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Abstract. This paper presents a biased random-key genetic algorithm
for solving a multi-objective optimization problem concerning the man-
agement of agile Earth observing satellites. It addresses the selection
and scheduling of a subset of photographs from a set of candidates in
order to optimize two objectives: maximizing the total profit, and ensur-
ing fairness among users by minimizing the maximum profit difference
between users. Two methods, one based on dominance, the other based
on indicator, are compared to select the preferred solutions. The meth-
ods are evaluated on realistic instances derived from the 2003 ROADEF
challenge.

Keywords: Multi-objective optimization, Earth observing satellite,
scheduling, genetic algorithm.

1 Introduction

This paper studies the use of multiobjective optimization applied to the schedul-
ing of one Earth observing satellite in a context where multiple users request
photographs from the satellite. Genetic algorithms are proposed to solve the
problem and experiments are conducted on realistic instances.

The mission of Earth Observing Satellites (EOSs) is to obtain photographs of
the Earth surface satisfying users’ requirements. When the ground station center
receives requests from several users, it has to consider all users’ requirements
and output an order consisting of a sequence of selected photographs to be
transmitted to the satellites. The management problem of EOSs is to select and
schedule a subset of photographs from a set of candidates. Among the various
types of EOSs, only agile satellites are considered in our study.

An agile EOS has one on-board camera that can move in three axes: roll,
pitch, and yaw. It has more efficient capabilities for taking photographs than
for example, SPOT5, a non-agile satellite. The selection and scheduling of tak-
ing photographs with agile EOSs is more complicated because there are several
possible schedules for the same set of selected photographs. The starting time of
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each photograph is not fixed; nonetheless, it must be within a given time inter-
val. This problem is a scheduling problem and it is the issue under consideration
in this paper.

Several algorithms including greedy algorithm, dynamic programming, con-
straint programming, and local search have been applied for solving agile EOSs
scheduling problems [1]. The ROADEF 2003 challenge (see http://challenge.
roadef.org/2003/en/) requires the scheduling solutions that maximize total profit
of the acquired photographs and also satisfy all physical constraints of agile
EOSs. The winner used an algorithm based on simulated annealing [2] and the
second prize winner proposed an algorithm based on tabu search [3].

Our work considers agile EOSs scheduling problem where the requests em-
anate from different users. Hence an objective function to maximize the total
profit is not sufficient. The ground station center should also share fairly the re-
sources among users. Therefore, a multi-objective model is considered. The idea
to use two objective functions related to fairness and efficiency was proposed in
[4], and three ways were discussed for solving this sharing problem. The first one
gives priority to fairness, the second one to efficiency, and the third one computes
a set of trade-offs between fairness and efficiency. For the multi-criteria method,
instead of building a complete set of non-dominated solutions, the authors only
searched for a decision close to the line with a specified slope on the objective
function plane. In [5], a tabu search was used for the multi-satellite, multi-orbit,
and multi-user management to select and schedule requests. The upper bounds
on the profit were derived by means of a column generation technique. They
tested these algorithms with the data instances provided by the French Center
for Spatial Studies (CNES).

This paper proposes a biased random-key genetic algorithm (BRKGA) in or-
der to solve the multi-objective optimization problem for selecting and schedul-
ing the subset of required photographs from multiple users. The two objective
functions for this scheduling problem are to maximize the total profit and min-
imize the maximum difference of profit values between users. The second objec-
tive function represents the fairness of resources sharing among the users. The
solutions must also satisfy the physical constraints of the agile EOSs.

The article is organized as follows. The problem is explained in Section 2.
Section 3 describes the biased random-key genetic algorithm for solving the
multi-objective optimization problem. The computational results are reported
in Section 4. Finally, conclusions and future work are discussed in Section 5.

2 Multi-objective Optimization for Photograph
Scheduling Problem of Agile Earth Observing Satellites

According to the mission and physical constraints of agile EOSs, the requests
which are required from users cannot be assigned to a satellite directly. The
shape of the area of candidate photographs can be either a spot or polygonal. A
spot is a small circular area with a radius of less than 10 km. A polygonal area
is an area ranging from 20 to 100 km. All requests (both spot and polygonal
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area) must be managed from the ground station center by transforming the
requests into rectangular shapes called strips for which the camera can take a
photograph at once. Each spot is considered as one single strip. Each polygonal
area is decomposed into several strips with fixed width but variable length.
Each strip can be acquired following two possible opposite directions as shown
in Figure 1, only one of them will be selected in the scheduling results. Requests
can be mono or stereo photographs. A mono photograph is taken only once,
whereas a stereo photograph must be acquired twice in the same direction but
from different angles.

polygonal 

strip

possible 
acquired 
direction 

Fig. 1. A polygonal area is decomposed into several strips; each strip can be acquired
according to two possible directions

