
C.A. Coello Coello et al. (Eds.): PPSN 2012, Part II, LNCS 7492, pp. 153–163, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Controlling the Parameters of the Particle Swarm
Optimization with a Self-Organized Criticality Model

Carlos M. Fernandes1,2, Juan J. Merelo2, and Agostinho C. Rosa1

1 Technical University of Lisbon
c.m.fernandes.photo@gmail.com, acrosa@laseeb.org

2 University of Granada
jjmerelo@gmail.com

Abstract. This paper investigates a Particle Swarm Optimization (PSO) with a
Self-Organized Criticality (SOC) strategy that controls the parameter values and
perturbs the position of the particles. The algorithm uses a SOC system known
as Bak-Sneppen for establishing the inertia weight and acceleration coefficients
for each particle in each time-step. Besides adjusting the parameters, the SOC
model may be also used to perturb the particles’ positions, thus increasing
exploration and preventing premature convergence. The implementation of both
schemes is straightforward and does not require hand-tuning. An empirical
study compares the Bak-Sneppen PSO (BS-PSO) with other PSOs, including a
state-of-the-art algorithm with dynamic variation of the weight and perturbation
of the particles. The results demonstrate the validity of the algorithm.

1 Introduction

Inspired by the swarm and social behavior of bird flocks and fish schools, Kennedy
and Eberhart proposed in [6] the Particle Swarm Optimization (PSO) algorithm for
binary and real-valued function optimization. Since its inception, PSO has been
applied with success to a number of problems and motivated several lines of research
that investigate its main working mechanisms. One of these research trends deals with
PSO’s parameters and aims at devising methods for controlling those parameters and
improve the algorithms’ performance and robustness. Self-Organized Criticality
(SOC), proposed in [2], provides interesting schemes for controlling PSO’s working
mechanisms. In fact, SOC has been used in the past in population-based
metaheuristics, like Evolutionary Algorithms ([5] and [7]) and even PSO [8].

This paper proposes a versatile method, inspired by the SOC theory [2], for
controlling the parameters of PSO, and demonstrates that it is a viable and effective
method. The algorithm is based on a SOC system known as the Bak-Sneppen model of
co-evolution between interacting species (or simply Bak-Sneppen), proposed by Bak
and Sneppen in [3]. The Bak-Sneppen PSO (BS-PSO) uses the fitness values of the
population of co-evolving species for regulating the parameters of the algorithm.
Furthermore, the exact same values are used for perturbing the particle’s position,
thus introducing a kind of mutation in the PSO equations. The potentiality of the

154 C.M. Fernandes, J.J. Merelo, and A.C. Rosa

proposed method as a stochastic (although with predictable global behavior) seed for
varying the parameters is investigated here, postponing a study of a stronger
hybridization of the SOC model and the PSO for a future work.

A simple experimental setup was designed as a proof-of-concept. BS-PSO is
compared with methods for controlling the inertia weight, as well as with a state-of-
the-art PSO that also combines dynamic control of the parameters with perturbations
of the particles’ positions. The tests are conducted in a way such that each new
component of BS-PSO is examined separately in order to investigate its effects on the
performance of the algorithm. The results demonstrate the validity of the approach
and show that BS-PSO, without requiring the hand-tuning of the traditional
parameters or any additional one, is competitive with other PSOs. Furthermore, the
base-model is simple and well-studied by the SOC theory, and may be treated as a
black-box system that outputs batches of values for the parameters.

2 Particle Swarm Optimization

PSO is a population-based algorithm in which a group of solutions travels through the
search space according to a set of rules that favor their movement towards optimal
regions of the space. PSO is described by a simple set of equations that define the
velocity and position of each particle. The position vector of the i-th particle is given
by Ԧܺ௜ ൌ ሺݔ௜,ଵ, ,௜,ଶݔ … is the dimension of the search space. The velocity ܦ ௜,஽), whereݔ

is given by ሬܸԦ௜ ൌ ሺݒ௜,ଵ, ,௜,ଶݒ … ௜,஽). The particles are evaluated with a fitness function ݂ሺݒ Ԧܺ௜ሻ in each time step and then their positions and velocities are updated by: ݒ௜,ௗሺݐሻ ൌ ݐ௜,ௗሺݒ െ 1ሻ ൅ ܿଵݎଵ൫݌௜,ௗ െ ݐ௜,ௗሺݔ െ 1ሻ൯ ൅ ܿଶݎଶ൫݌௚,ௗ െ ݐ௜,ௗሺݔ െ 1ሻ൯ (1)ݔ௜,ௗሺݐሻ ൌ ݐ௜,ௗሺݔ െ 1ሻ ൅ ሻ (2)ݐ௜,ௗሺݒ

were ݌௜ is the best solution found so far by particle ݅ and ݌௚ is the best solution found
so far by the neighborhood. Parameters ݎଵand ݎଶ are random numbers uniformly
distributed in the range ሾ0,1.0] and ܿଵand ܿଶ are acceleration coefficients that tune the
relative influence of each term of the formula (usually set within the range ሾ1.0,2.0ሿ).
The first, influenced by the particles best solution, is known as the cognitive part,
since it relies on the particle’s own experience. The last term is the social part, since
it describes the influence of the community in the velocity of the particle.

