
An Artificial Bee Colony Algorithm

for the Unrelated Parallel Machines Scheduling
Problem

Francisco J. Rodriguez1, Carlos Garćıa-Mart́ınez3, Christian Blum2,
and Manuel Lozano1

1 Department of Computer Science and Artificial Intelligence,
University of Granada, Granada, Spain

2 ALBCOM Research Group, Technical University of Catalonia, Barcelona, Spain
3 Department of Computing and Numerical Analysis,

University of Córdoba, Córdoba, Spain
fjrodriguez@decsai.ugr.es, cgarcia@uco.es,

cblum@lsi.upc.edu, lozano@decsai.ugr.es

Abstract. In this work, we tackle the problem of scheduling a set of jobs
on a set of non-identical parallel machines with the goal of minimising
the total weighted completion times. Artificial bee colony (ABC) algo-
rithm is a new optimization technique inspired by the intelligent foraging
behaviour of honey-bee swarm. These algorithms have shown a better
or similar performance to those of other population-based algorithms,
with the advantage of employing fewer control parameters. This paper
proposes an ABC algorithm that combines the basic scheme with two
significant elements: (1) a local search method to enhance the exploita-
tion capability of basic ABC and (2) a neighbourhood operator based on
iterated greedy constructive-destructive procedure. The benefits of the
proposal in comparison to three different metaheuristic proposed in the
literature are experimentally shown.

Keywords: discrete optimisation, metaheuristics, artificial bee colony,
unrelated parallel machines schedulling problem.

1 Introduction

The unrelated parallel machine scheduling with minimising total weighted com-
pletion times (UPMSP) considers a set J of n independent jobs that have to be
processed on a set M of m parallel non-identical machines. Each job j ∈ J has
to be processed by exactly one of the m parallel machines and no machine can
process more than one job at the same time. A job j is processed on a given
machine until completion, i.e., without pre-emption. If a job j is processed on
a machine i, it will take a positive integral processing time pij whose value is
determined arbitrarily. The objective is to schedule the jobs in such a way that
the sum of the weighted completion times of the jobs is minimised:

Minimise

n∑

i=1

wj ∗ Cj ,

where Cj represents the completion time of job j for a given schedule.

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part II, LNCS 7492, pp. 143–152, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

144 F.J. Rodriguez et al.

It is important to note that the jobs assigned to a specific machine are pro-
cessed in non-decreasing order with respect to the ratio between processing time
(pij) and weight (wj). This order is known as the weighted shortest processing
time order. According to [1], sequencing the jobs in each machine following this
ordering produces an optimal scheduling for this machine.

According to the standard notation proposed by Azizoglu et al. [2] and Al-
lahverdi et al. [3], the family of problems considered in this work is notated
in the literature in the following manner: Rm||∑wj ∗ Cj . Different real-world
applications of scheduling on parallel machines can be found in the literature,
covering a wide variety of fields. Some of these fields are human resources [4],
production management [5,6,7], mail facilities [8], robotized systems [9], sport
tournaments [10], and chemical processes [11].

A mixed integer linear programming formulation for the UPMSP problem is
provided for the sake of completeness. Let xt

ji = 1 if the job j is processed in
the tth position (unit time) on machine i and 0, otherwise. And a variable Ct

ji

denotes the completion time of the job j scheduled in the tth position on machine
i. The model is stated by Azizoglu and Kirca [12] as:

min
∑

j

∑

i

∑

t

wj · Ct
ji · xt

ji

subject to:
∑

i

∑

t

xt
ji = 1 ∀j,

∑

j

xt
ji ≤ 1 ∀t, i,

Ct
ji =

n∑

r=1

t−1∑

s=1

pir · xs
ri + pij ∀j, t, i,

xt
ji ∈ {0, 1} ∀j, t, i.

(1)

(2)

(3)

(4)

(5)

In this paper, an approach using the Artificial Bee Colony (ABC) [13,14] method
is explored for solving the UPMSP. The ABC algorithm is a new swarm op-
timization approach that is inspired by the intelligent foraging behaviour of
honey-bee swarm. It consists of three essential components: food source posi-
tions, nectar-amount and three honey-bee classes (employed bees, onlookers and
scouts). Each food source position represents a feasible solution for the problem
under consideration. The nectar-amount for a food source represents the qual-
ity of such solution (represented by an objective function value). Each bee-class
symbolizes one particular operation for generating new candidate food source
positions. Specifically, employed bees search the food around the food source
in their memory; meanwhile they pass their food information to onlooker bees.
Onlooker bees tend to select good food sources from those founded by the em-
ployed bees, and then further search the foods around the selected food source.
If the employed bee and onlookers associated with a food source cannot find a
better neighboring food source, the latter is abandoned and the employed bee

ABC for the UPMSP 145

associated with this food source becomes a scout bee that performs a search for
discovering new food sources. After the scout finds a new food source, it be-
comes an employed bee again. Due to its simplicity and ease of implementation,
the ABC algorithm has captured much attention. Besides, ABC has exhibited
state-of-the-art performances for a considerable number of problems [15,16,17].

