
A Parallel Cooperative Co-evolutionary Genetic
Algorithm for the Composite SaaS Placement

Problem in Cloud Computing

Maolin Tang and Zeratul Izzah Mohd Yusoh

Queensland University of Technology,
2 George Street, Brisbane, QLD 4001, Australia

Abstract. A composite SaaS (Software as a Service) is a software that
is comprised of several software components and data components. The
composite SaaS placement problem is to determine where each of the
components should be deployed in a cloud computing environment such
that the performance of the composite SaaS is optimal. From the com-
putational point of view, the composite SaaS placement problem is a
large-scale combinatorial optimization problem. Thus, an Iterative Coop-
erative Co-evolutionary Genetic Algorithm (ICCGA) was proposed. The
ICCGA can find reasonable quality of solutions. However, its computa-
tion time is noticeably slow. Aiming at improving the computation time,
we propose an unsynchronized Parallel Cooperative Co-evolutionary Ge-
netic Algorithm (PCCGA) in this paper. Experimental results have
shown that the PCCGA not only has quicker computation time, but
also generates better quality of solutions than the ICCGA.

1 Introduction

Cloud computing is a new computing paradigm in which all the resources are
provided to users as a service over the Internet [1]. According to Gartner, one
of the world’s leading information technology research and advisory company,
by 2014 the cloud computing services revenue is expected to reach 148.8 billion
dollars [2]. Software as a Service (SaaS) is one of the most important configurable
computing services in cloud computing [3]. It uses a software distribution model
in which software is hosted by a SaaS vendor in the cloud and made it available to
users as a service over the Internet. SaaS in cloud computing has three distinct
characteristics that differentiate itself from a traditional on-premise software.
First, it is sold on demand, typically by pay per use. Second, it is elastic - a user
can have as much or as little of the service as they want at any given time. Third,
the software that provides the service is fully managed by the SaaS vendor. These
features allow users to obtain the same benefits of on-premise software without
the associated complexity of installation, management, support, licensing, and
high initial cost, and therefore make SaaS in cloud computing so compelling.

A composite SaaS is a kind of SaaS that is developed using component-based
software development technologies. It usually consists of several software compo-
nents and data components, such as databases. The composite SaaS placement

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part II, LNCS 7492, pp. 225–234, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

226 M. Tang and Z.I.M. Yusoh

problem is to place those software components and data components on those
compute servers and storage servers, respectively, in the cloud such that the
performance of the composite SaaS is optimal. The problem is similar to the
task assignment problem and the terminal assignment problems addressed in
[7,6]. However, the composite SaaS placement problem is more challenging than
the task assignment problem as it has more constraints. For example, a software
component can be only placed on a compute server and the compute server must
meet the CPU and memory requirements of the software component. Thus, the
algorithms for the task assignment and the terminal assignment problem cannot
be immediately applied to solve the composite SaaS placement problem.

From the computational point of view, the composite SaaS placement is a
large-scale combinatorial optimization problem as a cloud may contain thou-
sands of compute severs and storage servers, and a composite SaaS may have
dozens of components. Thus, a Penalty-based Genetic Algorithm (PGA) was
initially developed [8]. In order to improve the quality of solutions, an Iterative
Cooperative Co-evolutionary Genetic Algorithm (ICCGA) was then developed
[9]. Experimental results showed that the ICCGA can produce better solutions
than the PGA. However, the computation time of the ICCGA was noticeably
slow. In order to improve the computation time, this paper presents a Parallel
Cooperative Co-evolutionary Genetic Algorithm (PCCGA). The PCCGA has
been implemented and tested. Experimental results have shown that the PC-
CGA not only has quicker computation time, but also produces better solutions,
than the ICCGA. In addition, experimental results have shown that the PCCGA
has better scalability than the ICCGA.

The remaining paper is organized as follows. Section 2 formulates the com-
posite SaaS placement problem. Section 3 proposes a PCCGA model and entails
the PCCGA. Section 4 evaluates the PCCGA. Finally, section 5 concludes this
research work.

2 Problem Formulation

Let C = {c1, c2, · · · , cm} be the entire set of m compute servers and S =
{s1, s2, · · · , sn} be the complete set of n storage servers in a cloud comput-
ing environment. The compute servers and storage servers are interconnected
through a set of communication links E. The servers and the communication
links together form a cloud communication network. A cloud communication
network can be modeled in a graph G =< V, E >, where V = C ∪ S, and if
< vi, vj >∈ E if and only if there exists a communication link between vi and
vj and vi, vj ∈ V .

