99.30 32.80 58.61 77.43 99.38 99.52 99.64 81.06 87.65 93.68
+FUZZY1 94.27 95.42 95.59 58.08 59.04 59.04 99.35 99.48 99.65 81.14 89.34 91.63
+FUZZY2 81.25 97.75 99.00 34.19 72.40 74.61 99.35 99.48 99.64 81.00 87.61 93.91

NSGA-II 81.57 95.85 99.34 33.38 56.28 75.58 99.47 99.58 99.70 83.62 90.34 95.55
+FUZZY1 94.01 96.56 96.65 59.91 60.96 60.96 99.46 99.57 99.71 83.91 92.11 93.73
+FUZZY2 81.56 97.66 99.04 33.32 72.36 75.23 99.46 99.57 99.70 83.91 90.43 95.99

ECEA 74.48 76.16 76.39 28.87 32.94 33.59 97.36 97.40 97.53 62.48 62.72 68.24
+FUZZY1 76.25 76.25 76.25 31.17 31.17 31.17 97.35 97.39 97.51 63.09 63.09 63.09
+FUZZY2 74.85 76.25 77.47 28.53 33.08 33.90 97.35 97.39 97.54 63.04 63.11 63.15
* Median values of +FUZZY algorithms are reported taking into account also runs with a number
of function evaluations lower than the threshold used for the comparison.
Results in bold are better than others with statistical significance level α < 0.01, according to
the Kruskal-Wallis test.

In particular, looking at Table 2 we remark that none of +FUZZY algorithms reached
2000 real evaluations in ZDT6 problem. From the results of the benchmark study, we
can see that the SPEA2+FUZZYs and NSGA-II+FUZZYs perform comparably well
in ranges considered, while ECEA has a slower convergence that impacts performance
of ECEA+FUZZYs. Results in Table 3 show that fuzzy system in scenario +FUZZY1

is able to speedup the convergence of MOEAs after a very low number of real fitness
evaluations for ZDT problems. On the other hand +FUZZY2 improvement is smaller,
but its performance on longer runs is more reliable, as shown also in Table 4. Figure
1 shows two examples of hypervolume improvement during the evoluationary process.
Speedup of +FUZZYs approach is evident in Figure 1(a). In DTLZ3 there is no signif-
icant improvement thanks to fuzzy approximation strategy, while in DTLZ6 our fuzzy
approach help to improve only SPEA2 and NSGA-II evolution in the range between
2000 and 3000 as also shown in Figure 1(b).
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Fig. 1. Hypervolume coverage: (a) ZDT6 - SPEA2 ; (b) DTLZ6 - NSGA-II

Table 4. Comparison of hypervolume percentage covered after 500 generations

Algorithm Test Problem
ZDT3 ZDT6 DTLZ3 DTLZ6

SPEA2 100 100 99.95 99.85
SPEA2+FUZZY1 96.67 60.96 99.72 93.74
SPEA2+FUZZY2 99.15 75.23 99.82 97.98

NSGA-II 100 100 99.96 99.85
NSGA-II+FUZZY1 95.68 59.04 99.65 91.63
NSGA-II+FUZZY2 99.11 74.61 99.81 96.39

ECEA 87.63 39.61 98.22 94.59
ECEA+FUZZY1 76.25 31.17 97.98 63.09
ECEA+FUZZY2 77.47 33.90 97.99 63.32

Results in bold are better than others with statistical significance level α < 0.01, according to
the Kruskal-Wallis test.
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Fig. 2. Pareto set comparison: (a) ZDT3 after 400 real function evaluation ; (b) ZDT6 after 1200
real function evaluations
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As expected +FUZZY1 is more efficient that +FUZZY2, but the second setup is
able to achieve a better quality of solutions. Table 4 present results after 500 genera-
tions. MOEA+FUZZY solutions maintain a good quality even if they are not able to
find the Pareto optimal set. ZDT6 is the only problem in which, despite the great effi-
ciency improvement, +FUZZYs are not able to find a good approximation of the Pareto
optimal set, this is because MOEAs converge slowly. However this problem could be
solved using a higher minimum threshold for the fuzzy system learning strategy. Figure
2 presents two comparison: in (a) Pareto sets for ZDT3 problem are shown, demon-
strating that NSGA-II+FUZZY1 (as well as NSGA-II+FUZZY1) is able to obtain a
very good approximation of the Pareto optimal set after 400 real function evaluation;
Pareto sets for ZDT6 problem are drawn in (b), where it is shown NSGA+FUZZY2

outperform NSGA-II+FUZZY1 and classic NSGA-II, but they are still quite far from
the Pareto optimal set.

5 Conclusion and Future Work

In this paper we have presented an empirical study on use of fuzzy function approxi-
mation to speed up evolutionary multi-objective optimization. The methodology uses
a MOEA for heuristic exploration of the search space and a fuzzy system to evaluate
the candidate system individuals to be visited. Our methodology works in two phases:
firstly all individuals are evaluated using computationally expensive evaluations and
their results are used to train the fuzzy system until it becomes reliable; in the sec-
ond phase the system is used to estimate fitness of all individuals and only promising
individuals are actually evaluated to improve the accuracy of the fuzzy system.

Empirical results with low budgets of real evaluations (i.e. from hundreds to three
thousand) encourage the use of a fuzzy system as approximate model to improve ef-
ficiency of MOEAs. This is because to the strategy used to build the fuzzy system,
that allows generating an efficient fitness function approximator without any previous
learning phase and knowledge of real function. Strengths of our approach are the in-
expensive learning procedure, that could be easily integrated with every MOEA giving
the opportunity to take advantage of novel algorithms, and the possibility to set-up the
fuzzy system according to a maximum number of real function evaluations.

On the other hand fuzzy systems have the characteristic to allow to embed prior
knowledge about the function to be approximated, this could be useful in problems
where there is an expert that knows at least part of the behaviours of the objective
function to be evaluated. This will be matter of our future work along with a study on
improvement of fuzzy system learning and evaluation strategies in order to maximize
approximation performance and, thus, tackle the problem of loss of solution quality in
longer runs.
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