The proposed ABC extends the basic scheme by considering two significant
elements in order to improve its performance when dealing with the UPMSP. In
the first place, after producing neighbouring food sources (in the employed and
onlooker bees phases), a local search is applied with a predefined probability to
further improve the quality of some of the solutions. Secondly, we propose a new
neighbourhood operator based on the solution constructive-destructive process
performed by iterated greedy (IG) algorithms [18,19].

The remainder of this paper is organized as follows. In Section 2, we outline
different metaheuristics proposed in the literature for the UPMSP. In Section 3,
we present in detail the proposed ABC for the UPMSP. In Section 4, we present
an empirical study that compares the behaviour of the ABC algorithm with
regards to those of other metaheuristics from the literature. Finally, in Section 5,
we discuss conclusions and further work.

2 Metaheuristics for the UPMSP

Since the introduction of this problem by McNaughton in [20], it has received
much attention and many papers have been published in this area. The research
efforts to deal with the SNIM-WCT problem have focused on three main research
lines: exact procedures, approximation algorithms through solving relaxations of
the problem, and metaheuristics procedures. Concerning the latter, Vredeveld
et al. [21] presented two types of neighbourhood functions. The first function is
called the jump neighbourhood. It consists of selecting a job j and a machine i
so that job j is not scheduled on machine i. Then job j is moved to machine i.
The second one is called swap neighbourhood. For this neighbourhood, two jobs
j and k must be selected and assigned to different machines. The corresponding
neighbouring solution is obtained by interchanging the machine allocations of
the two selected jobs. These two neighbourhood functions are applied in two
metaheuristic, a multistart local search and a tabu search.

Recently, Li et al. [22] presented a genetic algorithm approach to deal with
unrelated parallel machines scheduling using three different performance crite-
ria. In particular, the proposed approach initialises the population adding some
solutions generated by heuristics methods. The remaining ones are generated
randomly to provide enough diversity. Roulette wheel selection is used to choose
a new population with respect to a fitness-proportional probability distribution.
The crossover and mutation schemes are those proposed by Cheng et al. [23].
Elitism is considered by removing two chromosomes and adding the best two
previous chromosomes to the new generation if they are not selected through
the roulette-wheel-selection process. The experimental study performed com-
pares the proposed genetic algorithm with a set of heuristics. Results show that
the proposed algorithm outperforms the competing heuristics.

146 F.J. Rodriguez et al.

3 Proposed ABC for the UPMSP

In this section, we describe the proposed ABC algorithm for the UPMSP. The
general scheme of the proposed approach is outlined in Figure 1. It starts by
initialising a population P with |P | − 1 random solutions (Initialise()). The re-
maining solution is initialised by means of a greedy procedure (GreedyProcedure).
Then, the following steps are repeated until time limit tmax is reached:

– Employed bees phase. In this step, employed bees produce new solutions
by means of a neighbourhood operator (GenerateNeighbour()). In order to
enhance the exploitation capability of ABC, a local search method (Lo-
calSearch()) is applied to the solution obtained by the neighbourhood op-
erator with a probability probLS.

– Onlooker bees phase. Onlookers bees look for new solutions from solutions
of the population selected by means of a binary tournament selection (Bi-
naryTournament()). Specifically, an onlooker bee selects the best food source
among two food sources that were randomly picked up from the population.
Later, each onlooker bee performs, as in employed bees phase, the neigh-
bourhood operator on the selected solution and a local search procedure.

– Scout bees phase. In this phase, the scout bees determine the solutions that
has not been improved for limit iterations and replace them by new random
solutions (Initialise()).

At the end of execution, the best solution found (Sb) is returned by the algorithm
(BestSolutionFound()).

