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Abstract. In the natural world there are many swarms in any geograph-
ical region. In contrast, Particle Swarm Optimization (PSO) is usually
used with a single swarm of particles. We define a simple new topol-
ogy called Apiary and show that parallel communities of swarms give
rise to emergent behavior that is fundamentally different from the be-
havior of a single swarm of identical total size. Furthermore, we show
that subswarms are essential for scaling parallel PSO to more processors
with computationally inexpensive objective functions. Surprisingly, sub-
swarms are also beneficial for scaling PSO to high dimensional problems,
even in single processor environments.

Keywords: Particle Swarm Optimization, parallel PSO, swarm topol-
ogy, subswarms, multiple swarms, parallel computation.

1 Introduction

Particle Swarm Optimization (PSO) is a continuous function optimization al-
gorithm inspired by the flocking behaviors of birds and insects. It is typically
used with small swarms of 20 to 50 particles organized in simple topologies that
do not fully reflect the complex social interactions of insects. In agriculture, for
example, bees are managed in sets of hives called apiaries. The number of hives
in an apiary usually ranges from 10 to 150.

Using conventional topologies, a single swarm of particles often fails to scale
both to large numbers of processors and to high-dimensional problems. First,
with a large number of processors and an inexpensive objective function, com-
munication costs make parallel PSO with a single swarm impractical. Parallel
PSO naturally works well for problems with computationally expensive function
evaluations, but for inexpensive objective functions, the time to communicate a
single position can exceed the time to perform a function evaluation. Second, for
high-dimensional problems, particles are prone to premature convergence. Even
for Sphere, the simplest of benchmark functions, standard PSO struggles to find
the global optimum when the number of dimensions is 400 or greater.

Multiple swarms have been used to scale parallel PSO for inexpensive ob-
jective functions but have not been considered for scaling to high-dimensional
problems. Semi-independent swarms of particles provide a natural way to par-
allelize the computation of PSO across a set of processors without requiring
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instantaneous communication [1]. However, the behavior of subswarms has not
been explored, particularly with respect to high-dimensional problems.

The Apiary topology, proposed in Section 3, spreads the population of par-
ticles among a set of small subswarms. In this topology, a subswarm is a social
entity which lies between the individual particle and the full population and
which serves as another source of emergent behavior. Each subswarm consists of
a fixed set of particles and is mostly independent of other subswarms. Periodi-
cally, a single particle in each subswarm communicates with a few particles in
other subswarms. This communication between subswarms is rare and limited,
so computation is particularly well suited to parallel computation.

The Apiary topology helps PSO scale, both to large numbers of processors
and to high-dimensional objective functions. Unlike some other proposed PSO
techniques using subswarms, this topology is simple, clearly defined, and appro-
priate for parallel PSO. Experiments, described in Section 4, show significant
improvements over standard PSO. Even in single processor environments, api-
aries produce better results in the same time and are less prone to premature
convergence for every benchmark function we tested. These results are presented
and discussed in Section 4.1. The standard parameters are justified in Section 4.2,
along with indications of when these parameters might be changed. Parallel PSO
with Apiary is compared in Section 4.3. Despite inexpensive functions being par-
ticularly challenging for parallelization, the run time is reduced from 256 minutes
with a single processor to 17 minutes with 40 processors.

2 Background Material: Particle Swarm Optimization

Particle Swarm Optimization, proposed by Kennedy and Eberhart [2], simulates
the motion of particles in the domain of an objective function. These particles
search for the global optimum by evaluating the function as they move. During
each iteration, each particle is pulled toward the best position it has sampled,
known as the personal best, and the best position of any particle in its neighbor-
hood, known as the neighborhood best.

Constricted PSO is generally considered the standard variant [3]. Each par-
ticle’s position x0 and velocity v0 are initialized to random values based on a
function-specific feasible region. During iteration t, the following equations up-
date the ith component of a particle’s position xt and velocity vt with respect to
the personal best pt−1 and neighborhood best nt−1 from the preceding iteration:

vt,i = χ
[
vt−1,i + φPuP

t−1,i(x
P
t−1,i − xt−1,i) + φNuN

t−1,i(x
N
t−1,i − xt−1,i)

]
(1)

xt,i = xt−1,i + vt,i (2)

where xP is the personal best, xN is the neighborhood best, φP and φN are
usually set to 2.05, uP

t,i and uN
t,i are samples drawn from a standard uniform

distribution, and χ = 2/
∣
∣
∣2− φ−

√
φ2 − 4φ

∣
∣
∣ where φ = φP + φN [4].

