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Abstract. Collective behavior of herding animals displays a balance
between conservative cohesive forces and "‘innovation"’, or moving to-
wards a goal, as described by Couzin in 2005 (2005). We have given these
forces a quantitative mathematical form that is amenable to numerical
simulation. The simulations described herein reproduce the phenomena
that Couzin observed and indicate that a nearly 5 per cent critical mass
is sufficient to pull the whole population along, but smaller innovative
teams fail to attract a substantial following. The resulting non-linear dy-
namic equations have been applied also to modeling of financial market
dynamics, where they are seen to produce financial catastrophes by in-
ternal population dynamics alone, without any need for external forcing.
The equations can thereby also be interpreted as a model of John May-
nard Keynes’ Animal Spirits (1936) that are often evoked to describe
market psychology.

1 Introduction

Animal behaviour in schools, swarms, herds, etc. have always been puzzling even
for biologists, who study their habits on a daily basis. For a long time scientists
were convinced that direction of, for example, a flock of birds cruising the sky
is driven by a single leader in front. But Couzin et al. (2005) showed through
numerical simulations that it has to be at least 5% of the total population heading
in a specific direction to pull the whole group behind them. That same fact was
verified two years later empirically during a big experiment in Cologne by Krause
and Dyer (see Mob mentality, 2009). There, a group of 200 people was told to
move freely around a large space, 400 by 230 feet, though without communicating
with each other and just staying close to their neighbors. After some time the
groups tended to move in two concentric circles rotating in opposite direction.
Then a small subgroup of all was told to head in a specific direction and it
appeared that still 2.5% did not influence the whole population movement, but
5% did interfere the circular motion, causing the main group follow in the same
direction.

This very idea has inspired a recent study in financial market modeling by
Jabłońska (2011) and Jabłońska and Kauranne (2011) where the connections of
the models of interest with the Keynes’ animal spirits were widely discussed.
In those works, a one-dimensional model of population dynamics was used to
simulate the behavior of an ensemble of traders in electricity spot markets. Their
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results have shown that if a sufficiently big subgroup of the whole population was
bidding far enough from the mean level, the others would follow that direction
and skyrocket the price to the level a dozen times higher than the mean.

As the aforementioned model shows interesting properties, the aim of this
work is to implement and analyze the same model in two dimensions for simu-
lating dynamics of a group of individuals. The model is formed as a system of
coupled stochastic differential equations, each representing one individual in the
population. As such, most of the individuals have no intelligence of where they
are heading. They only follow interactions within the whole group. However,
a small subgroup is given a deterministic movement path, and the simulations
verify what has to be the size of that escaping group to pull the other population
members with them.

This article is structured as follows. Section 2 presents the family of population
dynamics models being the background of the final model. Section 3 describes
in detail the components of the final model and their physical and psychological
interpretation. In Section 4, numerical simulations are presented for different
model settings. Finally, Section 5 concludes and gives ideas for future work.

2 Population Spatial Dynamics

The aim of this study is to verify whether a specific population dynamics model
can reproduce the natural fact that 5% of a population can pull the whole group
towards a specific direction. This work presents an extended implementation of a
model proposed by Jabłońska (2011) and Jabłońska and Kauranne (2011), which
was then successfully used for simulation of electricity spot price behaviour. The
model is based on the Capasso-Bianchi system of stochastic differential equations
in a general form (1), used for modelling animal population dynamics by Morale
et al. (2005) or price herding by Bianchi et al. (2003) and Capasso et al. (2005).
In this approach, Xk are continuous stochastic processes representing movement
of each particle k in the total population of N individuals, based on the location
of each individual with respect to the whole population f(Xk

t ), as well as on
its local interaction with the closest neighbors h(k,Xt). Also, dW k represents
randomness in the model through Wiener process increments, with volatility
parameter σ.

dXk
N (t) = [f(Xk

t ) + h(k,Xt)]dt + σdW k(t), for k = 1, . . . , N. (1)

Jabłońska (2011) and Jabłońska and Kauranne (2011) extended this model with
a Burgers’-type momentum component which catered for momentum in financial
markets, and implemented it for one-dimensional price dynamics of an ensemble
of traders. The referred model is presented in detail in Section 3 in Equations
(2)-(4).

The following study presents a two-dimensional version of this model which,
with suitable parameter values, can be used for simulating behaviours of large
populations of individuals.
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3 Model Formulation

This section presents in detail the model proposed in this study, as well as
numerical simulations with different model parameter values. This work is based
on the Capasso-Morale approach mentioned in Section 2. Each individual in
the population is followed separately; together they form a system of coupled
stochastic differential equations. The structure of each equation is the same and
it is related to the main idea of an Ornstein-Uhlenbeck mean reverting process.
However, the single constant mean reversion level is replaced by three individual
components, each standing for a specific type of force acting on the population
as a whole, and on its individuals separately.

