
ACO on Multiple GPUs

with CUDA for Faster Solution of QAPs

Shigeyoshi Tsutsui

Hannan University, Matsubara Osaka 580-8502, Japan
tsutsui@hannan-u.ac.jp

Abstract. In this paper, we implement ACO algorithms on a PC which
has 4 GTX 480 GPUs. We implement two types of ACO models; the
island model, and the master/slave model. When we compare the island
model and the master/slave model, the island model shows promising
speedup values on class (iv) QAP instances. On the other hand, the
master/slave model showed promising speedup values on both classes (i)
and (iv) with large-size QAP instances.

1 Introduction

Recently, GPU (Graphics Processing Unit) computation has become popular
with great success, especially in scientific fields such as fluid dynamics, image
processing, and visualization using particle methods [1]. As for parallel ACO on
GPU, Bai et al. [2], Fu et al. [3], and Delévacqa et al. [4] implemented MMAS
on GPU with CUDA and applied it to solve TSP. In [5], Diego et al. proposed
a parallelization strategy to solve the VRP with ACO on a GPU.

In a previous paper [6], we proposed an ACO to solve large scale quadratic
assignment problems (QAPs) on a GPU (GTX480) with CUDA. We used tabu
search (TS) as a local search of solutions obtained by the ACO. In the imple-
mentation, we proposed a novel threads assignment method in CUDA, which we
call MATA (Move-Cost Adjusted Thread Assignment), to reduce the idling time
of threads caused by thread divergence in a warp (see Section 2.1). We tested the
ACO using several large-size benchmark instances in QAPLIB [7]. The ACO was
able to solve the QAP instances successfully with about 20x speedup compared
with CPU computation (i7 965, 3.2GHz). As for the ACO algorithm, we use the
Cunning Ant System (cAS) [8].

In this paper, we implement the previous ACO algorithm on a PC which
has 4 GTX 480 GPUs. We implement two types of ACO models using multiple
GPUs. One is the island model, and the other is the master/slave model. In
the island model, we implement one colony on each GPU, agents (solutions) are
exchanged among colonies at defined ACO iteration intervals using several types
of topologies. In the master/slave model, we have only one colony in the CPU,
and only local search (TS) processes are distributed to each GPU.

In the remainder of this paper, Section 2 reviews of the previous study of ACO
on a GPU with MATA and shows revised results using newly tuned parameter

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part II, LNCS 7492, pp. 174–184, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

ACO on Multiple GPUs with CUDA for Faster Solution of QAPs 175

settings. Then, Section 3 describes how the ACO is implemented on a PC with
multiple GPUs in detail. In Section 4, experimental results and their analysis
are given. Finally, Section 5 concludes this paper.

2 A Review of an ACO on a GPU with MATA and
Revised Results

2.1 GPU Computation with CUDA

Processors in a CUDA GPU are grouped into multiprocessors (MPs). Each MP
consists of thread processors (TPs). TPs in an MP exchange data via fast-shared
memory (SM). On the other hand, data exchange among MPs is performed via
VRAM. In a CUDA program, threads form two hierarchies: the grid and thread
blocks. A block is a set of threads. A grid is a set of blocks with the same size.
Each thread executes the same code specified by the kernel function.

Threads in a block are executed through a mode called single instruction,
multiple threads (SIMT) [9]. In SIMT, each MP executes threads in groups of
32 parallel threads called warps. A warp executes one common instruction at a
time, so full efficiency is realized when all 32 threads of a warp agree on their
execution path.

2.2 ACO with TS on a GPU for Solving QAP

The QAP is the problem which assigns a set of facilities to a set of locations
and can be stated as a problem to find a permutation φ which minimizes

τ

Fig. 1. ACO with TS on a GPU

cost(φ) =

n−1∑

i=0

n−1∑

j=0

aijbφ(i)φ(j)

(1)
where A = (aij) and B = (bij)
are two n × n matrices and φ is
a permutation of {0, 1, · · · , n−1}.
Matrix A is a flow matrix between
facilities i and j, and B is the dis-
tance between locations i and j.
Thus, the goal of the QAP is to
place the facilities on locations in
such a way that the sum of the
products between flows and dis-
tances is minimized.