3.1 The Greedy Procedure

The greedy constructive procedure used for the initialisation of a solution of
the population and the re-construction of partial solutions in the neighbourhood
operator works as follows. At each step, it considers placing a unassigned job
in any of the machines. For each of these options, it calculates a contribution
value according to a predefined heuristic (H). The option which causes the best
heuristic value is selected. The procedure stops once all the unassigned jobs are
allocated. The heuristic H that guided the greedy procedure is that proposed
for this problem in [22]. This heuristic distinguishes two steps. In the first one,
a job j∗ ∈ J (set of unassigned jobs) is selected according to:

j∗ = argmin{ti + pij/wj : i = 1, . . . ,m; j = 1, . . . , n},
once the job j∗ is selected, machine i∗ in which it will be processed is the one
that holds:

i∗ = argmin{ti + pij∗/wj∗
: i = 1, . . . ,m},

being ti the completion time of the last job scheduled on the machine i.

ABC for the UPMSP 147

Input: tmax, P , nd, probLS, limit,H
Output: Sb

//Number of employed and onlooker bees

1 NE ← |P |;
2 NO ← |P |;

//Initialisation phase

3 for i← 2 to |P | do
4 Si ← Initialise() ;
5 end
6 S1 ← GreedyProcedure(H);
7 while computation time limit tmax not reached do

//Employed bees phase

8 for i← 1 to NE do
9 E ← GenerateNeighbour(Si, nd,H);

10 E
′ ← LocalSearch(E);

11 if E
′
is better than Si then

12 Si ← E
′
;

13 end

14 end
//Onlooker bees phase

15 for i← 1 to NO do
16 j ← BinaryTournament(S1, ..., S|P |);
17 O ← GenerateNeighbour(Sj , nd,H);

18 O
′ ← LocalSearch(O);

19 if O
′
is better than Sj then

20 Si ← O
′
;

21 end

22 end
//Scout bees phase

23 for i← 1 to |P | do
24 if Si does not change for limit iterations then
25 Si ← Initialise() ;
26 end

27 end
28 Sb ← BestSolutionFound();

29 end

Fig. 1. ABC scheme

3.2 The Neigbourhood Operator

The proposed neighbourhood operator is based on the constructive-destructive
procedure used in IG algorithms [18,19]. IG iteratively tries to refine a solution
by removing elements from this solution, by means of a destructive procedure,
and reconstructing the resulting partial solution using a greedy constructive pro-
cedure. In this case, the proposed neighbourhood operator consists of a unique

148 F.J. Rodriguez et al.

Table 1. 12 instance types considered concerning the unrelated parallel machines
scheduling problem. The last table column provides the maximum CPU time limit for
each instance type (in seconds).

Number of jobs (n) Number of machines (m) Time limit (s)

20
5 40
10 40

50
5 100
10 100
20 100

100
5 200
10 200
20 200

200

5 400
10 400
20 400
50 400

iteration of the constructive-destructive procedure. In the first place, nd elements
of the current solution are removed (destruction). Then, the partial solution ob-
tained before is reconstructed using a greedy procedure (construction, see Section
3.1). The greedy procedure is guided by the heuristic commented in section 3.1.

4 Computational Experiments

This section describes the computational experiments performed to assess the
performance of the ABC model presented in the previous section. Our own al-
gorithms (ABC) as well as all competitor algorithms have been implemented in
C++ and the source code has been compiled with gcc 4.5. All experiments were
conducted on a computer with a 2.8 GHz Intel i7 processor with 12 GB of RAM
running Fedora Linux V15. In this work we considered problem instances from
12 different combinations of the number of jobs (n) and the number of machines
(m). These 12 instance types are shown in the first two columns of Table 1.
Moreover, the same table shows—in the 3rd column—the maximum CPU time
allotted for each instance type (2 · n seconds). For each of the 12 instance types
ten problem instances were randomly generated, which is a common choice in
recent works dealing with this and related problems [24,25]. The weights of the n
jobs were selected uniformly at random from {1, . . . , 10} and the processing time
of job j on machine i (pij , i = 1, . . . , n and j = 1, . . . ,m) was chosen uniformly
at random from {1, . . . , 100}.

Non-parametric tests [26] have been used to compare the results of the dif-
ferent optimization algorithms under consideration. The only condition to be
fulfilled for the use of non-parametric tests is that the algorithms to be com-
pared should have been tested under the same conditions (that is, the same set
of problem instances, the same stopping conditions, the same number of runs,
etc). Specifically, Wilcoxon’s matched-pairs signed-ranks test is used to compare
the results of two algorithms.

ABC for the UPMSP 149

4.1 Tuning Experiments

In the first place, we have performed an experimental study in order to perform
a fine-tuning of the ABC presented above. The goal of the first preliminary
experiment is to identify the best combination of the values for the following
algorithm parameters:

1. Population size (|P |). Experiments with |P | in {10, 15, 20, 25, 30} were
develped.

2. Destruction size (nd). For the percentage of elements dropped
from a solution during the neighbourhood operator, values from
{5%, 10%, 15%, 20%25%} were considered.

