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Abstract. In the evolutionary multiobjective optimization (EMO) community, 
indicator-based evolutionary algorithms (IBEAs) have rapidly increased their 
popularity in the last few years thanks to their theoretical background and high 
search ability. Hypervolume has often been used as an indicator to measure the 
quality of solution sets in IBEAs. It has been reported in the literature that 
IBEAs work well on a wide range of multiobjective problems including many-
objective problems on which traditional Pareto dominance-based EMO 
algorithms such as NSGA-II and SPEA2 do not always work well. In this paper, 
we examine the behavior of SMS-EMOA, which is a frequently-used 
representative IBEA with a hypervolume indicator function, through 
computational experiments on many-objective 0/1 knapsack problems. We 
focus on the effect of two mating strategies on the performance of SMS-
EMOA: One is to select extreme parents far from other solutions in the 
objective space, and the other is to recombine similar parents. Experimental 
results show that the recombination of similar parents improves the 
performance of SMS-EMOA on many-objective problems whereas the 
selection of extreme parents is effective only for a two-objective problem. For 
comparison, we also examine the effect of these mating strategies on the 
performance of NSGA-II.   

Keywords: Evolutionary multiobjective optimization, evolutionary many-
objective optimization, SMS-EMOA, mating schemes, knapsack problems. 

1 Introduction 

Evolutionary multiobjective optimization (EMO) has been one of the most active 
research areas in the field of evolutionary computation in the last two decades. Since 
Goldberg’s suggestion in 1989 [9], Pareto dominance-based fitness evaluation has 
been the mainstream in the EMO community. Almost all of well-known traditional 
EMO algorithms such as NSGA-II [7], PAES [21], SPEA [35] and SPEA2 [34] are 
categorized as Pareto dominance-based EMO algorithms. Whereas Pareto dominance-
based EMO algorithms have been successfully applied to multiobjective problems in 
various application fields [5], [6], [28], they do not always work well on many-
objective problems with four or more objectives as repeatedly pointed out in the 
literature [10], [20], [23], [37]. This is because almost all solutions in the current 
population become non-dominated with each other in early generations in the 
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application of EMO algorithms to many-objective problems [16], [17], [24]. When all 
solutions in the current population are non-dominated, Pareto dominance-based 
fitness evaluation cannot generate any selection pressure towards the Pareto front. As 
a result, the convergence property of Pareto dominance-based EMO algorithms is 
deteriorated in their application to many-objective problems. Motivated by strong 
intentions to overcome such an undesirable behavior, evolutionary many-objective 
optimization has become a hot issue in the EMO community in the last few years [1], 
[26], [27].  

Recently, two classes of nontraditional EMO algorithms have attracted a lot of 
attention as promising approaches to many-objective optimization. One is indicator-
based EMO algorithms where an indicator function is used to measure the quality of 
solution sets [3], [4], [29], [33], [36]. EMO algorithms in this class are referred to as 
indicator-based evolutionary algorithms (IBEAs). Hypervolume has been frequently 
used as an indicator function in EMO algorithms in this class because it has a good 
theoretical background such as Pareto compliance [2], [32]. By using a fast 
calculation method of the exact hypervolume [30] or an efficient approximation 
method [3], the applicability of indicator-based EMO algorithms to many-objective 
problems has been improved. SMS-EMOA [4] in this class has often been used in the 
literature. Its high search ability on many-objective problems has been clearly 
demonstrated [29].  

The other class is scalarizing function-based EMO algorithms where a number of 
scalarizing functions with different weight vectors are used to search for a wide 
variety of Pareto optimal solutions [11], [13], [19], [31]. One advantage of this class 
is the computational efficiency of scalarizing function calculation. MOEA/D [31] in 
this class has been frequently used as a high-performance EMO algorithm [12], [22]. 

Through the use of an indicator or scalarizing functions, these two classes of EMO 
algorithms overcome the main difficulty in the handling of many-objective problems 
by traditional EMO algorithms (i.e., the deterioration in their convergence property). 