The neighborhoods within a swarm are defined by the topology graph. The
choice of topology can have a significant effect on performance [5]. Additionally,
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the topology determines task dependencies and overhead in parallel PSO [6].
The Ring50 topology, a swarm of 50 particles where each particle has a single
neighbor on either side, is a standard starting point [3].

3 The Apiary Topology

The Apiary topology is a dynamic topology of independent subswarms which
occasionally communicate with each other. Each subswarm has an inner topol-
ogy, and the subswarms are connected in an outer topology. In most iterations,
the neighbors of each particle are defined purely by the inner topology of its
subswarm. After a fixed number of independent subiterations, each subswarm
communicates with its neighboring subswarms, as defined by the outer topol-
ogy. Each subswarm sends its neighbors the best value from any of its particles.
It updates the neighborhood best of a fixed set of particles (the neighborhood
of the first particle in the swarm) with the values from neighboring subswarms.

In the Apiary topology, subswarms share important characteristics with com-
munities in nature. Just as each bee colony has its own social structure, each
subswarm has its own particles and its own topology. Like bee colonies, the sub-
swarms are independent and rarely interact. Curiously, bees occasionally allow
foreign forage bees to enter a hive if they are fully loaded [7], and the native bees
will be able to learn from those foreign bees if they are from another colony or
even another species [8]. Likewise, a single particle in each subswarm occasion-
ally engages in light communication with neighboring swarms. In this simple
structure, subswarms are simple entities with a balance of independence and
interaction that favors emergent behavior.

This approach contrasts with previous attempts to define subpopulations in
PSO. Dynamic Multi-Swarm PSO [9] periodically shuffles by reassigning all
particles to random subswarms. This global reshuffling increases the amount of
communication required in parallel PSO and is incompatible with asynchronous
parallel PSO [10]. In contrast, neighborhoods in the Apiary topology are de-
terministic and require very little communication. Section 4.1 compares the
performance of Dynamic Multi-Swarm PSO with that of the Apiary topol-
ogy. Most subswarm approaches have introduced strategies—some of them quite
complex—to manage the migration of particles between subswarms [11,12,13,14].
Other works have used subswarm-style topologies within a limited context [6],
including completely independent subswarms [1]. Romero and Cotta’s island-
structured swarms [11], is limited to small numbers of large subswarms and
low-dimensional problems, and its conclusions do not seem to apply to high-
dimensional problems. In contrast to other approaches, the Apiary topology is
static and thus well suited to any implementation of parallel PSO, and it requires
very little communication between subswarms.

The inner and outer topologies, as well as the number of subiterations, are
changeable parameters.We recommendRing for both the outer and inner topolo-
gies, with a starting point of 5 particles per subswarm, 40 total subswarms, and
100 subiterations. These recommendations are justified in Section 4.2.
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4 Experimental Results

The Apiary topology provides significant improvements for both serial and par-
allel PSO with respect to a variety of benchmark functions. Benchmark func-
tions are computationally inexpensive enough for large-scale experimentation
but share interesting properties with challenging real-life problems. We use
the Ackley, Rastrigin, Rosenbrock, Schwefel 1.2, and Sphere benchmark func-
tions [15] with both 250 and 500 dimensions. Experiements were run on a Linux
cluster consisting of 320 nodes (Dell PowerEdge M610). Each node is equipped
with two quad-core Intel Nehalem processors (2.8 GHz) and 24 GB of memory.

Each experiment was repeated at least 40 times. We report the median in-
stead of the mean because these distributions are skewed. The 10th and 90th

percentiles illuminate both the variability and skewness. We determine statis-
tical significance using a one-sided Monte Carlo permutation test [16]. A t-test
would be inappropriate because it uses the mean statistic and assumes a normal
distribution, which we can not assume in part because of skew. Each table cell
is bolded if it is better than every other entry in its row with a p-value of 0.05.

Each table and plot presents either the median number of evaluations required
to reach a threshold or the median best value at a fixed number of evaluations or
iterations. The notation Ringn denotes a ring topology where each particle has
one neighbor on each side, and Ringm–Ringn denotes an Apiary topology with
a Ringm outer topology and a Ringn inner topology. Each benchmark function
is accompanied by its dimensionality, for example, “Sphere-500.”