The main components of the proposed model are:

Global mean: the whole population is expected to oscillate around its (mov-
ing) center of mass X∗

t ; this is related to the aggregation forces proposed by
Morale et al. (2005). This component stands for the herding phenomenon,
that is the willingness of the individuals to stay within a bigger group.

Momentum: in particular, the momentum effect h(k,Xt) should occur when
a sufficiently big subgroup of the whole population has significantly differ-
ent behavior (external information) that deviates from the total population
mean. This has been noticed in studies by Couzin et al. (2005).

Local interaction: each individual in the population can perceive its neighbors
up to a limited extent, which seems natural especially for big populations.
Therefore, each population member will follow g(k,Xt), that is the furthest
neighbor within a range that caters for the closest p% of the whole popu-
lation. This will allow the emergence of a proper repulsion force and avoid
overcrowding in any point in space. Also, individuals are deemed to follow the
farthest units of their neighborhood, thinking that those have some distinct
information in the ’big picture’ and, therefore, are far for a good reason.

Randomness: each individual’s move includes a Wiener increment to allow
randomness in the system.

Hence, the model is defined as Equation (2)

dXk
t = [γ(X∗

t − Xk
t ) + θ(h(k,Xt) − Xk

t ) + ξ(g(k,Xt) − Xk
t )]dt + σtdWk

t (2)

where
h(k,Xt) = M(Xt) · [E(Xt) − M(Xt)] (3)

having M(X) stand for the mode of a random variable X and E(X) being a
classical expected value. Also,

g(k,Xt) = max
k∈I

{Xk
t − Xt}, where I = {k|Xk∈Nk

p%
} (4)

where Xk are continuous stochastic processes representing movement of each
particle, Nk

p% means the neighborhood of the k-th individual formed by the clos-
est p% of the population. X∗

t stands for the mean of the whole population at time
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t, and parameters γ, θ and ξ are the forces with which each of the interactions
takes place. In the original model by Jabłońska (2011) and Jabłońska and Kau-
ranne (2011) these forces are allowed to vary in time, but in this work they are
kept constant for simplicity. Also, this work extends previous implementation to
the two-dimensional case.

4 Numerical Simulations

4.1 Model Parameters

As mentioned before, some of the model parameters are fixed for simplicity and,
as there is no real life data available for calibration, they are chosen determin-
istically. The values are γ = 0.05 for the global mass center rate, θ = 10−5 for
the momentum component and ξ = 0.9 for the strength of the local interaction.
The percent for the range of the local interaction is chosen to be equal to the
size of the escape group.

With the aforementioned parameter values, the model simulation will follow
the movement of a total population of N = 200 individuals. Most of them
will move only through model dynamics, with initial locations generated from
a two-dimensional uniform distribution U2(−4h, 4h), where h = 0.05 is also
used as a grid step factor for finding the mode of the population at every time
step. That means that the grid for which we find the population mode (the
location of the spatially most concentrated individuals) is recomputed at each
time step with respect to total population spread. This two-dimensional world
is representing the usual XY plane with Euclidean distance measure. In the
following experiments there are no boundaries given for the plane. That means
that the individuals are allowed to "escape" far away from the initial point if
the system dynamics cause so.

4.2 Simulation Results

First, the simulation demonstrates the aggregative power of the model, which
is apparent even when γ = 0. The individuals, originally uniformly distributed,
quickly cluster into a few compact groups which then follow their own dynamics
as presented in Figure 1. As a small subgroup (5%) of individuals moves in
a deterministic way, one of the aggregated groups join them, and follow the
deterministic path. Whenever any two groups get close enough to one another,
they may merge. In the plots, D denotes the Euclidean distance between the
centers of mass of the subgroup and the remaining population.

In the next simulation the size of the subpopulation, also called the escape
group, is kept at the same 5% level. However, the global center of mass rate is set
to γ = 0.05, and the escape group is now moving along a circle. As presented in
Figure 2, the main stream of the population can easily follow the escape group,
keeping the distance between their mass centers at a low level, that is, it remains
smaller than the population radius. That is confirmed on the distance plot in
Figure 3.
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Fig. 1. Progress of particle movement with 5% of the population moving in a deter-
ministic way and non-active center of mass attraction

Simulations have shown that any escape size bigger than 5% produces similar
results, always keeping both groups close and well aggregated. However, if this
value is decreased, the main stream of the population starts having trouble to
keep close to the escape group, not even holding the distance constant. This is
evident for the escape size of 4%, as depicted in Figures 4 and 5 for the path
shapes and the distance plot, respectively. Apparently, the main population gets
off the escape group course as the individuals try to cut the way short and catch
the subgroup, but even that barely slows down the increase of the distance
between the mass centers. Also, the 4% fails to attract even a single member of
the main stream to their neighborhood, as opposite to the case from Figure 1.