3. Probability of performing local search (probLS). This parameter takes
values from {0.05, 0.1, 0.2, 0.5, 1}).

4. Local search procedure (typeLS). Three different local search proce-
dures [21] were tested: first-improvement local search with jump moves
(FI − JM), first-improvement local search with swap moves (FI − SW),
and first improvement local search with both kinds of moves (FI − JSM).

5. Iterations to determine an exhausted food source (limit). Values
from {0.25 ·n, 0.5 ·n, n, 2 ·n}) were considered, where n is the number of jobs
of the instance.

For each combination of values for the different parameters (full factorial design),
we applied ABC to each of the 120 problem instances. Through a rank-based
analysis on results obtained, we identified the parameter combination with the
best average rank over all testing instances. This combination is specified in
Table 2.

Table 2. Parameters values

Parameter Value

Population size (|P |) 15
Elements dropped (nd) 25%

Local search procedure (typeLS) FI-JSM
Local search probability (probLS) 0.2

Iterations to abandon a food source (limit) 0.25 · n

4.2 Comparison with Other Metaheuristics

In this section, we compare ABC to different approaches found in the liter-
ature for tackling the UPMSP. More specifically, we considered the following
approaches (see also Section 2):

– Iterative multistart method (MultiS) [21].
– Tabu search (Tabu) [21].
– Genetic algorithm (GA) [22].

150 F.J. Rodriguez et al.

The parameter values used for each considered algorithm are those recommended
in the original works. In order to assure a fair comparison, each algorithm was
applied under the same conditions as ABC that is, each algorithm was applied
exactly once to each of the 120 problem instances. Moreover, the same CPU
time limits were used as with ABC (see Table 1).

Table 3. ABC versus competitors using Wilcoxon’s test (level of significance α = 0.05,
critical value = 13)

Competitor R+ R− Diff.?
GA 78 0 yes
Tabu 76.5 1.5 yes
MultiS 73 5 yes

The results of the considered algorithms in Tables 3 and 4 allow us to make
the following observations:

– The proposed ABC statistically outperforms all competing algorithms (see
Table 3).

– Concerning the results shown in Table 4, it is important to highlight that
ABC obtains the best average results in all the instances. Moreover, the most
significant differences with respect to their competitors are obtained on large
instances.

– Only MultiS and Tabu are able to match the results of ABC on the smallest
problem instances.

Table 4. Results of the studied algorithms averaged over the 10 instances of each of
the 12 instance types

n m ABC GA Tabu MultiS
200 50 5004 5138 5062 5063
200 20 16988 17345 17066 17045
200 10 52919 53677 53039 52979
200 5 182102 183400 182166 182130
100 20 5601 5858 5657 5608
100 10 14921 15138 14993 14926
100 5 45961 46412 46014 45062
50 20 1833 1908 1858 1833
50 10 4611 4737 4655 4611
50 5 12625 12787 12643 12625
20 10 1299 1330 1299 1299
20 5 2512 2570 2512 2512

5 Conclusions and Future Work

In this paper, we presented an ABC algorithm for the UPMSP. The proposed
algorithm add a local search procedure and a novel IG-based neighbourhood
operator to the basic ABC scheme. This neighbourhood operator is based on
the constructive-destructive procedure of IG algorithms. The resulting ABC al-
gorithm has proved to be superior, especially in the case of larger instances, to

ABC for the UPMSP 151

three different metaheuristic existing in the literature for this problem. We can
conclude from the experiments performed that this algorithm represents a very
competitive alternative to the existing methods for the UPMSP.

We believe that the ABC algorithm presented in this paper is a significant
contribution, worthy of future study. We will mainly focus on the following
avenues of possible research: (1) to adapt the ABC approach for its application
to other variants of scheduling problems on parallel machines and (2) to employ
the IG-based neighbourhood operator in ABC approaches dealing with other
challenging optimisation problems.

Acknowledgements. This work was supported by grant TIN2011-24124 of
the Spanish government and by grant P08-TIC-4173 of the Andalusian regional
government.