The neighborhood of the particle may be defined by a great number of schemes but
most PSOs use one of two simple sociometric principles. The first connects all the
members of the swarm to one another, and it is called ܾ݃݁ݐݏ, were ݃ stands for
global. The second, called ݈ܾ݁ݐݏ (݈ stands for local), creates a neighborhood that
comprises the particle itself and its ݇ nearest neighbors. In order to prevent particles
from stepping out of the limits of the search space, the positions ݔ௜,ௗሺݐሻ of the
particles are limited by constants that, in general, correspond to the domain of the
problem: ݔ௜,ௗሺݐሻ ג ሾെܺ݉ܽݔ, ሿ. Velocity may also be limited within a range inݔܽ݉ܺ
order to prevent the explosion of the velocity vector: ݒ௜,ௗሺݐሻ ג ሾെܸ݉ܽݔ, .ሿݔܸܽ݉

 Controlling the Parameters of the Particle Swarm Optimization 155

Although the basic PSO may be very efficient on numerical optimization, it
requires a proper balance between local and global search. If we look at equation 1,
we see that the first term on the right-hand side of the formula provides the particle
with global search abilities. On the other hand, the second and third terms act as a
local search mechanism and it is trivial to demonstrate that without the first term the
swarm shrinks around the best position found so far. Therefore, by weighting these
two parts of the formula it is possible to balance local and global search. In order to
achieve a balancing mechanism, Shi an Eberhart [10] introduced the inertia weight ߱,
which is adjusted — usually within the range [0, 1.0] — together with the constants ܿଵ and ܿଶ, in order to achieve the desired balance. The modified velocity equation is: ݒ௜,ௗሺݐሻ ൌ ߱. ݐ௜,ௗሺݒ െ 1ሻ ൅ ܿଵݎଵ൫݌௜,ௗ െ ݐ௜,ௗሺݔ െ 1ሻ൯ ൅ ܿଶݎଶ൫݌௚,ௗ െ ݐ௜,ௗሺݔ െ 1ሻ൯ (3)

The parameter may be used as a constant that is defined after an empirical
investigation of the algorithm’s behavior. Another possible strategy is to use time-
varying inertia weights (TVIW-PSO) [11]: starting with an initial and pre-defined
value, the parameter value decreases linearly with time, until it reaches the minimum
value. Later, Eberhart and Shi [4] found that the TVIW-PSO is not very effective on
dynamic environments and proposed a random inertia weight for tracking dynamic
systems. In the remainder of this paper, this method is referred to as RANDIW-PSO.

An adaptive approach is proposed in [1]. The authors describe the global local best
inertia weight PSO (GLbestIW-PSO), an on-line variation strategy that depends on
the ݌௜and ݌௚ values. The strategy is defined in a way that better solutions use lower
inertia weight values, thus increasing their local search abilities. The worst particles
are modified with higher ߱ values and therefore they tend to explore the search space.

In [9], Ratnaweera et al. describe new parameter automation strategies that act
upon several working mechanisms of the algorithm. The authors propose the concept
of time-varying acceleration coefficients. They also introduce the concept of
mutation, by adding perturbations to randomly selected modulus of the velocity
vector. Finally, the authors describe a self-organizing hierarchical particle swarm
optimizer with time-varying acceleration coefficients (HPSO-TVAC), which restricts
the velocity update policy to the influence of the cognitive and social part,
reinitializing the particles whenever they are stagnated in the search space.

Another method for controlling ߱ is given by Suresh et al. in [12]. The authors use
the Euclidean distance between the particle and ܾ݃݁ݐݏ for computing ߱ in each time-
step for each particle. Particles closer to the best global solution tend to have higher ߱
values, while particles far from ܾ݃݁ݐݏ are modified with lower inertia. The algorithm
introduces a parameter ߱଴ that restricts the inertia weight to working values. In
addition, Suresh et al. also uses a perturbation mechanism of the particles’ positions
that introduces a random value in the range ሾ1, is a new parameter for the ߩ ሿ, whereߩ
algorithm (see equation 4, which replaces equation 2). The authors report that the
Inertia-Adaptive PSO (IA-PSO) outperforms several other methods in a 12-function
benchmark, including the abovereferred state-of-the-art HPSO-TVAC. ݔ௜,ௗሺݐሻ ൌ ሺ1 ൅ .ሻߩ ݐ௜,ௗሺݔ െ 1ሻ ൅ ሻ (4)ݐ௜,ௗሺݒ

156 C.M. Fernandes, J.J. Merelo, and A.C. Rosa

Like HPSO-.TVAC and IA-PSO, the method proposed in this paper also aims at
controlling the balance between local and global search by dynamically varying the
inertia weight and/or the acceleration coefficients, while introducing perturbations in
the particles’ positions (like IA-PSO, but with ߩ controlled by the SOC model). The
main objective is to construct a simple scheme that does not require complex
parameter tuning or pre-established strategies.