The balance of this section seeks to identify some of the most interesting
observation and give greater clarity and meaning to these results. Section 4.1
compares the Ring40–Ring5 apiary with the standard recommendation of Ring.
Section 4.2 justifies the particular choice of Ring40–Ring5 as a standard starting
point. Finally, Section 4.3 demonstrates the suitability of the Apiary topology to
parallel PSO by demonstrating its efficiency in a typical parallel environment.

4.1 Apiaries in Serial PSO

Limiting the interaction between subswarms to once every 100 iterations might
be expected to compromise the performance of serial PSO in exchange for
improved parallel efficiency, but this social organization in fact improves per-
formance even in serial PSO. Figures 1 and 2 show the progress toward conver-
gence for 500 dimensional Rastrigin and Sphere respectively. The Ring40–Ring5
apiaries require the same number of evaluations per iteration as the Ring200
swarms, but they perform far better than the individual Ring swarms. Note
that the Ring200 swarm in Figure 2 converges more slowly than the Ring50
swarm because it requires more evaluations per iteration.

One might wonder whether the performance of the Apiary topology are depen-
dent on the social interactions or whether they are merely due to the repetition of
a high-variance experiment. After all, running 40 independent swarms of 5 par-
ticles would be expected to perform better than a single swarm of 5 particles.
Figure 2 includes the abysmal results of such an Independent40–Ring5 topology,
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Fig. 1. Convergence plot for Rastrigin in serial PSO, comparing an apiary (using 100
subiterations) with a swarm of the same total number of total particles (200) and a
swarm of 50 particles
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Fig. 2. Convergence plot for Sphere in serial PSO, comparing an apiary (using 100
subiterations) with a swarm of the same number of total particles (200) and a swarm
of 50 particles

thus dispelling this possibility. The difference between the independent swarms
and the apiary demonstrates emergent behavior.

We include results for the full range of benchmark functions in tabular form.
In the case of Sphere, all runs of all PSO variants eventually converge to the
global minimum. Table 1

reports the number of function evaluations to convergence. Table 2 reports
the best value obtained at a fixed number of function evaluations for the other
benchmark functions. The fixed number of evaluations for each function are
equivalent to about 6 hours of computation, specifically: 6× 106 for Ackley-250
and Ackley-500, 1× 107 for Rastrigin-250, 3.5× 106 for Rastrigin-500, 1× 107

for Rosenbrock-250, 5× 106 for Rosenbrock-500, 6× 106 for Schwefel1.2-250, and
2× 106 for Schwefel1.2-500. In all cases the apiary is best with statistical signif-
icance. Though the results for the Ackley function are statistically significant,
the difference is small.
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Table 1. Median number of function evaluations to reach a value of 10−10. The best
cell in each row is bolded if statistically significant

Function Ring50 Ring200 Ring40–Ring5
Sphere-250 7.8×105 3×106 5.9×105

(10th, 90th) (7.6×105, 8.1×105) (3×106, 3.1×106) (5.9×105, 6×105)

Sphere-500 9.5×106 1.6×107 1.2×106

(10th, 90th) (3.5×106, 2.6×107) (1×107, 4×107) (1.2×106, 1.2×106)

Table 2. Median best value at a fixed number of function evaluations

Function Ring50 Ring200 Ring40–Ring5
Ackley-250 20 20 20

(10th, 90th) (20, 20) (20, 20) (20, 20)

Ackley-500 20 20 20

(10th, 90th) (20, 21) (20, 21) (20, 20)

Rastrigin-250 2.6×103 2.3×103 1.9×103

(10th, 90th) (2.1×103, 2.9×103) (2×103, 2.5×103) (1.7×103, 2.1×103)

Rastrigin-500 1.2×104 1.2×104 4.1×103

(10th, 90th) (1.1×104, 1.3×104) (8.5×103, 1.2×104) (3.9×103, 4.5×103)

Rosenbrock-250 70 3.7×102 0.0012

(10th, 90th) (0.029, 3.4×102) (2.8×102, 4.5×102) (6.1×10−9, 4)

Rosenbrock-500 4.3×1012 4.1×1012 8.8×102

(10th, 90th) (4×1012, 4.6×1012) (3.8×1012, 4.3×1012) (7×102, 1.1×103)