Fig. 1 shows the configuration of the ACO with TS to solve GAPs on a GPU
in [6]. As shown in the figure, each step of the algorithm is coded as a kernel
function of CUDA. All of the data of the algorithm are located in VRAM of the
GPU. As for the local search in Fig. 1, we implement TS based on Ro-TS [10].

176 S. Tsutsui

Construction of a solution is performed by the kernel function “Construct
solutions(· · ·)” in a single block. Then each m solutions are stored in VRAM. In
the kernel function “Apply tabu search(· · ·)”, m solutions are distributed in m
thread blocks. This function performs the computation of move-cost in parallel
using a large number of threads in each block. Kernel function “Pheromone
update(· · ·)” consists of 4 separate kernel functions to ease implementation.
Thus, in this configuration, the CPU performs only loop control of the
algorithm.

2.3 Move-cost Adjusted Thread Assignment (MATA)

More than 99% of computation time was used for execution of TS when we
ran the algorithm using CPU with a single thread (see Table 3 in Section 3.2).
MATA was proposed for efficient implementation of TS on a GPU.

As is well known, in TS we need to check all solutions neighboring the current
solution to obtain the best move. This move-cost calculation is costly. Let N(φ)
be the set of neighbors of the current solution φ. A neighbor, φ′ ∈ N(φ), is
obtained by exchanging a pair of elements (i, j) of φ. Then, we need to compute
move-costs Δ(φ, i, j) = cost(φ′)− cost(φ) for all the neighboring solutions. The
neighborhood size of N(φ) (|N(φ)|) is n(n − 1)/2 where n is the problem size.
When we exchange r-th and s-th elements of φ (i.e., φ(r) and φ(s)), Δ(φ, r, s)
can be calculated in computing cost O(n) [6].

Let φ′ be obtained from φ by exchanging r-th and s-th elements of φ, then fast
computation of Δ(φ′, u, v) is obtained in computing cost O(1) if u and v satisfy
the condition u, v∩r, s = ∅ [11]. To use this fast update, additional memorization
of the Δ(φ, i, j) values for all pairs (i, j) in a table are required. For each move,
we assign an index number as shown in Fig. 2. In this example, we assume a
problem size of n = 8. Thus, the neighborhood size |N(φ)| is 8 × 7/2 = 28.
As described in Section 2.2, each set of move-cost calculations of an solution is
being done in one block. The simplest approach to computing the move-costs
in parallel in a block is to assign each move indexed i to the corresponding
sequential thread indexed i in a block.

Fig. 2. Indexing of
moves (n = 8)

Here, consider a case in which a solution φ′ is obtained by
exchanging positions 2 and 4 of a current solution φ in a pre-
vious TS iteration. Then the computation of Δ(φ′, u, v), the
numbers shown in white font in black squares in Fig. 2, must
be performed in O(n). The computation of the remaining
moves are performed in O(1) fast. Thus, if we simply assign
each move to the block thread, threads of a warp diverge via
the conditional branch (u, v∩2, 4 = ∅) into two calculations;
threads in one group run in O(n) and threads in the other
group run in O(1). In threads of CUDA, all instructions are executed in SIMT
(see Section 2.1). As a result, the computation time of each thread in a warp
becomes longer, and we cannot receive the benefit of the fast calculation of O(1)
in [11].

ACO on Multiple GPUs with CUDA for Faster Solution of QAPs 177

− −
−

−−=

⎡ ⎤ ×=

⎡ ⎤
=

−

+=

Fig. 3. Move-Cost Adjusted Thread Assignment

Thus, we should
remove a situation
where threads which
run in O(1) and thre-
ads which run in O(n)
co-exist in the same
warp. In MATA, we
assign move-cost com-
putations of a solu-
tion φ which are in
O(1) and in O(n) to
threads which belong
to different warps in
a block, as shown in
Fig. 3. Since the com-
putation of a move-
cost which is O(1) is
smaller than the com-
putation which is O(n), we assign a multiple number of NS computations
which are O(1) to a single thread in the block. Also, it is necessary to as-
sign multiple calculations of the move-costs to a thread, because the maxi-
mum number of threads in a block is limited (1024 for GTX 480). Let C be
|N(φ)| (C = n(n − 1)/2). Here, each neighbor is numbered by 0, 1, 2, · · · , C − 1
(see Fig. 2). Then, the thread indexed as t = �k/NS� computes moves for
k ∈ tNS , tNS + 1, · · · , tNS +NS − 1. In this computation, if k is a move in
O(n), then the thread indexed as t skips the computation. The total number of
threads assigned for computations in O(1) is TH1 = �C/NS�.

