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Abstract. As is typical of metaheuristic optimization algorithms, par-
ticle swarm optimization is guided solely by the objective function. How-
ever, experience with separable and roughly separable problems suggests
that, for subsets of the decision variables, the use of alternative ‘guide
objectives’ may result in improved performance. This paper describes
how, through the use of such guide objectives, simple problem domain
knowledge may be incorporated into particle swarm optimization and
illustrates how such an approach can be applied to both academic op-
timization problems and a real-world optimization problem from the
domain of petroleum engineering.

1 Introduction

This paper describes a version of particle swarm optimization (PSO) that uses
‘guide objectives’ in addition to the overall objective in order to improve perfor-
mance, in particular when the problem is ‘roughly’ separable. This introduction
briefly describes the real-world problem that motivated this work, in order to give
the reader an idea of what is meant by guide objectives and rough separability.

To be able to make effective decisions regarding the exploitation of an oil
reservoir, it is necessary to create and update reservoir models. Initial models
created using geological knowledge of the reservoir are improved using observa-
tions collected over time, in a process called history matching. This involves the
adjustment of a reservoir model so that, when simulation software is applied,
the simulated behaviour is similar to that observed in the real world. This can
be posed as an optimization problem, minimizing a measure of misfit.

While we would like to automate the history matching process, incorporating
reservoir experts’ extensive domain knowledge into metaheuristic optimization
algorithms in a generally applicable way has proved difficult. The avenue of
research explored in this paper starts with the realization that, given a suitable
model parameterization, certain model parameters will affect certain components
of the misfit function to a greater degree than others. Indeed, if the reservoir
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consists of distinct regions with little inter-region communication and if the
model parameters describe regional features then the history matching problem
may be (roughly) separated into a number of smaller, regional subproblems. This
suggests that, given a suitable subset of model parameters, it may be possible
to select a subset of the misfit components to create a guide objective for these
parameters. We will show that, when using PSO, these guide objectives may be
used in combination with the overall objective in a single optimization run.

In Sect. 2] we describe how metaheuristics perform when applied naively to
separable problems and define more precisely what we mean by ‘roughly separa-
ble’ and ‘guide objective’. Section Bl describes basic PSO, while Sect. @ describes
how PSO may be modified to exploit guide objectives, producing the guide objec-
tive assisted PSO algorithm (GuPSO). Results on simple function optimization
problems are provided in Sect. Bl

In Sect. [ reservoir history matching is described in more detail, including a
description of the PUNQ-S3 case study used in this paper. Application of GuPSO
to this problem and results obtained are described in Sect. [{l Finally, Sect. §
presents conclusions and a discussion of potential areas of further research.

2 Optimization and Separable Problems

Consider the minimization of f(z,y), where z and y can take any of a thousand
values and nothing is known a priori about f. To guarantee finding the optimal
solution one must evaluate all one million solutions. However, if it is known that
f(z,y) = g(z) + h(y) then the optimal solution can be found in two thousand
evaluations by first optimizing the choice of x and then optimizing the choice
of y. Now suppose a metaheuristic is naively applied to the minimization of f.
A solution with the optimal value of x may be evaluated early in the search,
but if it is coupled with a poor choice for y its significance will be missed.
Clearly, knowledge of the problem’s separability should be exploited to improve
performance, typically by optimizing g(z) and h(y) separately.

Note that x and y may be vectors representing subsets of the decision vari-
ables. Also, it may not be obvious when this approach may be used. Suppose we
wish to minimize f(x,y) = x* + 22%y% + y*. We may not separate the problem
directly, but we note that f(x,y) = (x2 + y2)2 and that, since 22 + y2? > 0, this
is equivalent to minimizing 22 + y2 — a clearly separable problem.

Now suppose we wish to minimize f(z,y) = z* + 22%y% + y* + ex3y, where € is
small. The problem may no longer be separated as above. However, the additional
term may have limited impact on the quality of solutions: the problem may be
thought of as being roughly separable. Minimizing g(z) = z? and h(y) = y?
separately still leads to good values for f(z,y). Therefore it makes sense to start
the search by minimizing ¢g(z) and h(y), rapidly finding a near optimal solution,
before improving the result by optimizing f directly if desired.