3 SOC and the Bak-Sneppen Particle Swarm

In complex adaptive systems, complexity and self-organization usually arise in the
transition region between order and chaos. SOC systems are dynamical system with a
critical point in that region as an attractor. However, and unlike many physical
systems which have a parameter that needs to be tuned for criticality, a SOC model is
able to self-tune to that critical state.

One of the properties of SOC systems is that small disturbances can lead to
avalanches, i.e., events that are spatially or temporally spread through the system.
Moreover, the same perturbation may lead to small or large avalanches, which in the
end show a power-law proportion between the size of the events and its abundance.

The Bak-Sneppen is a model of co-evolution that displays SOC properties.
Different species in the same ecosystem are related trough several features; they co-
evolve, and the extinction of one species affects the species that are related to it, in a
chain reaction that can affect large segments of the population. In the model, each
species has a fitness value assigned to it and it is connected to other species in a ring
topology (i.e., each one has two neighbors). Every time step, the species with the
worst fitness and its neighbors are replaced by individuals with random fitness. When
plotting the size of extinctions over their frequency in a local segment of the
population and below a certain threshold close to a critical value, a power-law
relationship is observed.

This description may be translated to a mathematical model. The system is defined
by ݊ௗ fitness values ௜݂ arranged on a ݀-dimensional lattice with ݊ cells. At each time
step, the smallest ݂ value and its neighbors are replaced by uncorrelated random
values drawn from a uniform distribution. The system is thus driven to a critical state
where most species reach a fitness value above a certain threshold, with avalanches
producing non-equilibrium fluctuations in the configuration of the fitness values.

The behavior of the numerical values of the Bak-Sneppen model — power-law
relationships, increasing average fitness of the population, periods of stasis in
segments of the population punctuated by intense activity — are the motivation
behind this study. By linking a Bak-Sneppen model to the particles and then using the
species’ fitness values as input for adjusting the algorithm’s parameters, it is expected
that the resulting strategy is able to control PSO. To the extent of our knowledge, this
is the first proposal of a scheme linking the Bak-Sneppen model and PSO in such a
way. However, SOC has been applied to this field of research in the past.

In [7], Krink et al. proposed SOC-based mass extinction and mutation operator
schemes for Evolutionary Algorithms. A sandpile model [2] is used here and its

 Controlling the Parameters of the Particle Swarm Optimization 157

equations are previously computed in order to obtain a record of values with a power-
law relationship. Those values are then used during the run to control the number of
individuals that will be replaced by randomly generated solutions or the mutation
probability of the Evolutionary Algorithm. Tinós and Yang [13] were also inspired by
the Bak-Sneppen model to create the Self-Organized Random Immigrants Genetic
Algorithm (SORIGA). The authors apply the algorithm to time-varying fitness
landscapes and claim that SORIGA is able to outperform other algorithms in the
proposed test set. In [5], Fernandes et al. describe an Evolutionary Algorithm attached
to a sandpile model. The avalanches dynamically control the algorithm’s mutation
operator. The authors use the proposed scheme in time-varying fitness functions and
claim that the algorithm is able to outperform other state-of-the-art methods in a wide
range of dynamic problems. Finally, Løvbjerg and Krink [8] apply SOC to PSO in
order to control the diversity to the population. The authors introduce a critical value
associated to each particle and define a rule that increments that value when two
particles are closer than a threshold distance. When the critical value of a particle
exceeds a globally set criticality limit, the algorithm disperses the criticality of the
particle within a certain neighborhood and mutates it. The algorithm also uses the
particle’s critical value to control the inertia. The authors claim that the method
attains better solutions than the basic PSO. However, it introduces working
mechanisms that can complicate its design. Overall, there are five parameters that
must be tuned or set to ad hoc values.

The proposed BS-PSO uses the Bak-Sneppen model without introducing
complicated control mechanisms. The only exception is an upper limit for the number
of mutations in each time-step, a practical limitation due to the nature of the model
and the requirements of numerical optimization. Besides that, the model is run in its
original form, feeding the PSO with values in the range ሾ0,1.0ሿ (species’ fitness
values) that are used by the algorithm to control the parameters. Please note that if
the PSO does not interact directly with the model (which is the case in this paper), the
model can be executed prior to the optimization process and its fitness values stored
in order to be used later in any kind of problem (meaning also that the running times
are exactly the same of a basic PSO). However, in order to generalize the system and
describe a framework that can easily be adapted to another level of hybridization of
the SOC model and PSO, it is assumed that the model evolves on-line with the
swarm.

In the Bak-Sneppen model, a population of species is placed in a ring topology and
a random value between 0 and 1.0 is assigned to each individual. In BS-PSO, the
number of species is equal to the size of the swarm. Therefore, the algorithm may be
implemented just by assigning a secondary fitness, called bak-sneppen fitness
(bs_fitness), to each individual in the swarm. This way, each individual is both the
particle of the PSO and the species of the co-evolutionary model, with two
independent fitness values: a quality measure fitness ݂൫ Ԧܺ൯, computed by the objective
function, and the bs_fitness ௕݂௦൫ Ԧܺ൯, modified according to Algorithm 1.