For the computation in O(n), we assign only one computation of move-cost to
one thread in the block. Although the total number of moves in O(n) is 2n−3, we
used THn = 2n threads for these computations for implementation convenience.
Since the threads for these computations must not share the same warp with
threads used for computations in O(1), the starting thread index should be a
multiple of warp size (32), which follows the index of the last thread used for
computation in O(1). Thus, the total number of threads in a block THtotal is
�TH1/32� × 32 + THn.

2.4 Revised Results

In this section, we present revised results from a previous study [6]. We tuned
TS parameters so that we can get better performance as shown in Table 1.
The machine is the same as before; i.e., a PC which has one Intel Core i7 965
(3.2 GHz) processor and a single NVIDIA GeForce GTX480 GPU. The OS was
Windows XP Professional. We updated CUDA 4.0 SDK from previous 3.1 SDK.

The instances on which we tested our algorithm were taken from the QAPLIB
benchmark library [7]. QAP instances in the QAPLIB can be classified into
4 classes; (i) randomly generated instances, (ii) grid-based distance matrix,

178 S. Tsutsui

(iii) real-life in-stances, and (iv) real-life like instances [11]. In this revised ex-
periment, we used 10 instances which were classified as either (i) or (iv) (please
see Table 2). Here, note that instances classified into class (i) are much harder
to solve than those in class (iv). 25 runs were performed for each instance. In
Table 1, values in parentheses are values used in [6].

Table 1. Revised parameter
values (γ is a control pareme-
ter of cAS [8])

ρ
γ

Let ITTS be the length of TS applied to one so-
lution which is constructed by ACO, and ITACO

be the iterations of ACO, respectively. Then,
ITTOTAL = m× ITACO× ITTS represents a total
length of TS in the algorithm. We define a value
ITTOTAL−MAX = m × n × 3200. In this revised
experiment, if ITTOTAL reaches ITTOTAL−MAX

or a known optimal solution is found, the algo-
rithm terminates. This ITTOTAL−MAX is larger
than the ITTOTAL−MAX in [6]. Tavg and Error(%) are mean run time and mean
error over 25 runs, respectively. The revised results are summarized in Table 2.
The effectiveness of using MATA is clearly observed as was shown in [6]. Values
of Error are smaller and values of Speedup in Tavg are larger than observed
in [6] due to revised parameter settings and longer runs.

3 Implementation of ACO on Multiple GPUs

Since there are four PCIe x16 slots in our system. we added an additional 3 GTX
480 GPUs and constructed a multi-GPU environment with a total of 4 GTX 480
GPUs. In this section, we propose two types of multi-GPU models for ACO with
MATA, to attain a fast computation speed in solving QAPs. They are the island
model and the master/slave model, the most popular parallel EAs [12, 13].

3.1 Island Model

Table 2. Revised results with MATAIsland models for EAs in a
massively parallel platform are
intensively studied in [14]. The
cAS, which is used as our
ACO model in this study,
has an archive which main-
tains m solutions (see Fig.
1). This archive is similar to
a population in EAs. In our
implementation, we exchange
(immigrate) the solutions
among GPUs. In our imple-
mentation, one ACO model in a GPU in Section 2 composes one island. In
the configuration of ACO on a GPU in Fig. 1, all m solutions are maintained in
VRAM of the GPU. In an island model, we need to exchange solutions among
islands (GPUs) depending on its topology.

ACO on Multiple GPUs with CUDA for Faster Solution of QAPs 179

It is possible to exchange solutions among GPUs using “cudaMemcpyPeer(· · ·)”
function with CUDA 4.x. without via CPU. However, to perform exchange solu-
tions depending on a defined topology, the CPU needs to know which data should
be exchanged. This means that the CPU can’t execute the cudaMemcpyPeer(· · ·)
function without having solutions from each GPU. Since the data needs to be
sent to the CPU anyway, it is most efficient to exchange this data through the
CPU rather than doing a direct exchanged between GPUs. Thus, in our imple-
mentation of island models, solutions in VRAM are transferred between GPU
and CPU using usual “cudaMemcpy(· · ·)” function when immigrations are re-
quired as shown in Fig. 4. As for control multiple GPUs in the CPU, we use
OpenMP API.