Another difficulty in the handling of many-objective problems, which has not been 
stressed in the literature, is negative effects of a large solution diversity on the 
effectiveness of recombination operators. In general, the increase in the number of 
objectives in a multiobjective problem leads to the increase in the number of its 
Pareto-optimal solutions and their diversity. As a result, the diversity of solutions in 
the current population becomes very large in the application of EMO algorithms to 
many-objective problems. That is, solutions in the current population are totally 
different from each other. Since good solutions are not likely to be generated from the 
recombination of totally different solutions, large solution diversity seems to have 
negative effects on the performance of EMO algorithms on many-objective problems. 
Actually, it was shown by Sato et al. [25] that the performance of NSGA-II on many-
objective 0/1 knapsack problems was improved by local recombination. It was also 
shown that the performance of MOEA/D on many-objective 0/1 knapsack problems 
was deteriorated by increasing the size of a neighborhood structure for parent 
selection [15]. These reported results in the literature suggest the importance of the 
recombination of similar parents in EMO algorithms on many-objective problems. 

The use of mating schemes has been proposed to improve the performance of 
traditional Pareto dominance-based EMO algorithms in the literature (e.g., [14], [25]). 
However, their use has not been discussed for MOEA/D or SMS-EMOA. This is 
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because (i) these two algorithms usually show high search ability on a wide range of 
multiobjective problems, (ii) MOEA/D inherently has a local recombination 
mechanism based on a neighborhood structure of solutions, and (iii) efficient 
hypervolume calculation has been the main issue in hypervolume-based IBEAs. The 
aim of this paper is to clearly demonstrate the usefulness of mating schemes in SMS-
EMOA on many-objective 0/1 knapsack problems. 

This paper is organized as follows. First we briefly explain a mating scheme in our 
former study [14] in Section 2, which is used to implement two mating strategies: 
extreme parent selection and similar parent recombination. Next we explain our 
many-objective 0/1 knapsack problems in Section 3. Then we show the setting of our 
computational experiments in Section 4. In Section 5, it is demonstrated that only the 
similar parent recombination improves the performance of SMS-EMOA and NSGA-II 
on many-objective problems with four or more objectives while the extreme parent 
selection as well as the similar parent recombination improves their performance on 
two-objective problems. Finally Section 6 summarizes this paper. 

2 Mating Scheme with Two Mating Strategies 

In our former study [14], we proposed a mating scheme in Fig. 1 to examine the effect 
of the following two mating strategies on the performance of NSGA-II: 

(1) Selection of extreme solutions far from other solutions in the objective space. 
(2) Recombination of similar parents in the objective space. 

In the left part of Fig. 1, α candidates are selected by iterating binary tournament 
selection with replacement α times. Their average vector is calculated in the objective 
space. The farthest candidate with the largest distance from the average vector is 
chosen as Parent A. In the right part, β candidates are selected in the same manner. 
The closest candidate to Parent A in the objective space is chosen as Parent B.  

Selection of the most
extreme solution

1 2 α

Crossover

Selection of the most
similar solution to

Parent A

1 2 β

Parent A Parent B

Parent A

 

Fig. 1. Mating scheme for NSGA-II with binary tournament selection [14]. Binary tournament 
selection is replaced with random selection when the mating scheme is used in SMS-EMOA. 
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When our mating scheme is used in SMS-EMOA, α and β candidates are randomly 
selected from the population because SMS-EMOA randomly chooses parents from the 
population. The values of α and β can be viewed as showing the strength of the 
tendency to choose extreme candidates and to recombine similar candidates, 
respectively. When α = β = 1, our mating scheme has no effects on EMO algorithms. In 
our computational experiments, we examine four values of  α and β: 1, 5, 10 and 20.  

In our former study [15], we obtained good results by dynamically changing the 
values of α and β during the execution of NSGA-II. However, we handle α and β as 
pre-specified constants in this paper to clearly examine the effect of each mating 
strategy. Experimental results in this paper can be improved by dynamically changing 
the values of α and β  during the execution of NSGA-II and SMS-EMOA. 