A composite SaaS, X , consists of a set of software components SC = {sc1, sc2,
· · · , scp} and a set of data components SS = {ss1, ss2, · · · , ssq}, where p is the
number of software components and q the number of data components in X . The
control dependencies and data dependencies between those software components
are stored in sets CD and DD, respectively.

A SaaS component has a CPU requirement and a memory requirement. A com-
pute server has a CPU capacity and a memory capacity. A software component

A Parallel Cooperative Co-evolutionary Genetic Algorithm 227

sci =< sccpu
i , scmem

i > can be deployed on a compute server cj =< ccpu
j , cmem

j >
only when the compute serve cj can meet both the CPU and memory require-
ments of the software component sci, that is sccpu

i ≤ ccpu
j and scmem

i ≤ cmem
j ,

where 1 ≤ i ≤ p and 1 ≤ j ≤ m.
Similarly, a data component has a space requirement and a storage server has

a space capacity. A data component sdi =< sdspace
i > can be placed on a storage

server sj =< sspace
j > only when the storage server has enough room to hold the

data component sdi, that is sdspace
i ≤ sspace

j , where 1 ≤ i ≤ q and 1 ≤ j ≤ n.
Given a composite SaaS X =< SC, SS, CD, DD > and a cloud computing

communication network G =< C ∪S, E >, the composite SaaS placement prob-
lem is to find f1 : SC → C and f2 : SS → S such that the performance of the
composite SaaS is optimal measured by the Estimated Execution Time of the
composite SaaS, which is derived in [9].

3 Parallel Cooperative Co-evolutionary Genetic
Algorithm

This section presents an unsynchronized parallel computation model and de-
scribes the algorithm of the PCCGA.

3.1 Parallel Model

The parallel model based on which the PCCGA is developed is derived from
a cooperative co-evolution model proposed by Potter and de Jong [10]. In the
cooperative co-evolution model, a problem is divided into several interacting
subproblems. For each of the subproblems, an evolutionary algorithm, such as
genetic algorithm, is used to solve it independently, and the multiple subproblems
are solved concurrently using multiple independent evolutionary algorithms. The
interaction between the evolutionary algorithms occurs only when evaluating
the fitness value of an individual in the population of an evolutionary algorithm
as the individual is only part of the solution to the problem in the domain
and therefore in order to evaluate its fitness the PCCGA needs to combine the
individual with a representative from each of the other evolutionary algorithms
to form a complete solution. An individual is rewarded when it works well with
the representative from the other evolutionary algorithms and is punished when
it does not work well with the representative.

Based on the cooperative co-evolutionary model, we developed an unsynchro-
nized parallel model as shown in Fig. 1. In the parallel model, we decompose
the computation into two unsynchronized and parallel sub-computations. One of
the sub-computations is the placement of the software components; another the
placement of the data components. For each of the sub-computations, we use a
genetic algorithm (GA) to solve it. The communication between the two GAs is
asynchronous through a buffer. The buffer has two units. One unit keeps the best
solution from the software component placement sub-computation; the other the
best solution from the the data component placement sub-computation. At the

228 M. Tang and Z.I.M. Yusoh

Domain
Model

GA

individual fitness

Domain
Model

GA

individual fitness

Buffer

SaaS component
subpopulation

SaaS data chunk
subpopulation

Fig. 1. Parallel Cooperative Co-evolutionary Genetic Algorithm Model

end of each generation, the GAs update their best solution in the buffer. Since
the two GAs are not synchronized, one GA may update its best solution in the
buffer more frequently than the other during the computation.

3.2 Algorithm Descriptions

The PCCGA invokes a classical GA for the software component placement prob-
lem and a classical GA for the data component placement problem. Thus, before
giving the algorithm description of the PCCGA, we present the two classical
GAs. The encoding scheme and genetic operators used in the GAs are the same
with those in [9].

The GA for the Software Component Placement Problem

1. randomly generate an initial population of solutions to the software compo-
nent placement problem;

2. while the termination condition is not true
(a) get the best solution to the data component placement problem from the

buffer;
(b) for each individual in the population:

i. combine the individual with the best solution to the data component
placement problem to form a complete SaaS placement solution;

ii. calculate the fitness value of the SaaS placement solution.
(c) select individuals for recombination from the population based on their

fitness values and pair them up;
(d) probabilistically apply the crossover operator to each of the pairs to

generate new individuals;
(e) probabilistically use for the mutation operator to each of the new indi-

viduals;
(f) use the new individuals to replace the old individuals in the population;
(g) update the best software component placement solution in the buffer.