In [6], a simplified version of the problem of managing the mission of agile
Earth observing satellites was presented. An instance gives the set of candidate
requests with shape type, mono or stereo characteristic, associated gain and
surface areas. Let r be the set of requests. These requests are divided into the
set of strips s. Each strip includes details, which consist of the identity of request
R[j] where that strip is split from, the useful surface area Su[j], duration time
Du[j], and earliest and latest visible times from two ends Te[j, 0], T l[j, 0], T e[j, 1],
and T l[j, 1]. Each strip is possibly taken from two directions but only one can be
selected. Thus, our scheduling problem is solved for selecting and scheduling the
possible strip acquisition that is associated with the possible acquisition direction
of each strip. If one possible strip acquisition is selected, the other one (possible
acquisition in opposite direction) of the same strip is forbidden to be selected.
For the profit calculation of each acquired request, its profit can be calculated
by a piecewise linear function of gain depending on the fraction of taken useful
area and the whole area of each request, as illustrated in Figure 2.

Hence, we extend the case to multiple users as in [5]. However, we solve the
problem as a real bi-objective problem. The two objectives are to maximize total
profit and ensure fairness between users. For the second objective, the defined
function is to minimize the maximum difference in profit between the users. The
imperative constraints for finding the feasible solutions are: take each strip within
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Fig. 2. Piecewise linear function of gain P (x) depending on the effective ratio x of
acquired area [6]

their associated time windows, no overlapping images, sufficient transition times,
acquire only one direction for each strip, and satisfy the stereoscopic constraint
for stereo requests.

3 Biased Random-key Genetic Algorithm for the
Multi-user Photograph Scheduling

Genetic algorithm is a heuristic search method that mimics the process of natural
evolution. The starting step of genetic algorithm is the initial population gen-
eration and the population consists of several chromosomes. Each chromosome,
which is formed of several genes, represents one solution. The genetic algorithm
involves three mechanisms (selection, crossover, and mutation) to generate the
new chromosomes for the next generation and repeats to generate the new gen-
eration until the stopping criterion is satisfied.

We propose a genetic algorithm for selecting and scheduling the required pho-
tographs for the agile EOSs from multi-user requests. The biased random-key
genetic algorithm (BRKGA) [7] is used to solve this scheduling problem with
two important steps (encoding and decoding). Two methods are used to select
the preferred solutions in each genetic algorithm iteration: i) fast nondominated
sorting with crowding distance assignment [8]; ii) indicator based on the hyper-
volume concept [9]. Let p, pe, and pm be the sizes of the population, of the elite
set, and of the mutation set, respectively.

3.1 Chromosome Generation in the Encoding Process

The initial population consisting of p chromosomes is generated. Each chromo-
some consists of genes which are encoded by real values randomly generated in
the interval (0, 1]. For our problem, each strip can be taken following two oppo-
site directions (but only one direction will be selected). Each gene is associated
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with one direction of a strip, which is a possible strip acquisition that we will
just call acquisition in the sequel, for the sake of simplification. It is the reason
why we define the number of genes to be equal to twice the number of strips.

3.2 Schedule Generation in the Decoding Process

Each chromosome is decoded in order to obtain one solution, which is a sequence
of selected acquisitions of the scheduling problem. In this decoding step, the
considered priority of each acquisition depends on the gene values: from high to
low. The imperative constraints, except the stereo constraint, are verified during
each considered acquisition. The stereo constraint is checked once all acquisitions
have been treated. All constraints must be satisfied in order to obtain a feasible
solution. The flowchart of these decoding steps is depicted in Figure 3.

The example of one solution from the modified instance, which needs to sched-
ule two strips, is shown in Figure 4. Two strips are considered in this instance;
therefore the number of genes equals 4. The random-keys are generated for all
genes and each gene represents one acquisition. The decoding steps are used to
obtain the sequence of selected acquisitions and the values of the two objective
functions.

3.3 Biased Random-Key Genetic Algorithm

In BRKGA, the new population is combined from three parts (selection, crossover,
and mutation) [7]. The first part is the selection part in which we can choose a
selection method from several efficient algorithms, e.g., NSGA-II [8], IBEA [9],
SMS-EMOA [10], etc. We propose two selection methods to choose pe preferred
chromosomes (elite set) from the current population. We copy these pe chromo-
somes to the top part of the next population. The two methods are:

1. Fast nondominated sorting and crowding distance assignment
Fast nondominated sorting and crowding distance assignment methods were
proposed in the Nondominated Sorting Genetic Algorithm II (NSGA-II) [8].
In our work, the fast non-dominated sorting method is used to find the
solutions in rank zero (nondominated solutions). If the number of nondom-
inated solutions is more than the parameter setting value of maximum size
of the elite set, the crowding distance assignment method is applied to select
some solutions from the nondominated set to become the elite set. Other-
wise all nondominated solutions will become the elite set. The concept of the
crowding distance assignment method is to get an estimate of the density of
solutions surrounding a particular solution in the population.