Schwefel1.2-250 7.4×104 2.3×105 1.6×104

(10th, 90th) (4.6×104, 1.5×105) (2.1×105, 2.7×105) (1.2×104, 2.1×104)

Schwefel1.2-500 1.6×106 2.2×106 8.1×105

(10th, 90th) (1.1×106, 2.3×106) (1.8×106, 2.8×106) (7.1×105, 9.4×105)

For some functions, the Apiary topology outperforms Dynamic Multi-Swarm
PSO [9] (DMS-PSO) in serial, while for other functions, DMS-PSO outperforms
the Apiary topology. For Sphere-500, the Apiary topology finds the minimum
faster with a small but statistically significant advantage, while for Sphere-250,
the situation is reversed (the full table is omitted due to space constraints).
Table 3 shows similarly mixed results for the other benchmark functions.

4.2 Apiary Parameters

We now justify the basic apiary parameters of a Ring40 outer topology, a Ring5
inner topology, and 100 subiterations. General recommendations set Ring50 as
a standard swarm topology [3] or even higher for difficult problems [6]. Previous
subswarm topologies have suggested that 50–100 particles per subswarm [11] or
32 particles per subswarm [1] give ideal performance. In contrast, we recommend
starting with small subswarms of about 5 particles.

Increasing the number of particles per subswarm or the total number of sub-
swarms provide improvements only in some circumstances. Table 4 compares



170 A. McNabb and K. Seppi

Table 3. Median best value at a fixed number of function evaluations. The topology
is Ring40–Ring25 for Rastrigin and Ring40–Ring5 for Rosenbrock and Schwefel 1.2.

Function Apiary DMS-PSO

Rastrigin-250 1.5×103 4.8×102

(10th, 90th) (1.4×103, 1.6×103) (4×102, 5.9×102)

Rastrigin-500 3.3×103 1.3×103

(10th, 90th) (3×103, 3.6×103) (1.2×103, 1.6×103)

Rosenbrock-250 0.0012 1.3×102

(10th, 90th) (6.1×10−9, 4) (1.4, 2.3×102)

Rosenbrock-500 8.8×102 8.3×102

(10th, 90th) (7×102, 1.1×103) (6.4×102, 9.8×102)

Schwefel1.2-250 1.6×104 7×104

(10th, 90th) (1.2×104, 2.1×104) (5.1×104, 8.9×104)

Schwefel1.2-500 8.1×105 1.4×106

(10th, 90th) (7.1×105, 9.4×105) (1.2×106, 1.7×106)

Table 4. Median best value at n function evaluations

Function Ring40–Ring5 Ring200–Ring5 Ring40–Ring25
Rastrigin-250 1.9×103 1.7×103 1.5×103

(10th, 90th) (1.7×103, 2.1×103) (1.6×103, 1.9×103) (1.4×103, 1.6×103)

Rastrigin-500 4.1×103 3.8×103 3.3×103

(10th, 90th) (3.9×103, 4.5×103) (3.6×103, 4×103) (3×103, 3.6×103)

Rosenbrock-250 0.0012 2.6×102 0.27

(10th, 90th) (6.1×10−9, 4) (2×102, 3.2×102) (0.0016, 76)

Rosenbrock-500 8.8×102 5×103 9.4×102

(10th, 90th) (7×102, 1.1×103) (3.4×103, 1.4×104) (8.2×102, 1.2×103)

Schwefel1.2-250 1.6×104 1.5×105 3.7×104

(10th, 90th) (1.2×104, 2.1×104) (1.3×105, 1.6×105) (2.8×104, 4.8×104)

Schwefel1.2-500 8.1×105 1.6×106 1×106

(10th, 90th) (7.1×105, 9.4×105) (1.5×106, 1.8×106) (8.8×105, 1.2×106)

Ring40–Ring5 to Ring200–Ring5, an apiary with 5 times as many subswarms,
and to Ring40–Ring25, an apiary with 5 times as many particles per subswarm.
For most of the benchmark functions, the Ring40–Ring5 apiary performs signif-
icantly better than either of the larger topologies. Likewise, the Ring40–Ring5
topology significantly outperforms the others for Sphere-250 and Sphere-500
(the table is omitted due to space). For such functions, the increased number of
evaluations per iteration offsets any increased exploration provided by the larger
swarms. On the other hand, both of the larger topologies are better for Rastrigin-
250, Rastrigin-500, and Rosenbrock-500. As the number of local minima in Ras-
trigin increases exponentially with the number of dimensions, we conclude that
larger swarms are preferable for highly multimodal objective functions.