A Parallel Cooperative Co-evolutionary Genetic Algorithm 229

The GA for the Data Component Placement Problem

1. randomly generate an initial population of solutions to the data component
placement problem;

2. while the termination condition is not true
(a) get the best solution to the software component placement problem from

the buffer;
(b) for each individual in the population:

i. combine the individual with the best solution to the software compo-
nent placement problem to form a complete SaaS placement solution;

ii. calculate the fitness value of the SaaS placement solution.
(c) select individuals for recombination from the population based on their

fitness values and pair them up;
(d) probabilistically apply the crossover operator to each of the pairs to

generate new individuals;
(e) probabilistically use for the mutation operator to each of the new indi-

viduals;
(f) use the new individuals to replace the old individuals in the population;
(g) update the best data component placement solution in the buffer.

The Algorithm Description of the PCCGA

1. while the termination condition is not true
(a) run the GA for the software component placement problem and the GA

for the data component placement problem in parallel;
2. combine the best solution to the software component placement problem and

the best solution to the data component placement problem in the buffer to
form a solution to the SaaS placement and output it.

4 Evaluation

This section evaluates the performance of the PCCGA, including its computation
time, quality of solution and scalability. Since there is no benchmark available
for the composite SaaS placement problem, we have to use the performance of
the ICCGA as a benchmark.

In order to conduct a comparative study of the PCCGA and the ICCGA,
we implemented both of them in Microsoft Visual Studio C#. We also devel-
oped a C# program to randomly generate a cloud communication network of
a given configuration based on the cloud model presented in [11] and another
C# program to randomly create a composite SaaS placement problem of a given
configuration.

Since the complexity of a composite SaaS placement problem depends on both
the size of the cloud communication network and the size of the composite SaaS
placement problem, we conducted two groups of experiments. In the first group
of experiments, we randomly generated a cloud communication network that

230 M. Tang and Z.I.M. Yusoh

Table 1. The characteristics of the five composite SaaS placement problems

Test Test Problem Characteristics
Problem No. of software comp. No. of data comp. Total no. of comp.

1 5 5 10
2 10 10 20
3 15 15 30
4 20 20 40
5 25 25 50

has 100 compute servers and 100 storage servers, and then randomly generated
five composite SaaS placement problems of different sizes. Table 1 shows the
characteristics of the five composite SaaS placement problems.

This group of experiments were designed to evaluate the speed-up ratio and
the quality of the solutions of the PCCGA when it is used for solving different
sizes of composite SaaS placement problems and to study how the computation
time of the PCCGA would increase when the size of the composite SaaS place-
ment problem increases. We used both the PCCGA and the ICCGA to solve
each of the five composite SaaS placement problems. Considering the stochastic
nature of the PCCGA and the ICCGA, for each of the composite SaaS placement
problems we repeated the experiment for 10 times and recorded the quality of
the solutions generated by both of the algorithms and their computation times.
The statistics about the computation time and the quality of solutions of the
two algorithms are shown in Table 2 and Table 3 respectively.

It can be seen from Table 2 that the average computation time of the PCCGA
is between 11.29% and 37.15% of the average computation time of the ICCGA
for the five test problems. However, the average estimated execution time of the
composite SaaS placement produced by the PCCGA is also better than that
produced by the ICCGA (the average estimated execution time of the PCCGA
is only between 23% and 53% of that of the ICCGA).

In addition, in the evaluation, we also compared the scalability of the PCCGA
with the scalability of the ICCGA. Fig. 2 displays how the average computation
times increased when the size of the composite SaaS increased. When the total
number of SaaS components and data components increased from 10 to 50, the
average computation time of the ICCGA increased from 278.5 seconds to 9266.8
seconds, while the computation time of the PCCGA only increased from 103.3
seconds to 1046.9 seconds linearly.

In the second group of experiments, we randomly generated a composite SaaS
placement problem that has 10 software components and 10 data components,
and randomly generated five cloud communication networks. Table 4 shows the
characteristics of the five randomly generated cloud communication networks.