2. Indicator based on the hypervolume concept
The use of an indicator based on the hypervolume concept was proposed
in the Indicator-Based Evolutionary Algorithm (IBEA) [9]. The indicator
based method is used to assign fitness values based on the hypervolume
concept to the population members and some solutions in the current pop-
ulation are selected to become the elite set for the next population. The
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Fig. 3. Decoding steps flowchart of one chromosome into one solution
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Fig. 4. Solution example from the modified instance, which needs to schedule two strips
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indicator-based method performs binary tournaments for all solutions in the
current population and implements environmental selection by removing the
worst solution from the population and by updating the fitness values of
the remaining solutions. The worst solution is removed repeatedly until the
number of remaining solutions satisfies the recommended size of the elite set
for BRKGA.

The second part is the bottom part which is the mutant set. It is the set of pm
chromosomes generated to avoid entrapment in a local optimum. These chromo-
somes are randomly generated by the same method used to generate the initial
population. The last part is the crossover part for which each crossover offspring
is built from one elite chromosome and one chromosome in the previous popu-
lation. Each element in the crossover offspring is obtained from the element in
elite chromosome with the probability ρe. The crossover offspring is stored in the
middle part of the new population. Hence, the size of crossover offspring set is
p−pe−pm to fulfill the remaining space of chromosomes in the next population.
The process for generating the next populations is applied repeatedly until the
stopping criterion is satisfied.

4 Computational Results

The ROADEF 2003 challenge instances (subsetA) from ROADEF Challenge
website (http://challenge.roadef.org/2003/en/sujet.php) are modified for
4-user requirements and the format of instance names are changed to a b c,
where a is the number of requests, b is the number of stereo requests, and c

is the number of strips. For the proposed biased random-key genetic algorithm,
the recommended parameter value settings is displayed in Table 1 [7]. Two pop-
ulation sizes of n and 2n, where n is the length of a chromosome, are tested.
The best solutions are stored in the archive set. If there is at least one solution
from the current population that can dominate some solutions in the archive set,
the archive set will be updated. Thus, we use the number of iterations of the
last archive set improvement to be the stopping criterion. The algorithms were
experimentally tuned and the stopping value is set to 50. The size of the elite
set is equal to the number of non-repeating photograph scheduling results from
the nondominated solutions, but it is not over 0.15p. The size of the mutant
set is 0.3p. The probability of elite element inheritance for crossover operation

Table 1. Recommended parameter values of BRKGA [7]

Parameter Recommended value

p p = a.n,
where 1 ≤ a ∈ R is a constant and
n is the length of the chromosome

pe 0.10p ≤ pe ≤ 0.25p
pm 0.10p ≤ pm ≤ 0.30p
ρe 0.5 ≤ ρe ≤ 0.8

http://challenge.roadef.org/2003/en/sujet.php
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Table 2. Results of the modified ROADEF 2003 challenge instances subsetA

Dominance-based

Instance
Hypervolume # CPU

Average σ solutions time (s)

2 0 2 - - - -
4 0 7 4.6734 × 1015 8.19837 × 1014 4.8 0
12 2 25 5.00258 × 1016 2.62563 × 1014 11.1 1611.7
12 9 28 1.23618 × 1016 1.06097 × 1015 7.1 0.3

Population 68 12 106 2.50509 × 1017 2.22774 × 1016 20.8 24.2
size n 77 40 147 2.69889 × 1016 3.93096 × 1015 25.3 77.7

218 39 295 4.62395 × 1017 1.11213 × 1017 25.4 483.9
150 87 342 4.80749 × 1017 3.59237 × 1016 27.7 938.9
336 55 483 1.24056 × 1018 1.58973 × 1017 23.8 2068.2
375 63 534 1.09387 × 1018 1.14147 × 1017 28 1878.9

2 0 2 5.43238 × 1013 0 1 0
4 0 7 5.78803 × 1015 6.11588 × 1013 7.2 0.2
12 2 25 5.08453 × 1016 6.69058 × 1013 23.5 3489.9
12 9 28 1.24857 × 1016 1.43998 × 1015 7.2 0.6

Population 68 12 106 2.51852 × 1017 2.20262 × 1016 37.5 68.8
size 2n 77 40 147 2.96205 × 1016 3.19952 × 1015 36.4 172.2

218 39 295 4.50592 × 1017 5.74569 × 1016 26.7 937
150 87 342 5.05842 × 1017 4.40302 × 1016 30.2 2013.7
336 55 483 1.15971 × 1018 1.58218 × 1017 27.7 2381.2
375 63 534 1.24831 × 1018 1.93988 × 1017 26.5 4473.1