In what follows, we will describe g(z) and h(y) as the guide objectives for
x and y. These objectives are used to guide our search for good values for x
and y and aid in the optimization of f(x,y). So when minimizing f(z,y) =
ot 4 22%y? + y(+exdy), we use g(z) = 2?2 and h(y) = y? as guide objectives.
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3 Particle Swarm Optimization

To describe GuPSO we must first describe the basic PSO algorithm. PSO [7] is
motivated by the collective behaviour of animals, such as the flocking of birds or
swarming of bees. However, instead of a swarm of bees searching for a good source
of nectar, PSO uses a swarm of particles moving through a multidimensional
search space towards better quality solutions.

Each particle in the swarm has a position and a velocity, initialized at random.
In each iteration of PSO, the velocity of each particle is adjusted by applying an
acceleration towards the best solution visited by the particle in question and an
acceleration towards the best solution visited by the swarm. The position is then
adjusted according to the particle’s velocity. In detail, if z;; is the jth component
of the position of particle ¢ and v;; is the jth component of its velocity, then
these are updated as follows:

vij = woij +ory (pig — i) + Pra (g5 — i) (1)
Vij < min (Uij7 Vmax,j) s
v < max (Vij, —Vmax,j)
Tij < Ty + V5 -

Here w is the inertia weight, o and 8 control the amount of acceleration towards
the particle’s personal best and the global best solutions, 1 and ry are randomly
generated numbers between 0 and 1, p;; is the jth component of the best solution
visited by particle ¢ and g; is the jth component of the best solution visited by
the swarm. Vinax,; is the maximum velocity permitted in dimension j. Values for

w, a and [ are supplied by the user.
PSO may also use methods for ensuring that decision variables remain within
their permitted bounds. In this paper we apply reflection with random damping.

However, since boundary handling is unaffected by the use of guide objectives,
we do not provide details but refer the reader to the PSO literature.

4 PSO and Guide Objectives

Now suppose we wish to apply PSO to a separable problem, for example the
minimization of f(x1,x2,x3,24) = f1(z1) + fo(x2,x3,24). We have suggested
above that two separate optimizations should take place — the minimization
of f1 and the minimization of fo. However, both these optimizations can be
performed concurrently by adjusting the velocity update formula as follows:

Vij € WV + ary (pg) — l‘ij) + ﬁ?‘g (g](»j) — xij) . (2)

Here g\9) represents the best solution visited by the swarm according to the guide
objective for the jth variable, while pgj ) is the best solution visited by particle
1 according to the guide objective for variable j. f; acts as the guide objective
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for 1 while f acts as the guide objective for zo, x3 and x4. Notice how this
separates the optimization so that values taken by zo, x3 and x4 have no affect
on the choices for variable x; - the evolution of x; depends only on the values
taken by its guide objective f;, which is unaffected by the other parameters.

Merging two independent optimizations into a single run in this manner
does not produce any immediate benefits in the case of separable problems.
The advantage of the approach is that it allows for both guide objectives and
the true objective to be used when the problem is only roughly separable,
via the combination of update formulae () and () as follows:

vij = wogg+ary (pi — i) +Br2 (g5 — i) +73 (pﬁj) - xij) +0ry (g](»” - xij)

®3)
The selection of appropriate values for «, 8, v and ¢ allows the influence of
the guide objectives on the search to be controlled. By changing the values of
these parameters during the search, the algorithm may start by using only the
guide objectives, but become increasingly influenced by the true objective until
finally it behaves like standard PSO. This approach may be effective for roughly
separable problems, where guide objectives are used to rapidly finding good
solutions but where the final refinements can only be made with reference to the
true objective. The resultant algorithm is Guided PSO or GuPSO.

5 Illustrative Results on Academic Problems

The operation of GuPSO on separable or roughly separable problems is best
illustrated on academic problems. In this section the objective is always min-
imized and variables are constrained to lie between -10 and 10. We focus on
variations of two functions: the multimodal function of Kvasnika et al. [§] and
Rosenbrock’s function [I3]. The first of these is totally separable and is given by

n

fl (1'171'27...,5Un) :Zg(‘rz) 3

i=1
g (x) =0.993851231 + 0017 gin (10x) cos (8x)

f1 is used as our first test function, with n = 20 and an evaluation limit of
50,000. The guide objective for each variable, x;, is simply g (x;).
Rosenbrock’s function, given by

n—1

2

r(z1,22,..., &) = [(1—xi)2+100 (Tis1 — 27) }
1

i

is inseparable. Our second test function is created by splitting fifty decision vari-
ables into ten equal sized blocks, summing 10 five variable Rosenbrock functions:

10

fQ (1‘171‘2, .. .71‘50) = ZT (x5j_4, .. .,Z‘5j)

=1
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Fig. 1. The highly multimodal function g (x)

A limit of 500,000 evaluations is imposed. The guide objective for each variable
is simply the Rosenbrock function to which the variable makes a contribution.
A third test function combines f; with a twenty variable Rosenbrock function:

f3 (3?1,.’1?2, .. .,1}20) = f1 (3?1,.’1?2, .. .,1‘20) + 0.001A (1,‘1,1,‘2, ... ,xgo) .