Then, we used both the PCCGA and the ICCGA to solve the composite
SaaS placement problem in the five cloud communication networks of different
sizes. Considering the stochastic nature of the two algorithms, for each of the
experiments we repeated for 10 times and recorded the qualities of the solutions
and the computation times for each run of the experiments. The statistics about

A Parallel Cooperative Co-evolutionary Genetic Algorithm 231

Table 2. Comparison of the computation times of the PCCGA and the ICCGA for
different composite SaaS placement problems

Test PCCGA (second) ICCGA (second)
Problem Best Worst Ave SD Best Worst Ave SD

1 69.6 154.1 103.5 27.4 188.4 419.4 278.5 96.2
2 132.6 371.4 231.5 80.4 1020.0 2416.8 1557.1 415.8
3 382.8 832.2 621.0 144.9 1743.6 6877.8 3859.9 1541.3
4 415.2 950.4 710.3 174.1 2466.0 8473.8 5505.0 2103.3
5 632.4 1938 1046.9 403.6 3436.2 15763.8 9266.82 3755.8

Table 3. Comparison of the qualities of solutions produced by the PCCGA and the
ICCGA for different composite SaaS placement problems

Test PCCGA (millisecond) ICCGA (millisecond)
Problem Best Worst Ave SD Best Worst Ave SD

1 513 89309 24958.5 29056.3 89748 129609 108866.9 12613.6
2 112 180144 36680.2 53964.5 107524 263752 140893.0 46928.2
3 22042 114729 72857.1 36736.7 130569 235881 172433.3 33817.7
4 12674 180144 129565.7 63641 174319 263752 243215.3 47358.1
5 16100 216704 123456.6 88892.8 217730 648594 316120.1 120410.2

Table 4. The characteristics of the clouds

Test Test Problem Characteristics
Problem No. of compute servers No. of storage servers Total no. of servers

1 50 50 100
2 100 100 200
3 150 150 300
4 200 200 400
5 250 250 500

the computation times and the quality of solutions of the two algorithms are
shown in Table 5 and Table 6 respectively.

It can be seen from Table 6 that the average computation time of the PCCGA
is between 17.66% and 31.89% of the average computation time of the ICCGA
for the five test problems. However, the average estimated execution time of the
composite SaaS placement produced by the PCCGA is also better than that
produced by the ICCGA (the average estimated execution of the PCCGA is
only between 45% and 55% of that of the ICCGA).

In addition, in the evaluation, we also compared the scalability of the PCCGA
with the scalability of the ICCGA. Fig. 3 displays how the average computation
times increased when the size of the composite SaaS increased. When the total
number of compute and storage servers in cloud computing increased from 100 to

232 M. Tang and Z.I.M. Yusoh

Fig. 2. The computation time increasing trend when the size of the composite SaaS
increases

Table 5. Comparison of the computation times of the PCCGA and the ICCGA in
different clouds

Test PCCGA (sec) ICCGA (sec)
Problem Best Worst Ave SD Best Worst Ave SD

1 54.0 136.2 89.4 31.3 145.2 440.4 280.3 88.5
2 115.8 440.9 288.5 107.2 813.0 2228.4 1362.4 482.3
3 233.4 1302.0 672.4 326.3 712.8 3451.2 2456.0 809.7
4 401.4 1404.6 774.6 316.9 3024.0 8580.0 4385.4 1629.9
5 771.6 1707.6 1350.5 309.9 3885.6 10029.6 7187.6 1824.2

Table 6. Comparison of the qualities of solutions produced by the PCCGA and the
ICCGA in different clouds

Test PCCGA (millisecond) ICCGA (millisecond)
Problem Best Worst Ave SD Best Worst Ave SD

1 7284 53536 28519.9 15211.9 48064 79026 66425.4 9186.6
2 34357 110918 61238.9 24669.8 97370 168355 137089.4 21842.2
3 34588 254672 162969.4 65807.6 202857 379929 295677.8 47531.4
4 120114 359175 241791.2 77513.7 368345 623340 501810.4 73681.5
5 44786 509168 274609.9 136396.5 363253 623821 547364.0 80760.1

500, the average computation time of the ICCGA increased from 280.3 seconds
to 7187.6 seconds, while the computation time of the PCCGA only increased
from 89.4 seconds to 1350.5 seconds linearly.

In all the experiments, the subpopulation sizes for the compute server GA and
the storage server GA were set at 100 in both the PCCGA ad the ICCGA. The
probabilities for crossover and mutation were set at 0.95 and 0.15, respectively,

A Parallel Cooperative Co-evolutionary Genetic Algorithm 233

Fig. 3. The computation time increasing trend when the size of cloud computing in-
creases

in both the PCCGA and the ICCGA. The termination condition used in both
the PCCGA and the ICCGA was ‘no improvement on the best solution for 25
consecutive generations’. All the experiments were carried out in a computer
with 3.00 GHz Intel Core 2 Duo CPU and 4GB RAM.