The main body of the BS-PSO is very similar to the basic PSO. The differences
are: Algorithm 1 is called in each time-step, and modifies three or more bs_fitness
values; the inertia weigh of each particle is defined in each time-step and for each

158 C.M. Fernandes, J.J. Merelo, and A.C. Rosa

particle ݅ with equation 5, where పܺሬሬሬԦ is the position of particle ݅; the acceleration
coefficients ܿଵ and ܿଶ are defined in each time-step by equation 6; the position’s
update is done using equation 7, where ߩ௜ሺݐሻ ൌ ሾ0,1݉݋݀݊ܽݎ െ ሺݏݏ݁݊ݐ݂݅_ݏܾ పܺሬሬሬԦሻሿ. ߱௜ሺݐሻ ൌ 1 െ ሺݏݏ݁݊ݐ݂݅_ݏܾ పܺሬሬሬԦሻ (5)ܿଵሺݐሻ ൌ ܿଶሺݐሻ ൌ 1 ൅ ሺݏݏ݁݊ݐ݂݅_ݏܾ పܺሬሬሬԦሻ ሻݐ௜,ௗሺݔ(6) ൌ ሺ1 ൅ .ሻሻݐ௜ሺߩ ݐ௜,ௗሺݔ െ 1ሻ ൅ ሻݐ௜,ௗሺݒ

(7)

Algorithm 1 is executed in each time-step. At ݐ ൌ 0, the bs_fitness values are
randomly drawn from a uniform distribution in the range ሾ0, 1.0ሿ. Then, the algorithm
searches for the worst species in the population (lowest bs_fitness), stores its fitness
value (minFit) and mutates it by replacing the fitness with a random value in ሾ0, 1.0ሿ.
In addition, the neighbors of the worst are also mutated (remember that a ring
topology connects each species with index ݆ to its two neighbors with indexes ݆ ൅ 1
and ݆ െ 1). Then, the algorithm searches again for the worst. If the fitness of that
species is lower than minFit, the process repeats: species and its neighbors are
mutated. This cycle proceeds while the worst fitness in the population is bellow
minFit (and the number of mutations is below the limit). When the worst is found to
be above minFit, the algorithm proceeds to PSO’s standard procedures (see
Algorithms 1 and 2).

Algorithm 1 .(Bak-Sneppen Model)

1. Set ݉ݏ݊݋݅ݐܽݐݑ ൌ 0; set ݉ܽ݊݋݅ݐܽݐݑ݉_ݔ ൌ 2 ൈ ݁ݖ݅ݏ_݉ݎܽݓݏ
2. Find the index ݆ of the species with lowest bak-sneppen fitness 3. Set ݉݅݊ݐ݅ܨ ൌ ሺݏݏ݁݊ݐ݂݅_ݏܾ ఫܺሬሬሬԦሻ
4. Replace the fitness of individuals with indices ݆, ݆ െ 1, and ݆ ൅ 1 by random values
5. Increment mutations: ൅ ൅ ݏ݊݋݅ݐܽݐݑ݉
6. Find the index ݆ of the species with lowest fitness
7. If ܾݏݏ݁݊ݐ݂݅_ݏሺ ఫܺሬሬሬԦሻ ൏ ݏ݊݋݅ݐܽݐݑ݉ or ݐ݅ܨ݊݅݉ ൌ return to 4; else, end ,݊݋݅ݐܽݐݑ݉_ݔܽ݉

Algorithm 2. (BS-PSO)

1. Initialize velocity and position of each particle.
2. Evaluate each particle ݅: ݂݅ݏݏ݁݊ݐ ൫ పܺሬሬሬԦ൯ ൌ ݂ሺ పܺሬሬሬԦሻ

3. Initialize bak-sneppen fitness values: ܾݏݏ݁݊ݐ݂݅_ݏሺ పܺሬሬሬԦሻ ൌ ,ሾ0݉݋݀݊ܽݎ 1.0ሿ
4. Update Bak-Sneppen Model (Algorithm 1).
5. For each particle ݅:

6. Set ߱ ൌ ߩ ൌ 1 െ ሺݏݏ݁݊ݐ݂݅_ݏܾ పܺሬሬሬԦሻ
7. Set ܿଵ ൌ ܿଶ ൌ 1 ൅ ሺݏݏ݁݊ݐ݂݅_ݏܾ పܺሬሬሬԦሻ
8. Update velocity (equation 3) and position (equation 7); evaluate ݂݅ݏݏ݁݊ݐ ൫ పܺሬሬሬԦ൯ ൌ ݂ሺ పܺሬሬሬԦሻ

9. If (stop criteria not met) return to 4; else, end.

As stated above, a stop criterion is introduced in Algorithm 1 in order to avoid long
mutation cycles that would slow down BS-PSO after a certain number of iterations. If
the number of mutations reaches a maximum pre-defined value, Algorithm 1 ends. In

 Controlling the Parameters of the Particle Swarm Optimization 159

this paper, the critical value is set to twice the swarm’s size. This value was intuitively
fixed, not tuned for optimization of the performance. It is treated as a constant and its
effects on the algorithm are beyond the scope of this paper. It is even possible that
other strategies for avoiding long intra-time-steps mutation cycles that do not require
a constant can be devised. However, such a study is left for future work. The main
objective here is to demonstrate that controlling the inertia, acceleration coefficients
and particles’ positions with values given by a SOC model is viable and effective.

