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Abstract. In many scientific fields, from biology to sociology, community detec-
tion in complex networks has become increasingly important. This paper, for the
first time, introduces Cooperative Co-evolution framework for detecting commu-
nities in complex networks. A Bias Grouping scheme is proposed to dynamically
decompose a complex network into smaller subnetworks to handle large-scale
networks. We adopt Differential Evolution (DE) to optimize network modularity
to search for an optimal partition of a network. We also design a novel mutation
operator specifically for community detection. The resulting algorithm, Cooper-
ative Co-evolutionary DE based Community Detection (CCDECD) is evaluated
on 5 small to large scale real-world social and biological networks. Experimen-
tal results show that CCDECD has very competitive performance compared with
other state-of-the-art community detection algorithms.

1 Introduction

Many complex systems, such as social [11] and biological networks [3], can be natu-
rally represented as complex networks. A complex network consists of nodes (or ver-
tices) and edges (or links) which respectively represent the individual members and
their relationships in systems. By representing complex systems as complex networks,
many theories and methods in graph theory can be applied to enable us to gain insights
into complex systems. Therefore, in recent years, the study of complex networks has
attracted more and more attention.

Unlike simple networks such as lattices or random graphes, complex networks pos-
sess many distinctive properties, of which community structure [1] is one of the most
studied. The community structure is usually considered as the division of networks
into subsets of vertices within which intra-connections are dense, while between which
inter-connections are sparse [1]. The identification of the community structure provides
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important information about the relationship and interaction among nodes in the com-
plex network. Such information ultimately leads to insights into how network function
and topology affect each other.

In the past few years, many algorithms have been proposed to detect the underly-
ing community structure in complex networks [1]. These algorithms can roughly be
grouped as traditional methods, such as graph partitioning, spectral methods, modular-
ity maximization methods, and methods based on statistical inference. Among them,
the most popular group is modularity maximization methods, because of its superior
performance on real-world complex networks. For modularity maximization methods,
many deterministic optimization algorithms such as greedy algorithms have been em-
ployed [1]. However, according to [4], we should also treat results from deterministic
algorithms such as greedy optimization or spectral methods with “particular caution”
because they only return one unique solution, which might “obscure the magnitude of
the degeneracy problem and the wide range alternative solutions”.

To address the above problem, we previously proposed a stochastic network commu-
nity detection algorithm, Differential Evolution based Community Detection (DECD)
[5], in which Differential Evolution (DE) was used to evolve a population of
potential solutions for network partitions, to maximize the network modularity [8]. The
results show that DECD can achieve competitive community detection results on sev-
eral benchmark and real-world complex networks. However, our further investigation
showed that DECD is not satisfactory on large-scale networks.

In order to achieve better scalability to handle large-scale networks, this paper pro-
poses CCDECD (Cooperative Co-evolutionary Differential Evolution based Commu-
nity Detection) by incorporating a Cooperative Co-evolution (CC) framework into our
DECD algorithm. To the best of our knowledge, this is the first time CC framework
has been introduced for community detection. A CC framework employs a divide and
conquer strategy, which divides a large-scale problem into subcomponents and evolves
those subcomponents independently and co-adaptively. Compared with traditional Evo-
lutionary Computation, the advantages of a CC framework are: 1) it is capable of
handling large scale optimization problems; and 2) it can better deal with problems
with complex structure. Such a framework is very natural and attractive to community
detection because of two distinctive properties of complex networks: 1) large scale,
e.g., consists of thousands or even millions of nodes; and 2) highly structured, e.g.,
hierarchical.

Apart from introducing CC framework for community detection, the other main con-
tributions of this paper include: 1) a Bias Grouping scheme to dynamically decom-
pose the complex network into smaller subcomponents; 2) a novel mutation operator
called global network mutation specifically designed for community detection; and 3)
a thorough evaluation of the performance of CCDECD on several real-world networks,
including a large scale network which consists of 6927 nodes.