3 Multiobjective 0/1 Knapsack Problems 

As test problems, we use multiobjective 0/1 knapsack problems with two, four, six 
and eight objectives. Our two-objective test problem is the same as the two-objective 
500-item 0/1 knapsack problem with two constraint conditions in Zitzler and Thiele 
[35]. This two-objective test problem can be written as follows: 

Maximize ,))(),(()( 21 xxxf ff=  (1)

subject to  ≤
=

n

j
ijij cxw

1
,  ,2,1=i  (2)

=jx 0 or 1, ,...,,2,1 nj =  (3)
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n

j
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1
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In (1)-(4), n = 500 (i.e., 500 items), x is a 500-bit binary string, pij is the profit of item 
j according to knapsack i, wij is the weight of item j according to knapsack i, and ci is 
the capacity of knapsack i. This problem is referred to as the 2-500 problem. 

As in Zitzler and Thiele [35], we can easily generate other objective functions fi(x) 
in the form of (4) for i = 3, 4, ..., 8 by randomly specifying each value of pij as an 
integer in [10, 100]. In this manner, we have generated 500-item 0/1 knapsack 
problems with four or more objectives (i.e., 4-500, 6-500 and 8-500 problems). The 
constraint conditions in (2) of the 2-500 problem are always used in our test problems 
independent of the number of objectives. This means that all of our test problems with 
a different number of objectives have exactly the same set of feasible solutions.  

For the 2-500 problem, we use the same greedy repair method as in Zitzler and 
Thiele [35] for handing infeasible solutions. Infeasible solutions are repaired by 
removing items one by one until all the constraint conditions are satisfied. The order 
of the items to be removed is specified based on the maximum profit/weight ratio (see 
[35] for details). The same greedy repair method is used for all of our test problems 
because they have the same constraint conditions.  
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4 Setting of Computational Experiments 

SMS-EMOA [4] and NSGA-II [7] are used under the following setting: 

Population size: 100,  
Termination condition: Evaluation of 400,000 solutions, 
Crossover probability: 0.8 (Uniform crossover), 
Mutation probability: 1/500 (Bit-flip mutation), 
Reference point for hypervolume calculation: Origin of the objective space. 

SMS-EMOA and NSGA-II are based on a (μ +λ)-ES generation update mechanism. 
Random selection and binary tournament selection are used for parent selection in 
SMS-EMOA and NSGA-II, respectively. In our computational experiments, μ  and λ  
are specified as μ =100 and λ =1 in SMS-EMOA and μ =λ =100 in NSGA-II. An 
initial population is randomly generated in each algorithm. Since only a single 
solution is newly generated for generation update in SMS-EMOA with λ =1, 100 
generations of SMS-EMOA are counted as one generation of NSGA-II when 
experimental results of SMS-EMOA and NSGA-II at some generations are shown. 
This is to show their experimental results after the same computation load. Average 
results are calculated over 100 runs of each algorithm on each test problem except for 
SMS-EMOA on the 6-500 problems (20 runs) and the 8-500 problems (10 runs).  

5 Experimental Results 

First we report experimental results on the 2-500 problem. In Fig. 2, we show 
experimental results of a single run of SMS-EMOA for each of the four settings of 
our mating scheme: (α, β ) = (1, 1), (10, 1), (1, 10), (10, 10). Since our mating scheme 
with α =1 and β =1 does not change SMS-EMOA, Fig. 2 (a) can be viewed as 
experimental results by SMS-EMOA without the mating scheme. The diversity of 
solutions is improved by the extreme parent selection with α =10 in Fig. 2 (b) and the 
similar parent recombination with β =10 in Fig. 2 (c). In Fig. 2 (d), the diversity is 
further improved by the simultaneous use of these two mating strategies. 
Experimental results in Fig. 2 are consistent with reported results on the 2-500 
problem in the literature [14], [18], [23] where the importance of diversity 
maintenance was demonstrated. 

For comparing the average experimental results over 100 runs between SMS-
EMOA and NSGA-II, we show the 50% attainment surface [8] in Fig. 3 for each 
algorithm with (α, β ) = (1, 1), (10, 10). In Fig. 3, our mating scheme with α =10 and 
β =10 has similar effects on SMS-EMOA and NSGA-II. That is, the diversity of 
solutions is clearly improved while the convergence is slightly degraded. 