Fig. 4. Island model with 4 GPUs

Although there are many topologies for is-
land models [13], in this study we implement
the following 4 models:

(1) Island model with independent runs
(IM INDP): Four GPUs are executed inde-
pendently. When at least one ACO in a GPU
finds an acceptable solution, then the algo-
rithm terminates.
(2) Island model with elitist (IM ELIT):
In this model, at defined ACO iteration in-
terval Iinterval the CPU collects the global
best solution from the 4 GPUs, and then dis-
tributes it to all GPUs except the GPU that
produced that best solution. In each GPU, the
worst solution in each archive is replaced with
the received solution.
(3) Island model with ring connected (IM RING): The best solution in
each GPU g (g = 0, 1, 2, 3) is distributed to its neighbor GPU (g + 1) Mod 4 at
Iinterval. In each GPU, the worst solution in each archive is replaced with the
received solution if the received one is better than the worst one.
(4) Island model with elitist and massive ring connected (IM ELMR):
In this model, first the global best solution is distributed, as performed in
IM ELIT. Then, in addition to this immigration operation, randomly selected
m×drate of solutions in the archive in each GPU are distributed to its neighbor.
Received solutions in each GPU are compared with randomly selected, non-
duplicate solutions. We use drate of 0.5 in this study.

3.2 Master/Slave Model

As mentioned in Section 2.3, more than 99% of computation time was used for
execution of TS when we ran the algorithm using CPU with a single thread (see
Table 3). In the master/slave model in this study, the ACO algorithm is executed
in the CPU as shown in Fig. 5. Let m be number of agents in the archive of
cAS, then we assign m/4 number of solutions to each GPU. When new solutions
are generated in the CPU, first, m/4 number of solutions are transferred to each

180 S. Tsutsui

GPU, then “Apply tabu search(· · ·)” kernel function is lunched to apply the TS
with MATA to these solutions. The improved solutions are send back to the
CPU from each GPU.

Fig. 5. Master/slave model with 4
GPUs

Note here that in practical implementation
of the master/slave model, the value of m
must be divisible by the number 4. So, we as-
signed �m/4� number of agents to each slave
GPU and we used an agents number of m′ =
�m/4� × 4 instead of m.

4 Experiment of Multiple GPUs
in Solving QAPs

4.1 Experimental Setup

The machine is the same as in Section 2.4. We
used 4 GTX 480 GPUs in 4 PCIe slots. We use
the control parameter values shown in Table 1.
We used the same QAP instances described in
Section 2.4.

Table 3. Computation time with
sequential CPU run

Termination criteria are slightly different
from those in Section 2.4. When we perform a
fair comparison of different algorithms, some-
times it is difficult to determine their termi-
nation criteria. In this experiment, we run the algorithms until predetermined
acceptable solutions are obtained and effectiveness of using 4 GPUs is measured
by average time (Tavg,4) to obtained the solutions. We obtain the speedup by
Tavg,1/Tavg,4, where Tavg,1 is average time to obtain acceptable solutions by
ACO using a single GPU configured as described in Section 3. We performed 25
runs for each experiment.

We determined acceptable solutions as follows. For the class (i) instances,
since it is difficult to obtain known optimal solutions 25 times in 25 runs with
reasonable run time, we set the their acceptable solutions to be within 0.5% of
the known optimal solutions. For the class (iv) instances, except tai150b, we set
them to known optimal solutions. We set tai150b to be within 0.2% of the known
optimal solution. We used Iinterval value of 1.

4.2 Results of the Island Models

Results of the island models are summarized in Table 4. The IM INDP is the
simplest of the island models. Thus, we use results of IM INDP as bench marks
for other island models. Except for the results from tai40a, all other island models
had improved speedup values compared to IM INDP. In the table, we showed
the average number of iterations of the ACO to obtain the acceptable solutions
(ITACO). On tai40a, this value is only 1.7. Thus, on this instance, there was no
benefit from immigration operations.

ACO on Multiple GPUs with CUDA for Faster Solution of QAPs 181

The speedup values of IM RING and IM ELIT showed very similar results
with each other. On tai80b and tai150b, we can see super-linear speedup values.
We performed t-test between IM ELIT and IM INDP, showing a clear effect of
using this topology, especially for class (iv) instances. Since we used long-tabu
search length for class (i) instances (see Table 1), values of ITACO are smaller
than those of class (iv) instances. This could have caused the reduced effect of
immigration on class (i) instances, compared with (iv) instances.