References

1. Elmaghraby, S., Park, S.: Scheduling jobs on a number of identical machines. AIIE
Transactions 6(1), 1–13 (1974)

2. Azizoglu, M., Kirca, O.: On the minimization of total weighted flow time with
identical and uniform parallel machines. European Journal of Operational Re-
search 113(1), 91–100 (1999)

3. Allahverdi, A., Gupta, J., Aldowaisan, T.: A review of scheduling research involving
setup considerations. Omega 27(2), 219–239 (1999)

4. Rosenbloom, E., Goertzen, N.: Cyclic nurse scheduling. European Journal of Op-
erational Research 31, 19–23 (1987)

5. Buxey, G.: Production scheduling: Practice and theory. European Journal of Op-
erational Research 39, 17–31 (1989)

6. Dodin, B., Chan, K.H.: Application of production scheduling methods to external
and internal audit scheduling. European Journal of Operational Research 52(3),
267–279 (1991)

7. Pendharkar, P., Rodger, J.: Nonlinear programming and genetic search application
for production scheduling in coal mines. Annals of Operations Research 95(1),
251–267 (2000)

8. Jarrah, A.I.Z., Bard, J.F., de Silva, A.H.: A heuristic for machine scheduling at
general mail facilities. European Journal of Operational Research 63(2), 192–206
(1992)

9. Rochat, Y.: A genetic approach for solving a scheduling problem in a robotized
analytical system. Journal of Heuristics 4, 245–261 (1998)

10. Croce, F.D., Tadei, R., Asioli, P.: Scheduling a round robin tennis tournamentun-
der courts and players availability constraints. Annals of Operations Research 92,
349–361 (1999)

11. Brucker, P., Hurink, J.: Solving a chemical batch scheduling problem by local
search. Annals of Operations Research 96(1), 17–38 (2000)

12. Azizoglu, M., Kirca, O.: Scheduling jobs on unrelated parallel machines to minimize
regular total cost functions. IIE Transactions 31(2), 153–159 (1999)

13. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical func-
tion optimization: artificial bee colony (abc) algorithm. J. of Global Optimiza-
tion 39(3), 459–471 (2007)

152 F.J. Rodriguez et al.

14. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC)
algorithm. Applied Soft Computing 8(1), 687–697 (2008)

15. Sundar, S., Singh, A.: A swarm intelligence approach to the quadratic minimum
spanning tree problem. Information Sciences 180(17), 3182–3191 (2010)

16. Kashan, M.H., Nahavandi, N., Kashan, A.H.: DisABC: A new artificial bee colony
algorithm for binary optimization. Applied Soft Computing 12(1), 342–352 (2012)

17. Akbari, R., Hedayatzadeh, R., Ziarati, K., Hassanizadeh, B.: A multi-objective
artificial bee colony algorithm. Swarm and Evolutionary Computation 2, 39–52
(2012)

18. Jacobs, L., Brusco, M.: A local-search heuristic for large set-covering problems.
Naval Research Logistics 42, 1129–1140 (1995)

19. Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. European Journal of Operational Re-
search 177(3), 2033–2049 (2007)

20. McNaughton, R.: Scheduling with deadlines and loss functions. Management Sci-
ence 6(1), 1–12 (1959)

21. Vredeveld, T., Hurkens, C.: Experimental comparison of approximation algorithms
for scheduling unrelated parallel machines. Informs Journal on Computing 14(2),
175–189 (2002)

22. Lin, Y., Pfund, M., Fowler, J.: Heuristics for minimizing regular performance mea-
sures in unrelated parallel machine scheduling problems. Computers & Operations
Research 38(6), 901–916 (2011)

23. Cheng, R., Gen, M., Tozawa, T.: Minmax earliness/tardiness scheduling in iden-
tical parallel machine system using genetic algorithms. Computers & Industrial
Engineering 29(1-4), 513–517 (1995)

24. Fanjul-Peyro, L., Ruiz, R.: Iterated greedy local search methods for unrelated par-
allel machine scheduling. European Journal of Operational Research 207(1), 55–69
(2010)

25. Zaidi, M., Jarboui, B., Loukil, T., Kacem, I.: Hybrid meta-heuristics for uniform
parallel machine to minimize total weighted completion time. In: Proc. of 8th
International Conference of Modeling and Simulation, MOSIM 2010 (2010)

26. Garcia, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-
parametric tests for analyzing the evolutionary algorithms’ behaviour: A case study
on the CEC’2005 special session on real parameter optimization. Journal of Heuris-
tics 15, 617–644 (2008)

	An Artificial Bee Colony Algorithmfor the Unrelated Parallel Machines Scheduling Problem
	Introduction
	Metaheuristics for the UPMSP
	Proposed ABC for the UPMSP
	The Greedy Procedure
	The Neigbourhood Operator

	Computational Experiments
	Tuning Experiments
	Comparison with Other Metaheuristics

	Conclusions and Future Work
	References