5 Conclusion and Future Work

This paper has proposed an unsynchronized parallel cooperative co-evolutionary
genetic algorithm (PCCGA) for the composite SaaS placement problem in cloud
computing, and has evaluated the performance of the PCCGA by comparing it
with an iterative cooperative co-evolutionary genetic algorithm (ICCGA). The
experimental results have shown that the computation time of the PCCGA was
noticeably quicker than that of the ICCGA. In addition, the experimental re-
sults have shown that on average the quality of the solutions produced by the
PCCGA is much better than that of the ICCGA for those randomly generated
test problems. Moreover, the experimental results have shown that the PCCGA
has better scalability than the ICCGA. To the best of our knowledge, this re-
search is the first attempt to tackle the composite SaaS placement algorithm
using parallel evolutionary computation.

The SaaS placement is a large-scale complex combinatorial optimization.
Thus, how to further improve its computation time by increasing its parallelism
is an issue that we will investigate in the future, and one possible way to im-
prove the parallelism is to break down the composite SaaS placement problem
into more subcomponents using the random grouping techniques proposed in
[12]. In addition, in the PCCGA we always select the best individual from the
other population, which may not be appropriate in some cases. Thus, another
work that I will do in the future is to the selection strategy.

234 M. Tang and Z.I.M. Yusoh

Acknowledgment. The programs used in the evaluation were developed by
Peter Wong at Queensland University of Technology. In addition, the authors
would like to thank the PC members and reviewers of this papers for your
valuable comments.

References

1. Foster, I., Yong, Z., Raicu, I., Lu, S.: Cloud computing and grid computing 360-
degree compared. In: Proceeding of Grid Computing Environment Workshop,
pp. 1–10 (2008)

2. Gartner Inc., Gartner says worldwide cloud services market to surpass $68 Billion
in 2010 (2010), http://www.gartner.com/it/page.jsp?id=1389313

3. Armbrust, M., et al.: Above the clouds: a Berkeley view of cloud computing. Tech.
Rep. UCB/EECS-2009-28, EECS Department, U.C. Berkeley (2009)

4. Khare, V., Yao, X., Sendhoff, B.: Multi-network evolutionary systems and au-
tomatic problem decomposition. International Journal of General Systems 35(3),
259–274 (2006)

5. Khare, V.R., Yao, X., Sendhoff, B.: Credit Assignment Among Neurons in Co-
evolving Populations. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-
Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P.
(eds.) PPSN VIII. LNCS, vol. 3242, pp. 882–891. Springer, Heidelberg (2004)

6. Salcedo-Sanz, S., Xu, Y., Yao, X.: Hybrid meta-heuristics algorithms for task as-
signment in heterogeneous computing systems. Computers and Operations Re-
search 33(3), 820–835 (2006)

7. Salcedo-Sanz, S., Yao, X.: A hybrid hopfield network – genetic algorithm approach
for the terminal assignment problem. IEEE Transactions on Systems, Man and
Cybernetics, Part B: Cybernetics 34(6), 2343–2353 (2004)

8. Yusoh, Z., Tang, M.: A penalty-based genetic algorithm for the composite SaaS
placement problem in the cloud. In: Proceeding of IEEE World Congress on Com-
putational Intelligence, pp. 600–607. IEEE, Spain (2010)

9. Yusoh, Z.I.M., Tang, M.: A Cooperative Coevolutionary Algorithm for the Com-
posite SaaS Placement Problem in the Cloud. In: Wong, K.W., Mendis, B.S.U.,
Bouzerdoum, A. (eds.) ICONIP 2010, Part I. LNCS, vol. 6443, pp. 618–625.
Springer, Heidelberg (2010)

10. Potter, M., de Jong, K.: A Cooperative Coevolutionary approach to Function Op-
timization. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN III. LNCS,
vol. 866, pp. 249–257. Springer, Heidelberg (1994)

11. IBM System Storage, http://www-07.ibm.com/storage/au/
12. Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using coopera-

tive coevolution. Information Sciences 178(15), 2985–2999 (2008)

http://www.gartner.com/it/page.jsp?id=1389313
http://www-07.ibm.com/storage/au/

	A Parallel Cooperative Co-evolutionary GeneticAlgorithm for the Composite SaaS Placement Problem in Cloud Computing
	Introduction
	Problem Formulation
	Parallel Cooperative Co-evolutionary Genetic Algorithm
	Parallel Model
	Algorithm Descriptions

	Evaluation
	Conclusion and Future Work
	References