The result can be thought of as being roughly separable. An evaluation limit of
50,000 is imposed. The guide objective for z; is simply g (x;), i.e. the contribution
of the Rosenbrock function is ignored.

Experiments using the parameter values in table [I] were performed for each
problem. Parameters «, 8, v and § in ([B]) were set as follows:

a=B=(1-XNA, y=5=AA . (4)

Here )\ indicates the degree to which the guide objectives were used in preference
to the overall objective. For the two separable functions, A took the values 0 or
1. For f3, values of 0, 0.2, 0.5, 0.8 and 1 were tried for A. Experiments were also
performed with A decreasing linearly from 1.0 to 0.0 over the course of each run.

For each value of A, thirty runs were performed for every combination of the
remaining parameters, in order to find the best values. Thirty runs were then
repeated using the best parameter set, allowing for a fair comparison between
PSO (A =0) and GuPSO. Results are summarized in Table 21

It is clear that, on the two separable problems, use of the guide objectives pro-
duces significantly better results. Indeed for fi, using guide objectives resulted
in the global optimum being found in all 30 runs, while it was never found us-
ing the true objective. However, as has been noted, identical results could be
achieved by separating the problem into 20 sub-problems and optimizing each
individually using standard PSO.

Table 1. Parameter values

Parameter Values

Swarm size 10, 20, 50, 100

Inertia weight  0.75, 0.8, 0.85, 0.9, 0.95, 1.0
Acceleration (A4) 0.5, 0.8, 1.0, 2.0
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Table 2. Comparison of performance using just the true objective against using just
the guide objectives. Figures in brackets indicate 95% confidence intervals.

Problem True objective (A = 0) Guide objectives (A = 1)

f 3.535 (3.190 — 3.880) 1.138 x 1077 (1.138 x 1077 — 1.138 x 107?)
fo 14.05 (12.06 — 16.03) 1.703 (0.785 — 2.622)
f3 5.467 (4.939 — 5.996) 3.696 (3.687 — 3.707)

Results for f3 also show significant improvements when using the guide objec-
tives. However, the best results were only obtained when both guide objectives
and the true objective were used to guide the search, as shown in Fig.
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Fig. 2. Results for the third test function. Results obtained using just the true objective
are of considerably poorer quality than those shown and are omitted to improve clarity.
Error bars show the 95% confidence intervals.

6 The History Matching Problem

History matching, or petroleum reservoir model calibration, is the process of
modifying a reservoir model so as to produce simulated outputs that closely
match pressure, production and saturation data collected from a real world reser-
voir. Model parameters that may be modified include rock porosity, vertical and
horizontal permeability, pore volume and aquifer volume. The reservoir is divided
into regions or layers within which these factors can be assumed to be approxi-
mately constant. The location of the boundary between such regions may also be
considered a modifiable model parameter. Furthermore, it may be appropriate
to adjust various multipliers, rather than the physical characteristics directly.

The objective function is a measure of misfit. Although this paper focuses
primarily on simply minimizing misfit, it is useful to obtain a range of different,
low misfit models. The resulting ensemble of reservoir models can then be used
not only to predict future output, but also to estimate the uncertainty of the
prediction — a process known as uncertainty quantification.

A number of metaheuristics have been applied to the history matching prob-
lem, including simulated annealing [I4], tabu search [I5], genetic algorithms
[12I5], estimation of distribution algorithms [11/3[2] and differential evolution
[6]. Recent work has also suggested that PSO may be effectively applied to this
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Fig. 3. The depth of reservoir rock and well locations in PUNQ-S3

problem [910]. This and the relative ease with which guide objectives may be
incorporated provides the motivation for our use of PSO.

6.1 PUNQ-S3

We apply GuPSO to the history matching of the PUNQ-S3 reservoir [I] — a
small industrial reservoir engineering model, adapted from a real field example
and widely used for performance studies of history matching algorithms.