4 Testbed Set and Results

The experiments were designed with five benchmark functions (see Table 1). The
minimum of all functions is in the origin with fitness 0. The dimension of the search
space is set to ܦ ൌ 30 (except ଺݂). TVIW-, RANDIW-, GLbestIW- and IA-PSO were
included in the tests in order to evaluate the efficiency of the method. (It is not our
intention to prove that BS-PSO is better than the best PSOs in a wide range of
functions. This simple experiment is mainly a proof-of-concept, and the peer-
algorithms were chosen so that the different mechanism of BS-PSO can be properly
evaluated.)

The population size ݊ is set to 20 for all algorithms; ݈ܾ݁ݐݏ topology is used. The
acceleration coefficients were set to 1.494, a value suggested in [4] for RANDIW-
PSO. However, and since we are using algorithms with varying parameters, it is
expected that other PSOs require different ܿ values. Therefore, the coefficients ܿ were
also set to 1.2 and 2.0 (as in the studies that introduce GLbestIW-PSO and IA-PSO). ܺ݉ܽݔ is defined as usual by the domain’s upper limit and ܸ݉ܽݔ ൌ -TVIW .ݔܽ݉ܺ
PSO uses linearly decreasing inertia weight, from 0.9 to 0.4. The maximum number
of generations is 3000 (except ଺݂, for which the limit is 1000); 50 runs for each
experiment are conducted. Since PSO takes advantage of the fact that the optima are
located in the centre of search space, asymmetrical initialization is often used for
testing PSO. The initialization range for each function is given in Table 1.

Table 1. Benchmarks for the experiments. Dynamic and initialization range.

function mathematical representation Range of search Range of initialization

Sphere

f1
ଵ݂൫ Ԧܺ൯ ൌ ෍ ௜ଶ஽ݔ

௜ୀ ሺെ100, 100ሻ஽ (50, 100ሻ஽

Rosenbrock

 f2
ଶ݂ሺݔԦሻ ൌ ෍ሺ100ሺݔ௜ାଵ െ ௜ଶሻଶݔ ൅ ሺݔ௜ െ 1ሻଶ஽ିଵ

௜ୀଵ ሺെ100, 100ሻ஽ ሺ15, 30ሻ஽

Rastrigin

f3
ଷ݂ሺݔԦሻ ൌ ෍ሺݔ௜ଶ െ 10 cosሺ2ݔߨ௜ሻ ൅ 10ሻ஽

௜ୀଵ ሺെ10, 10ሻ஽ ሺ2.56, 5.12ሻ஽

Griewank

 f4
ସ݂ሺݔԦሻ ൌ 1 ൅ 14000 ෍ ௜ଶݔ െ ෑ cos ൬ݔ௜√݅൰஽

௜ୀଵ
஽

௜ୀଵ ሺെ600, 600ሻ஽ ሺ300, 600ሻ஽

Schaffer

f6
଺݂ሺݔԦሻ ൌ 0.5 ൅ ൫sin ඥݔଶ ൅ ଶ൯ଶݕ െ 0.5൫1.0 ൅ 0.001ሺݔଶ ൅ ,ଶሻ൯ଶ ሺെ100ݕ 100ሻଶ ሺ15, 30ሻଶ

160 C.M. Fernandes, J.J. Merelo, and A.C. Rosa

The first test compares BS-PSO with different degrees of parameter control (i.e.,
the control of the acceleration coefficients and the perturbation of position were
disabled in order to evaluate the effects of introducing the schemes). Table 2
summarizes the results. In the table’s header, ܾݏ means that ߱, ܿ or ߩ are controlled
by bs_fitness values; otherwise, the control is disabled and the parameter is set to the
corresponding value. As seen in Table 2, BS-PSO was tested with inertia control
enabled and different ܿ values (with ߩ ൌ 0); in general, higher ܿ lead to a better
performance. When the dynamic control of ܿ is enabled (i.e, ሺ߱, ܿ, ሻߩ ൌ ሺܾݏ, ,ݏܾ 0)) the
performance on ଵ݂ and ଶ݂ is improved, while for the other functions the fitness value
decreases when compared to the best configuration with fixed ܿ. However, the results
are better than those attained by suboptimal configurations, which means that it may
be an alternative to fine-tuning the parameter. Introducing a perturbation of the
positions with the ߩ parameter clearly improves the results, especially when ߩ is
controlled by the model. (Please note that ߩ is set to 0.25, as in [12], in order to
compare not only fixed and SOC-based perturbation, but also BS-PSO and IA-PSO
later in in this section).