Table 4. Results of the island models with 4 GPUs

Among the four is-
land models, IM ELMR
showed the best speedup,
except for tai40a. How-
ever, the t-test between
IM ELIT and IM ELMR
shows that the advantage
of using IM ELMR over
IM RING and IM ELIT
on class (i) instances
again becomes smaller
than on class (iv) in-
stances. The speedup val-
ues are different among
instances. Consider why
these difference occur using IM INDP as a parallel model. Let probability density
function of the run time on a single GPU be represented by f(t) and probability
distribution function of f(t) be F (t). Here, consider an IM INDP with p GPUs.
Let the probability distribution function of run time of the IM INDP with p
GPUs be represented by G(t, p). Since there is no interaction among GPUs in
IM INDP, the G(t, p) can be obtained as

G(p, t) = 1− (1− F (t))p, (2)

and the average run time Tavg,p is obtained as

Tavg,p =

∫ ∞

0

t ·G′(p, t)dt (3)

Table 5. Estimation of Speedup

≤≤=
≤≤−=

≤≤−=

≤= − λλ

Thus, the speedup with p GPUs is ob-
tained as Speedup(p) = Tavg,1/Tavg,p.
Table 5 shows the values of Speedup(p)
and Speedup(4) for assuming various
functions of f(t). This analysis gives us
a good understanding of the results of
IM INDP in Table 4. But for more de-
tail analysis, we need to identify f(t) by
sampling the data of run times.

182 S. Tsutsui

4.3 Results of the Master/Slave Model

Since computation times of TS occupy more than 99% of the algorithm (Table
3), we expected the master/slave model to show good results in the speedup.
However, as shown in Fig. 6, results on the small-size instances in this study
(tai40a, tai50a, tai60a, tai50b, tai60b) showed relatively small speedup values
against the ideal speedup value of 4. In the figure, the Speedup values are defined
in Section 4.1. Results on large-size instances (tai80a, tai100a, tai80b, tai100b
tai150b), the speedup values were nearer to ideal speedup values.

Fig. 6. Results of the master/slave model with 4
GPUs

Now we will analyze why
these results were obtained on
the master/slave model. Fig.
7 shows the average compu-
tation times of tai60a and
tai150b over 10 runs for 10
ACO iterations by changing
the number of agents m from
1 to 150 with step 1. Here,
the ACO algorithm is the mas-
ter/slave model in Section 3.2
with a GPU number setting of 1, and the computation time is normalized by
the time of m = 1. Since the number of MPs of GTX 480 is 15, we can see the
computation times increases nearly 15 interval of m. However, the increasing
times are different between these two instances.

Fig. 7. Computation times for vari-
ous number of agents

On tai60a (n = 60) instance, the differ-
ence of computation times among 1 ≤ m ≤
15, 16 ≤ m ≤30, and 31≤ m ≤45, and
46≤ m ≤60 is very small. In our implemen-
tation of TS on a GPU, we assigned one
thread block to each agent (solution), and
thus number of agents is identical to number
of thread blocks. In CUDA, multiple blocks
are allocated to one MP if computation re-
sources, such as registers, are available. In
the execution of tai60a (n = 60), this situa-
tion occurs and multiple blocks are executed
in parallel in one MP. Since in this experiment, we set m = 60 (:m = n, see Sec-
tion 4.1 and Table 1), the solutions assigned to one slave GPU is only 15. This
means the speedup using the master/slave model becomes very small as was seen
in Fig. 6.

On the other hand, on tai150b (n = 150) instances, computation times pro-
portionally increase according to m with every 15 intervals. This means that on
tai150b, a single thread block is allocated to one MP at the same time, with the
resulting speedup shown in Fig. 6. Note here that on this instances, the number
of agents assigned to one GPU is �150/4� = 37 and the total agent number of
37× 4 = 148 was used in this experiment.