Problem: The simulation model contains 2660 (19x28x5) grid blocks, of which
1761 are active, and 6 production wells, numbered 1, 4, 5, 11, 12, and 15. The
field is structurally bounded to the east and south by a fault, as shown in Fig. 3]
while the link to a strong aquifer to the north and west means that no injection
wells are required. The field initially has a small gas cap at the center of the
structure, and production wells are located around this gas cap.

Porosity and permeability fields for the ‘truth case’ were generated using a
Gaussian Random Fields model in such a way as to be, as much as possible, con-
sistent with the geological model. The reservoir model was completed by using
pressure, volume, temperature and aquifer data from the original model. Reser-
voir simulation was then used to generate production data (bottom-hole pressure



202 A.P. Reynolds et al.

BHP, water cut WCT and gas oil ratio GOR), after which Gaussian noise was
added to the well porosities/permeabilities and the synthetic production data to
account for measurement error. (For further details see [I].)

Model Parameters and Objective: In this paper we use the parameteriza-
tion of Hajizadeh et al. [6], with distinct porosity values in each of 9 homogeneous
regions (labelled A to I) per layer for 5 layers, resulting in 45 model parameters.
Parameter ranges and other details can be found in [6].

The objective function, to be minimized [4] is

N. Np 2
1 <1 Oij — Sij
- N, Z N, Z K ( Oij
j=1 =1

where ¢ runs over the time points at which observations are made, j indicates
which of the 18 observations (BHP, WCT and GOR at each of the 6 wells) is
being referred to, O;; is the truth case value of observation j at time 7, S;; is the
simulated value, o;; reflects the measurement error and W;; is a weight factor.

7 Application to PUNQ-S3

Given a set of porosity parameters for a region, the wells that are primarily
affected by these parameters and only marginally affected by the others may be
selected. The misfit components for these wells then form the guide objective for
these model parameters, as indicated in table

Table 3. Guide objectives for PUNQ-S3 were taken to be the misfit over the set of
wells most affected by model parameter in question

Region A B C D E F G H I
Guide wells 5 5, 125,125,124, 5,121, 4, 151, 4, 11, 15 1, 11, 15 1, 11

Despite the cost of solution evaluation, the basic PSO was tuned by experi-
menting with a range of swarm sizes (10, 20 and 50) and inertia weights (0.8,
0.85, 0.9, 0.95 and 1). The acceleration parameter A (and hence a and § in
basic PSO) was set to one. For each combination of parameters, 30 runs were
performed, of 3000 solution evaluations each. The PSO results that are compared
with GuPSO in this paper were then obtained by performing additional runs of
3000 evaluations and 1000 evaluations with the best parameter combination.

Results for GuPSO were obtained using the best parameter set found for PSO,
with the exception that «, 5, v and ¢ were set according to (@] using a range of
values for A. It can be seen from the results in Fig. @l that GuPSO outperforms
standard PSO, particularly in shorter runs.
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Fig. 4. GuPSO performance for different values of A\ after 3000 and 1000 solution
evaluations, averaged over 30 runs. Standard PSO is provided by setting A to 0, while
the last bar gives the results obtained by allowing X to vary from 1 (guide objectives
only) to 0 (true objective only) linearly over the course of the search.

8 Conclusions and Further Research

We have presented a modification to PSO whereby guide objectives are utilized
in order to improve algorithm performance. The resulting algorithm has been
shown to produce improved performance on some simple separable and roughly
separable problems. More importantly, GuPSO outperforms standard PSO on a
real-world reservoir history matching problem.

There are a number of areas of possible future research.

Other sources of guide objectives: Much of this paper assumes that guide
objectives are found via the rough separability of the problem. However, any
alternative objective that provides a better guide for the improvement of
decision variables than the true objective could be used in this approach.

Multiple guide objectives: The approach need not be limited to a single
guide objective for each decision variable. Multiple guide objectives may be
used, either at different points in the search or through further modification
of the velocity update formula.

Forgetfulness: History matching problems may be roughly separable, with the
exception of one or two model parameters that affect the entire reservoir.
GuPSO may remember a best solution for one guide objective that depends
upon old, long discarded values for the ‘global’ parameters. It may be useful
to allow GuPSO to ‘forget’ such solutions.

Other applications: In particular, GuPSO may be an appropriate approach
to reservoir development optimization. When locating new wells, predicted
oil recovery from the well should make a suitable guide objective for the well
location. However, since placement of each well affects the output of both
old wells and the other new wells, the problem is only roughly separable.
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