Table 2. BS-PSO: average and standard deviation of the optimal value for 50 trials ሺ࣓, ,ࢉ ,࢙࢈ሻ→ ሺ࣋ ૚. ૛, ૙) ሺ࢙࢈, ૚. ૝ૢ, ૙) ሺ࢙࢈, ૛. ૙, ૙) ሺ࢙࢈, ,࢙࢈ ૙) ሺ࢙࢈, ,࢙࢈ ૙. ૛૞) ሺ࢙࢈, ,࢙࢈ (࢙࢈

f1
2.21e+04

(7.72e+03)
3.35e+01

(1.90e+02)
1.38e-15

(3.21e-15)
8.30e-32

(3.47e-31)
0.00e+00

(0.00e+00)
0.00e+00

(0.00e+00)

f2
9.76e+07

(2.83e+07)
1.67e+05

(1.17e+06)
1.88e+02

(2.53e+02)
8.56e+01

(7.98e+01)
2.61e+01
(2.66e-01)

2.60e+01
(1.58e-01)

f3
3.57e+02

(4.91e+01)
2.82e+02

(4.44e+01)
1.11e+02

(2.75e+01)
2.02e+02

(4.16e+01)
4.88e+00

(7.73e+00)
3.32e+00

(7.09e+00)

f4
1.53e+02

(7.30e+01)
1.63e+00

(5.93e+00)
1.25e-02

(1.26e-02)
1.65e-02

(2.24e-02)
3.79e-03

(2.29e-03)
4.51e-03

(4.00e-03)

f6
9.63e-02

(9.43e-02)
3.31e-02

(4.08e-02)
4.05e-03

(4.72 e-03)
5.55e-03

(4.80e-03)
1.55e-03

(3.60e-03)
3.89e-04

(1.92e-04)

Table 3. TVIW-PSO, RANDIW-PSO and GLbestIW-PSO

 TVIW ࢉ ൌ ૚. ૛

TVIW ࢉ ൌ ૚. ૝ૢ

TVIW ࢉ ൌ ૛. ૙

RANDIWࢉ ൌ ૚. ૛

RANDIWࢉ ൌ ૚. ૝ૢ RANDIWࢉ ൌ ૛. ૙

GLbestIWࢉ ൌ ૚. ૛

GLbestIW ࢉ ൌ ૚. ૝ૢ

GLbestIW ࢉ ൌ ૛. ૙

f1
1.22e-23

(5.81e-23)

8.64e-29

(1.75e-28)

2.81e-06

(2.77e-06)

1.12e-33

(1.90e-33)

1.22e-18

(1.26E-18)

6.68e+02

(2.60e+02)

1.14e+05

(6.47e+03)

3.67e+04

(8.25e+03)

2.83e+03

(1.92e+03)

f2
1.24e+02

(1.66e+02)

1.03e+02

(9.31e+01)

5.96e+02

(1.72e+03)

7.53e+01

(7.24e+01)

7.28e+01

(6.69e+01)

2.07e+07

(1.26e+07)

2.95e+08

(4.80e+07)

9.10e+07

(3.41e+07)

3.46e+08

(9.03e+07)

f3
9.82e+01

(2.44e+01)

7.85e+01

(2.01e+01)

5.84e+01

(1.39e+01)

1.80e+02

(3.01e+01)

1.11e+02

(2.51e+01)

1.94e+02

(2.77e+01)

4.37e+02

(3.24e+01)

3.56e+02

(3.56e+01)

1.68e+02

(2.79e+01)

f4
8.71e-03

(1.06Ee-02)

8.66e-03

(1.14e-02)

1.22e-02

(1.26e-02)

1.25e-02

(1.64e-02)

1.04e-02

(1.50e-02)

5.96e+00

(1.62e+00)

9.77e+02

(5.30e+01)

3.08e+02

(6.63e+01)

2.34e+01

(1.53e+01)

f6
2.34e-03

(4.19e-03)

2.18e-03

(3.94e-03)

2.34e-03

(4.07e-03)

4.14e-03

(4.80e-03)

4.48e-03

(4.88e-03)

2.60e-03

(4.18e-03)

6.99e-02

(1.10e-01)

8.12e-03

(4.05e-02)

0.00e+00

(0.00e+00)

 Controlling the Parameters of the Particle Swarm Optimization 161

Table 4. Kolmogorov-Smirnov statistical tests comparing the best configurations of each
algorithm. ‘+’ sign means that PSO 1 is statistically better than PSO 2, ‘~’ means that the PSOs
are equivalent, and ‘–’ means that PSO 1 is worse.