ACO on Multiple GPUs with CUDA for Faster Solution of QAPs 183

5 Conclusion

In a previous paper, we proposed an ACO for solving QAPs on a GPU by com-
bining TS local search in CUDA. There, we implemented an efficient thread
assignment method, MATA. Based on this implementation, in this paper we
implemented the algorithm on multiple GPUs to solve QAPs fast. We imple-
mented two types of models on multiple GPUs; the island model and the the
master/slave model. For these models, we experimented using QAP benchmark
instances, and gave analysis on the results.

As for the island model, we used 4 types of topologies. Although the results
of speedup much depend on the instances we used, we showed that the island
model IM ELMR has a good speedup feature. As for the master/slave model,
we observed reasonable speedups for large-size of instances, where we used large
number of agents.

When we compared the island model and the master/slave model, the island
model showed promising speedup values on class (iv) instances of QAP. On the
other hand, the master/slave model consistently showed promising speedup val-
ues both on classes (i) and (iv) with large-size QAP instances with large number
of agents. As regards to this comparison, a more intensive analytical study is an
interesting future research direction. Implementation using an existing massively
parallel platform such as EASEA [14] is also an interesting future research topic.

References

1. Ryoo, S., Rodrigues, C.I., Stone, S.S., Stratton, J.A., Ueng, S.Z., Baghsorkhi, S.S.,
Mei, W., Hwu, W.: Program optimization carving for GPU computing. J. Parallel
Distrib. Comput. 68(10), 1389–1401 (2008)

2. Bai, H., OuYang, D., Li, X., He, L., Yu, H.: MAX-MIN ant system on GPU with
CUDA. In: Innovative Computing, Information and Control, pp. 801–804 (2009)

3. Fu, J., Zhou, G., Lei, L.: A parallel ant colony optimization algorithm with GPU-
acceleration based on all-in-roulette selection. In: Workshop on Advanced Compu-
tational Intelligence, pp. 260–264 (2010)

4. Delévacqa, A., Delislea, P., Gravelb, M., Krajeckia, M.: Parallel ant colony opti-
mization on graphics processing units. Journal of Parallel and Distributed Com-
puting (in press, 2012)

5. Diego, F., Gómez, E., Ortega-Mier, M., Garćıa-Sánchez, Á.: Parallel CUDA archi-
tecture for solving de VRP with ACO. In: Industrial Engineering and Industrial
Management, pp. 385–393 (2012)

6. Tsutsui, S., Fujimoto, N.: ACO with tabu search on a GPU for solving QAPs
using move-cost adjusted thread assignment. In: GECCO 2011, pp. 1547–1554.
ACM (2011)

7. Burkard, R.E., Çela, E., Karisch, S.E., Rendl, F.: QAPLIB - a quadratic assignment
problem library (2009), www.seas.upenn.edu/qaplib

8. Tsutsui, S.: cAS: Ant Colony Optimization with Cunning Ants. In: Runarsson,
T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.)
PPSN IX. LNCS, vol. 4193, pp. 162–171. Springer, Heidelberg (2006)

9. NVIDIA: (2010), developer.download.nvidia.com/compute/cuda/3 2 prod/

toolkit/docs/CUDA C Programming Guide.pdf

 www.seas.upenn.edu/qaplib

184 S. Tsutsui

10. Taillard, É.: Robust taboo search for quadratic assinment problem. Parallel Com-
puting 17, 443–455 (1991)

11. Taillard, É.: Comparison of iterative searches for the quadratic assignment problem.
Location Science 3(2), 87–105 (1995)

12. Alba, E.: Parallel Metaheuristics: A New Class of Algorithms. John Wiley and
Sons (2005)

13. Cantú-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kuwer Aca-
demic Publishers (2000)

14. Maitre, O., Krüger, F., Querry, S., Lachiche, N., Collet, P.: EASEA: specification
and execution of evolutionary algorithms on GPGPU. Soft Comput. 16(2), 261–279
(2012)

	ACO on Multiple GPUs
with CUDA for Faster Solution of QAPs
	Introduction
	A Review of an ACO on a GPU with MATA and Revised Results
	GPU Computation with CUDA
	ACO with TS on a GPU for Solving QAP
	Move-cost Adjusted Thread Assignment (MATA)
	Revised Results

	Implementation of ACO on Multiple GPUs
	Island Model
	Master/Slave Model

	Experiment of Multiple GPUs in Solving QAPs
	Experimental Setup
	Results of the Island Models
	Results of the Master/Slave Model

	Conclusion
	References