Indicator-based

Instance
Hypervolume # CPU

Average σ solutions time (s)

2 0 2 - - - -
4 0 7 5.36459 × 1015 2.82301 × 1014 5.5 0
12 2 25 4.49038 × 1016 1.5282 × 1015 10.2 0.2
12 9 28 1.16085 × 1016 1.56771 × 1015 5.4 0.3

Population 68 12 106 2.38139 × 1017 3.06587 × 1016 9.4 24.3
size n 77 40 147 2.56001 × 1016 2.87972 × 1015 12.5 58.1

218 39 295 4.97074 × 1017 6.973 × 1016 13.3 450.5
150 87 342 4.4792 × 1017 2.9806 × 1016 12.2 852.3
336 55 483 1.26768 × 1018 1.07123 × 1017 10.3 2666.4
375 63 534 1.34292 × 1018 1.45157 × 1017 10.3 4623.4

2 0 2 5.43238 × 1013 0 1 0
4 0 7 5.81005 × 1015 5.93069 × 1013 8.8 0
12 2 25 4.9165 × 1016 1.27084 × 1015 23.1 1.1
12 9 28 1.24013 × 1016 9.66474 × 1014 8.1 1.4

Population 68 12 106 2.55655 × 1017 2.32915 × 1016 13.2 88.4
size 2n 77 40 147 2.73546 × 1016 2.72353 × 1015 14.7 223.4

218 39 295 5.30441 × 1017 3.9777 × 1016 13.2 3017.3
150 87 342 4.8244 × 1017 3.30219 × 1016 14 5276.6
336 55 483 1.41375 × 1018 8.84685 × 1016 10.3 12904.2
375 63 534 1.39739 × 1018 1.07724 × 1017 13.4 28760
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is 0.6. Two methods (dominance-based and indicator-based) for selecting some
solutions to become the elite set are tested. They are implemented in C++. We
test ten runs per instance. Hypervolumes of the approximate Pareto front are
calculated by using a reference point of 0 for the first objective and the maxi-
mum of the profit summations of each user for the second one. The average and
standard deviations values of hypervolumes, the average number of solutions,
and average CPU times are reported in Table 2. Each method obtains a set of
solutions, which considers both objective functions (maximize total profit and
ensure fairness among users) and all constraints of agile EOSs are satisfied. For
both methods, when comparing the results from two different population sizes,
most of them show that the methods with the population size 2n obtain the
better average and standard deviation values of hypervolumes and acquire more
solutions, but CPU times are higher. In the other way, when we compare results
between dominance-based and indicator-based, the average values of hypervol-
umes cannot show exactly which one obtains the better solutions. However, the
standard deviation for the population size 2n of indicator-based is better than
dominance-based. On the number of solutions and CPU time, dominance-based
obtains more solutions and spends less CPU times, especially for large instances.
Except for instance 12 2 25, dominance-based takes very high CPU time and
this is strange. Hence, more tests are done to check the number of iterations un-
til the stopping criterion is satisfied for instance 12 2 25 and instance 12 9 28.
The average number of iterations for instance 12 2 25 and instance 12 9 28 are
2657535.7 and 177.7, respectively. Therefore, instance 12 2 25 spends very high
CPU time, because it uses a huge number of iterations until the stopping cri-
terion is satisfied. For instance 2 0 2 when using the population size n, both
methods cannot reach any result, because the population size is too small for
generating the new generation from 3 parts in BRKGA. Nevertheless, the com-
putation times for large instances are quite high, that means that the efficiency
of the decoding methods certainly deserves to be improved.

5 Conclusions and Future Work

Multi-objective optimization is applied to solve the problem of selecting and
scheduling the observations of agile Earth observing satellites. The instances
of ROADEF 2003 challenge are modified in order to take account explicitly of
4-user requirements. Two objective functions are considered to maximize the
total profit and to minimize the maximum difference profit between users for
the fairness of resource sharing. Moreover, all constraints have to be satisfied. A
biased random-key genetic algorithm (BRKGA) is applied to solve this problem.
Random-key encoding generates each chromosome in the population and all of
them are decoded to be the solutions. Thus, two methods, fast nondominated
sorting with crowding distance assignment on the one hand and indicator based
on the hypervolume concept on the other hand, are used for selecting the elite
set of solutions from the population. An elite set, a crossover offsprings set, and
a mutant set are combined to become the next population. The results of the
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dominance-based and indicator-based methods with two population sizes are
compared. The approximate solutions are obtained but the computation times
for large instances are quite high.

This work is still in progress. As a future work, we plan to use other random-
key decoding methods in order to reduce the computation times. Moreover, we
will apply indicator-based multi-objective local search (IBMOLS) to solve this
problem and compare the IBMOLS results with the BRKGA results which are
proposed in this paper.
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