PSO 1 vs. PSO 2 f1 f2 f3 f4 f6
BS-PSO ሺܛ܊, ,ܛ܊ + + + + + ሻ vs TVIW-PSOܛ܊

BS-PSO ሺܛ܊, ,ܛ܊ + + + + + ሻ vs RANDIW-PSOܛ܊
BS-PSO ሺܛ܊, ,ܛ܊ – + + + + ሻvs GLbestIW-PSOܛ܊

BS-PSO ሺܛ܊, ,ܛ܊ ૙) vs TVIW-PSO + + – – –
BS-PSO ሺܛ܊, ,ܛ܊ ૙) vs RANDIW-PSO – ~ – ~ ~
BS-PSO ሺܛ܊, ,ܛ܊ ૙) vs GLbestIW-PSO + + ~ + –

Table 5. IA-PSO: average and standard deviation of the optimal value for 50 trials

ࢉ ൌ ૚. ૛ ࣋ ൌ ૙

ࢉ ൌ ૚. ૛ ࣋ ൌ ૙.25

ࢉ ൌ ૚. ૛ ࣋ ൌ ࢙࢈

ࢉ ൌ ૚. ૝ૢ ࣋ ൌ ૙

ࢉ ൌ ૚. ૝ૢ ࣋ ൌ ૙.25

ࢉ ൌ ૚. ૝ૢ ࣋ ൌ ࢙࢈

ࢉ ൌ ૛. ૙ ࣋ ൌ ૙

ࢉ ൌ ૛. ૙ ࣋ ൌ ૙.25

ࢉ ൌ ૛. ૙ ࣋ ൌ ࢙࢈

f1
1.16e+04

(8.32e+03)

0.00e+00

(0.00e+00)

0.00e+00

(0.00e+00)

2.42e+02

(1.43e+03)

0.00e+00

(0.00e+00)

0.00e+00

(0.00e+00)

5.19e-02

(2.61e-02)

6.56e-03

(5.34e-03)

2.60e-02

(1.70e-02)

f2
2.05e+07

(1.43e+07)

2.71e+01

(4.44e+00)

2.63e+01

(1.29e+00)

7.45e+04

(5.26e+05)

2.62e+01

(3.71e-01)

2.60e+01

(1.84e-01)

4.26e+02

(8.30e+02)

3.97e+01

(2.14e+01)

7.21e+01

(8.25e+01)

f3
3.74e+02

(3.27e+01)

1.16e+02

(2.10e+01)

7,79e+01

(2.17e+01)

2.82e+02

(3.47e+01)

5.26e+01

(3.08e+01)

3.96e+01

(2.02e+01)

8.87e+01

(2.66e+01)

1.81e+00

(3.12e+00)

1.12e+01

(1.42e+01)

f4
1.21e+02

(7.57e+01)

4.02e-03

(2.80e-03)

3,95e-03

(2.22e-03)

2,62e+00

(1.30e+01)

3.72e-03

(2.23e-03)

4.71e-03

(3.12e-03)

1.84e+00

(1.27e+01)

1.11e-02

(7.74e-03)

1.30e-02

(7.08e-03)

f6
2.45e-01

(7.60e-02)

9.52e-03

(1.37e-03)

5.26e-03

(4.87e-03)

8.90e-02

(8.39e-02)

5.44e-03

(4.87e-03)

7.77e-04

(2.66e-03)

3.75e-03

(4.73e-03)

3.89e-04

(1.92e-03)

4.89e-04

(2.03e-03)

In order to assure fair comparisons, Table 3 shows the complete set of results

attained by TVIW-, RANDIW- and GLbestIW-PSO. Apparently, BS-PSO
outperforms the other algorithms in most of the scenarios. However, PSOs in Table 3
do not include perturbation of the particle’s position and therefore they should be also
compared to a BS-PSO with that scheme disabled (ሺܾݏ, ,ݏܾ 0) in Table 2): Table 4
compares BS-PSO (with and without perturbation of the particles) to the other PSOs
using statistical non-parametric tests (best configurations in Table 3 were chosen). It
is confirmed that the fully enabled BS-PSO outperforms the other algorithms. As for
the version restricted to parameter control, it is in general better than GLbestIW,
while being competitive with the other methods. These are interesting results, since
the performance of BS-PSO is attained without fine-tuning the parameters.

Table 6. Kolmogorov-Smirnov statistical tests comparing IA-PSO and BS-PSO

PSO 1 vs. PSO 2 f1 f2 f3 f4 f6

BS-PSO ሺܛ܊, ૛. ૙, ૙ሻ vs IA-PSO ሺ࣋ ൌ ૙ሻ + + ~ + ~
BS-PSO ሺܛ܊, ,ܛ܊ ࣋ ሻvs IA-PSO (bs controlledܛ܊) ~ ~ + ~ +

162 C.M. Fernandes, J.J. Merelo, and A.C. Rosa

A final test compares BS-PSO with IA-PSO. The later was tested with different
acceleration coefficients and three perturbation strategies: disabled (ߩ ൌ 0ሻ, set to 0.25 (as in [12]) and controlled by the Bak-Sneppen model (using a Bak-Sneppen
controlled IA-PSO permits to compare only the parameter control scheme of both
algorithms). The results are in Table 5 and the statistical tests in Table 6. BS-PSO is,
in general, more efficient than IA-PSO, whether the schemes are fully enabled or not.
At this point, a question arises: what are the mechanisms behind the control scheme
that make BS-PSO efficient in adjusting the parameters? Figure 1 gives some hints.
The plot in the figure represents the distribution of ߱௜ during a typical run of BS-PSO,
and, although it is not the definitive answer, helps to clarify this issue. The values
seem to keep within a range that is not only suited for ߱ but also appropriate to model
a mutation scheme. If the system had higher values with more frequency, the effect
would be destructive, since it would increase exploration beyond a reasonable point.