The remainder of this paper is organized as follows. Section 2 introduces the de-
tails of CCDECD. In Section 3, the performance of CCDECD is tested on biological
and real-world social networks and then the experimental results are discussed. Finally,
Section 4 concludes this paper.
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2 The Proposed Algorithm

In this paper, a new algorithm based on CCDE called CCDECD is proposed for commu-
nity detection in complex networks. Similar to the random grouping framework in [15],
the main idea behind our CCDECD is also to split a large network into m s-dimensional
subcomponents, and then evolve each of them with standard DE. However, we found
that the random grouping scheme used in [15] is not suitable for a complex network
community detection problem because it will lose connectivity information of the net-
work, which is crucial for the search performance of DE on modularity. Therefore, we
introduce a novel bias grouping scheme which utilizes the connectivity information.
The key steps of our CCDECD can be summarized as follows:

Step 1) Set g = 0 where g denotes the generation number.
Step 2) Randomly initialize population Pg .
Step 3) g = g + 1
Step 4) Split the n-dimensional complex network into m sub-components Gi (i =

1, . . . ,m), where Gi consists of s indices of nodes (n = m × s) using bias grouping
scheme (See Section 2.4 for details).

Step 5) Set i = 1.
Step 6) Construct subpopulation SPi for Gi by extracting s genes as defined by Gi

from P .
Step 7) For subpopulation SPi, optimize the network division using a standard DE

by maximizing network modularity of Gi with gs generations (See Section 2.2 for de-
tails).

Step 8) Select the best individual SIbest from SPi.
Step 9 Update population Pg by replacing the s genes as defined by Gi with SIbest.
Step 10 g = g + gs
Step 11) If i < m then i++, and go to Step 6.
Step 12) Optimize the network division of the whole network represented by Pg

using a modified DE with the global network mutation operator for gg generations (See
Section 2.5 for details).

Step 13 g = g + gg
Step 14) Stop if g > gmax where gmax is the maximum number of generations and

output the best individual Ibest; otherwise go to Step 4.

2.1 Individual Representation

CCDECD uses the community identifier-based representation proposed in [14] to rep-
resent individuals in the population for the community detection problem. For a graph
G = (V,E) with n nodes modelling a network, the kth individual in the population is
a vector that consists of n genes xk = {x1, x2, . . . , xn} in which each gene xi can be
assigned an allele value j in the range {1, 2, . . . , n}. The gene and allele represent the
node and the community identifier (commID) of communities in G respectively. Thus,
xi = j denotes that the node i belongs to the community whose commID is j, and
nodes i and d belong to the same community if xi = xd. Since at most n communities
exist in G and then the maximum value of commID is n.
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2.2 Fitness Function

Newman and Girvan [8] proposed the network modularity to measure the strength of the
community structure found by algorithms. The network modularity is a very efficient
quality metric for estimating the partitioning of a network into communities and has
been used by many community detection algorithms recently [1,14,7].

CCDECD also employs the network modularity which is maximized as the fitness
function to evaluate individuals in the population. The network modularity is defined as
follows [14].

Q =

m∑

j=1

[
lj
L

−
(
dj
2L

)2
]
, (1)

where j is the commID, m is the the total number of communities, lj is the number of
links in module j, L is the total number of edges in the network and dj is the degree of
all nodes in module j.

2.3 Initialization

At the beginning of the initialization process, CCDECD places each node into a ran-
dom community by assigning a random commID and generates individuals in the initial
population. However, such random generation of individuals is likely to cause some un-
favorable individuals that consist of some nodes having no connectivity with each other
in the original graph. Considering that nodes in the same community should connect
with each other and in the simple case are neighbors, the initialization process pro-
posed in [14] is used to overcome the above drawbacks. The process works as follows:
once an individual is generated, some nodes in an individual are randomly selected and
their commIDs are assigned to all of their neighbors. By this process, the space of the
possible solutions is restricted and the convergence of CCDECD is improved.