To verify the threshold at which the main stream of the population has the
probability to remain merged with the escape group equal to 1 we run the simula-
tions multiple times for different population percent size with parameter popperc
= {0.04,0.0405,...,0.05}, and verify how often the subgroup detaches from
the whole population. With the total population size set now to N = 2000, for
each subpopulation size the simulation is repeated 30 times (independent simula-
tions). Then the distance between the groups is measured. Figure 6 presents the
results, showing that the value of popperc = 0.0485 is the threshold from which
onwards the main stream will always remain in contact with the escape group.
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Fig. 2. Progress of particle movement with 5% of the population moving in a deter-
ministic way and active center of mass attraction

1000 2000 3000 4000 5000 6000
0

0.1

0.2

0.3

0.4

Distance between centres of mass for Population=200, Escape =5%

di
st

an
ce

 D

time steps

Fig. 3. Distance between the centers of mass of the escape group and the main stream
with 5% of the population moving in a deterministic way and active center of mass
attraction

The multiple runs allow us to make a rough approximation of probability
of the main stream to remain merged with the escape group with respect to
different subgroup sizes. As depicted in Figure 7, the probability is dramatically
low for 4%, then stays moderate for most of the range, and reaches almost 1 at
4.8%, and 1 at 4.85%.

Finally, once again the global mass center attraction parameter is set to zero,
to verify what percent size would suffice to hold the whole population compact
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Fig. 4. Progress of particle movement with 4% of the population moving in a deter-
ministic way and active center of mass attraction
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Fig. 5. Distance between the centers of mass of the escape group and the main stream
with 4% of the population moving in a deterministic way and active center of mass
attraction

when following the escape group. It appears, that there are two clear thresholds.
At the level of 9% the probability of the whole population remaining as one
group increases significantly from an average below 0.2 to an average of over
0.7, as presented in Figure 8. However, it is the subgroup size of 9.75% that
guarantees the population remain merged with the escape group with probability
1. Otherwise, as presented in Figure 9 for the case of 8%, most of the the main
stream of the population may loose interest in the subgroup after some time, and
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Fig. 7. Probability of the main stream to remain merged with the escape group with
respect to different subgroup sizes, with active center of mass attraction
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Fig. 8. Probability of the main stream to remain merged with the escape group with
respect to different subgroup sizes, with active center of mass attraction

continue its movement only with respect to its own internal dynamics. However,
some of the main stream particles stay attracted to the escape group, which is
not the case in Figure 4 for the 4% subpopulation, even with the center of mass
attraction active in the latter case.
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Fig. 9. Progress of particle movement with 8% of the population moving in a deter-
ministic way and non-active center of mass attraction

The above results are also valid with other values of model parameters. The
changes in strengths of particular interaction have mainly influence on the inner
dynamics of the main stream, that is, on its spatial density and distribution.

The model seems to be a good interpretation of the Keynes’ animal spirits.
Though not set up in financial reality, it shows well how the forces of confi-
dence in ones own knowledge and trust in somebody’s else information can form
population dynamics which can and already has been transferred to financial
modelling as well.

5 Conclusions

This study presented a two dimensional implementation of a population dynam-
ics model proposed by Jabłońska (2011) and Jabłońska and Kauranne (2011).
This approach stemming from a combination of fluid dynamics and animal spa-
tial dynamics was used previously in modelling financial time series. In this
work it was used to analyze behavior of individuals on a two-dimensional plane,
when a specific subgroup of the whole population heads in a deterministically
set direction, while the remaining part follows only its internal dynamics.
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The results have shown that which particular model setting the value of 4.85%
for the size of the escaping subgroup is a minimum necessary to pull the rest of
the population in the same direction and let it stay close to the subgroup. Any
smaller size may influence the movement of the whole population, but is not
sufficient to attract the individuals to stay constantly close to the escape. This
leads to conclusion that, as the model is able to reproduce the natural behaviour
of biological organisms (Mob mentality, 2009), then it may be appropriate to be
used as a basis for modelling animal behaviour in more complicated settings.

One suggestion for future work is to analyze the population movement when
closed in a bounded space, or having obstacles on the way. Moreover, it would
be interesting to see the model’s performance in a prey-predator setting, that is
when the total population would contain two main subpopulations: preys and
predators, whose aggregation and repulsion forces would be defined through
their biological interactions. The model should also be continuously revised for
its financial modelling applications.
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