Fig. 1. Distribution of the ࣓࢏ values of all particles in a typical run

5 Conclusions and Future Work

The Bak-Sneppen Particle Swarm Optimization (BS-PSO) is a variation of the basic
PSO that uses a Self-Organized Criticality (SOC) model to control the inertia weight
and the acceleration coefficients, as well as the perturbation factor of the particles’
positions. A single scheme controls three parameters making hand-tuning of the basis
PSO unnecessary. An experimental setup demonstrates the validity of the algorithm
and shows that the incorporation of each control mechanism may improve the
performance or at least reduce the tuning effort. The BS-PSO is compared with other
methods. In particular, the algorithm is able to attain better results than a recently
proposed inertia weight PSO (IA-PSO) in most of the experimental scenarios. In a
future work, a scalability analysis will be conducted, as well as study on the effects of
the limit imposed to mutation events by the current algorithm, and possible
alternatives to this ad hoc solution. The test set will also be extended and BS-PSO
compared with the algorithms proposed in [8] and [9]. Finally, different levels of
hybridization between the Bak-Sneppen model and PSO will be tested, in order to
introduce information from the search into the variation scheme of the parameter
values.

1

10

100

1000

0.01 0.1 1

nu
m

be
r o

f s
am

pl
es

ωi

 Controlling the Parameters of the Particle Swarm Optimization 163

Acknowledgement. The first author wishes to thank FCT, Ministério da Ciência e
Tecnologia, his Research Fellowship SFRH/BPD/66876/2009. This work is supported
by project TIN2011-28627-C04-02 awarded by the Spanish Ministry of Science and
Innovation and P08-TIC-03903 awarded by the Andalusian Regional Government.

References

1. Arumugam, M.S., Rao, M.V.C.: On the Performance of the Particle Swarm Optimization
Algorithm with Various Inertia Weight Variants for Computing Optimal Control of a Class
of Hybrid Systems. Discrete Dynamics in Nature and Society (2006), Article ID 79295, 17
pages (2006)

2. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized Criticality: an Explanation of 1/f Noise.
Physical Review Letters 59(4), 381–384 (1987)

3. Bak, P., Sneppen, K.: Punctuated Equilibrium and Criticality in a Simple Model of
Evolution. Physical Review Letters 71(24), 4083–4086 (1993)

4. Eberhart, R.C., Shi, Y.: Tracking and optimizing dynamic systems with particle swarms.
In: Proc. IEEE of the Congress on Evolutionary Computation 2001, pp. 94–97. IEEE Press
(2001)

5. Fernandes, C.M., Merelo, J.J., Ramos, V., Rosa, A.C.: A Self-Organized Criticality
Mutation Operator for Dynamic Optimization Problems. In: Proc. of the 2008 Genetic and
Evolutionary Computation Conference, pp. 937–944. ACM (2008)

6. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proceedings of IEEE
International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

7. Krink, T., Rickers, P., René, T.: Applying Self-organized Criticality to Evolutionary
Algorithms. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel,
H.-P., Yao, X. (eds.) PPSN VI. LNCS, vol. 1917, pp. 375–384. Springer, Heidelberg
(2000)

8. Løvbjerg, M., Krink, T.: Extending particle swarm optimizers with self-organized
criticality. In: Proceedings of the 2002 IEEE Congress on Evolutionary Computation,
vol. 2, pp. 1588–1593. IEEE Computer Society (2002)

9. Ratnaweera, A., Halgamuge, K.S., Watson, H.C.: Self-organizing Hierarchical Particle
Swarm Optimizer with Time-varying Acceleration Coefficients. IEEE Transactions on
Evolutionary Computation 8(3), 240–254 (2004)

10. Shi, Y., Eberhart, R.C.: A Modified Particle Swarm Optimizer. In: Proc. of IEEE 1998
Congress on Evolutionary Computation, pp. 69–73. IEEE Press (1998)

11. Shi, Y., Eberhart, R.C.: Empirical Study of Particle Swarm Optimization. In: Proc. of the
IEEE. Congress on Evolutionary Computation, pp. 101–106 (1999)

12. Suresh, K., Ghosh, S., Kundu, D., Sen, A., Das, S., Abraham, A.: Inertia-Adaptive Particle
Swarm Optimizer for Improved Global Search. In: Proceedings of the 8th International
Conference on Intelligent Systems Design and Applications, vol. 2, pp. 253–258. IEEE,
Washington, DC (2008)

13. Tinós, R., Yang, S.: A self-organizing Random Immigrants Genetic Algorithm for
Dynamic Optimization Problems. In: Genetic Programming and Evolvable Machines,
vol. 8(3), pp. 255–286 (2007)

	Controlling the Parameters of the Particle Swarm Optimization with a Self-Organized Criticality Model
	Introduction
	Particle Swarm Optimization
	SOC and the Bak-Sneppen Particle Swarm
	Testbed Set and Results
	Conclusions and Future Work
	References