Changing the communication between swarms can affect performance dra-
matically. Using a more connected outer topology, such as Complete, gives poor
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Fig. 3. Convergence plots of the Apiary topology for the Rosenbrock function with
respect to function evaluations and time

performance in serial PSO in addition to requiring more communication in par-
allel PSO. Sharing the best value of an arbitrary member of each subswarm
instead of the best particle of each subswarm also reduces performance. Setting
the number of subiterations to 100 is high enough to provide reasonable task
granularity even for the least expensive benchmark functions in parallel PSO.

4.3 Parallel Performance of Apiaries

Benchmark functions are extremely inexpensive, yet despite the high relative
cost of communication, the Apiary topology performs extremely well in par-
allel. Figure 3 shows the results for the Rosenbrock function with both serial
and parallel computation. Performing 100 iterations on 5 particles requires only
0.2 seconds, and parallel PSO took about 0.5 seconds per iteration. With any
realistically expensive function, the overhead of 0.3 seconds would be negligible.

In a parallel context with a large number of spare processors, there may
be limited additional overhead in increasing the number of subswarms. In this
light, we revisit the conclusions from Section 4.2. In this context, the number of
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Table 5. Median best value at n iterations

Function Ring40–Ring5 Ring200–Ring5 Ring40–Ring25
Rastrigin-250 1.9×103 1.7×103 1.5×103

(10th, 90th) (1.7×103, 2.1×103) (1.6×103, 1.9×103) (1.4×103, 1.6×103)

Rastrigin-500 4.2×103 3.8×103 3.4×103

(10th, 90th) (3.9×103, 4.5×103) (3.6×103, 4×103) (3×103, 3.6×103)

Rosenbrock-250 3.6×102 2.5×102 2.9×102

(10th, 90th) (2.6×102, 4.4×102) (1.9×102, 3.2×102) (2.1×102, 3.5×102)

Rosenbrock-500 2×104 4.2×103 1.5×104

(10th, 90th) (4.5×103, 3.1×107) (3×103, 9.4×103) (3.5×103, 7.5×106)

Schwefel1.2-250 1.7×105 1.4×105 1.7×105

(10th, 90th) (1.4×105, 2×105) (1.3×105, 1.6×105) (1.3×105, 2×105)

Schwefel1.2-500 1.8×106 1.6×106 1.8×106

(10th, 90th) (1.6×106, 2.2×106) (1.5×106, 1.8×106) (1.5×106, 2.1×106)

iterations of PSO is a more appropriate measure than the number of function
evaluations [6]. With respect to iterations, Table 4 compares Ring40–Ring5 with
Ring200–Ring5 and Ring40–Ring25, which loosely represent the situations where
additional processors or time are available, respectively. If extra resources are
available, they clearly provide improvements in the pursuit of better answers.

5 Conclusions and Future Work

Organizing particle swarms into communities of subswarms significantly im-
proves the performance of PSO. We attribute the improvement to emergent
behavior from the social interaction of particles. We speculate that small groups
of particles might make progress on implicit subproblems. Likewise, subswarms
might help other subswarms get unstuck if they have prematurely converged in
individual dimensions. In any case, the behavior of particle swarm apiaries is not
explained by amount of communication, but rather the structure of the swarms.

Furthermore, we have shown that apiaries are particularly well-suited to par-
allel computation. With low communication and adjustable task granularity, the
topology is easily adapted to varying computational architectures. With an in-
expensive benchmark function, parallel PSO was able to perform about 2 outer
iterations per second and provide a speedup of 15 on 40 processors. For any
non-trivial function, the performance would be even more pronounced. Unlike
other multi-swarm topologies like DMS-PSO [9], which requires frequent global
communication, the Apiary topology requires very little communication.

We believe there are several interesting areas that are open to future work.
In particular, organizing subswarms into hierarchies is a promising possibility.
Apiaries are effective with extremely small subswarms, so a hierarchical structure
can be built with a low branching factor. For example, a three-layer apiary would
only have 53 = 125 particles, and a four-layer apiary would have 54 = 625
particles, well within the range that can be computed on a medium-size cluster.
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