We further examine the effect of our mating scheme with various settings of α and 
β  on the two algorithms. Experimental results are summarized in Fig. 4 where the 
average hypervolume over 100 runs of each algorithm is shown for the 4 × 4 
combinations of the four values of α and β : α =1, 5, 10, 20 and β =1, 5, 10, 20. As in 
Fig. 2, we can see that the performance of SMS-EMOA and NSGA-II is improved by 
the extreme solution selection (α >1) and the similar parent recombination (β >1). 
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(a) α =1 and β =1 (No Bias). (b) α =10 and β =1 (Extreme Parents). 
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(c) α =1 and β =10 (Similar Parents). (d) α =10 and β =10 (Extreme and Similar). 

Fig. 2. Experimental results of a single run of SMS-EMOA on the 2-500 problem 
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(a) SMS-EMOA. (b) NSGA-II. 

Fig. 3. 50% attainment surface over 100 runs of each EMO algorithm on the 2-500 problem 
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Experimental results on other test problems are shown in Figs. 5-7. From these 
figures, we can see that the increase in the number of objectives leads to (i) better 
results of SMS-EMOA over NSGA-II, (ii) positive effects of the similar parent 
recombination with β >1, and the negative effects of the extreme parent selection with 
α >1. Fig. 8 illustrates the effects of the two mating strategies on the behavior of 
SMS-EMOA on the 4-500 problem by projecting the final population in the four-
dimensional objective space onto the f1-f2 plane. Fig. 8 (c) suggests the improvement 
in the diversity and the convergence by the similar parent recombination. 
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Fig. 4. Average results of SMS-EMOA (left) and NSGA-II (right) on the 2-500 problem 
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Fig. 5. Average results of SMS-EMOA (left) and NSGA-II (right) on the 4-500 problem 
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Fig. 6. Average results of SMS-EMOA (left) and NSGA-II (right) on the 6-500 problem 



 Recombination of Similar Parents in SMS-EMOA 139 

20
10

5
1 1

5
10

20

1.5
1.4
1.3
1.2

1.0

SMS-EMOA

1.1

α
β

     

20
10

5
1 1

5
10

20

NSGA-II

1.5
1.4
1.3
1.2

1.0
1.1

α
β

 

Fig. 7. Average results of SMS-EMOA (left) and NSGA-II (right) on the 8-500 problem 
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(a) α =1 and β =1 (No Bias). (b) α =10 and β =1 (Extreme Parents). 
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(c) α =1 and β =10 (Similar Parents). (d) α =10 and β =10 (Extreme and Similar). 

Fig. 8. Experimental results of a single run of SMS-EMOA on the 4-500 problem 
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6 Conclusions 

We examined the effect of the two mating strategies (i.e., extreme parent selection 
and similar parent recombination) on the performance of SMS-EMOA through 
computational experiments on multiobjective 500-item 0/1 knapsack problems with 
two, four, six and eight objectives. These two mating strategies improved the 
performance of SMS-EMOA on the 2-500 problem with two objectives. The best 
results on the 2-500 problem were obtained when the two mating strategies were 
simultaneously used. The similar parent recombination improved the performance of 
SMS-EMOA on our test problems independent of the number of objectives. However, 
the extreme parent selection improved the performance of SMS-EMOA only on the 2-
500 problem. Its negative effects were observed on the performance of SMS-EMOA 
on our many-objective test problems. The performance of SMS-EMOA on the 2-500 
problem was similar to that of NSGA-II. By increasing the number of objectives, the 
advantage of SMS-EMOA over NSGA-II became clear. Moreover, much larger 
improvements in the average hypervolume measure by the similar parent 
recombination were obtained in Figs. 5-8 by SMS-EMOA than NSGA-II. In Fig. 2 (c) 
and Fig. 8 (c), the similar parent recombination increased the diversity without 
deteriorating the convergence.  
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