2.4 Bias Grouping Scheme

Similar to the random group scheme proposed in [15], we proposed a bias grouping
scheme for handling large scale networks. The idea behind this bias grouping scheme
is to dynamically decompose the whole networks into smaller subcomponents which
each consist of nodes that are more likely connected to each other. Therefore, the
search algorithm can optimize these tightly interacting variables together, which will
ultimately lead to better results than splitting variables into subcomponents with un-
connected nodes. The bias grouping scheme works as follows: we randomly select s
nodes in the network, where s is the size of a subcomponent. Then we find all the first
neighbors of the s nodes and concatenate them to form a set TG. Finally, we select the
first s nodes from TG to form a subcomponent Gi (i = 1, . . . ,m). If all the s nodes
have no first neighbors, all the s nodes will be selected.
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2.5 Mutation

There are two different mutation operators in our CCDECD. For the standard DE used
in Step 3 for optimizing the division of subcomponents, the most popular “rand/1”
mutation strategy is used [6] since it has no bias to any special search directions.

In Step 5, in order to optimize the division of the global network, we design a novel
global network mutation operator: for each population, we randomly select one node i
and find all its neighbors. For each node in its neighbors, we randomly assign a proba-
bility in the range [0, 1]. If the probability of nodes is larger than the mutation rate we
predefined, their commIDs will be mutated to the commID of the selected node i. Other-
wise, nothing will be changed. This mutation can make use of connectivity information
of the network, and thus improve the search ability.

2.6 Clean-Up Step

CCDECD also adopts the clean-up operation proposed by Tasgin and Bingol [14] to
correct the mistakes of putting nodes into wrong communities in both mutant and trial
vectors and improves the search ability. The clean-up operation is based on the com-
munity variance CV (i), which is defined as the fraction of the number of different
communities among the node i and its neighbors to the degree of the node i as follows:

CV (i) =

∑
(i,j)∈E neq(i, j)

deg(i)
, (2)

where neq(i, j) =

{
1, if commID(i) �= commID(j)

0, otherwise
, deg(i) is the degree of the ith

node, E is the set of edges, and commID is the community containing ith node.
The clean-up step works as follows: Firstly some nodes are randomly selected. Then

for each of these nodes i, CV (i) is computed and compared with a threshold which
is a predefined constant obtained by experience. If CV (i) is larger than the threshold,
the community ID of this node will be assigned to the one which is the most common
community ID among the neighbors. Otherwise, no operation is performed on this node.

3 Experiments and Results

In this section, the performance of CCDECD is evaluated on 4 well known real-world
social and biological networks. CCDECD is implemented in MATLAB 7.0 and all the
experiments are performed on Windows XP SP2 with a Pentium Dual-Core 2.5GHz
processor and 2.0GB RAM. The parameters in CCDECD are set as follows: the pop-
ulation size is 30; the maximum number of cycles is cmax = 100 and m = 30; the
mutation rate for the global network mutation operator is set to be 0.2; for the standard
DE, the maximum of generations was 30 and for the “rand/1” mutation operator, the
scaling factor is F = 0.9 and the threshold value is η = 0.32. The threshold for clean
step is set to be 0.35 as used in [14].

For comparison, we implement DECD and another community detection algorithm
based on a Genetic Algorithm (GA), named GACD. We adopt the MATLAB Genetic
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Algorithm Optimization Toolbox (GAOT) to optimize the network modularity to detect
communities in networks. The GA we use is real encoded GA with heuristic crossover
and uniform mutation. The values of all the parameters use in the experiments are the
default parameters in GAOT. Moreover, for the sake of fairness, the same initialization
process and the clean-up operation in CCDECD are employed in the DECD and GACD
algorithms. The number of function evaluations of DECD and GACD is set to be the
same as CCDECD. We also adopt MATLAB implementations of Girvan-Newman (GN)
algorithm [7] from Matlab Tools for Network Analysis (http://www.mit.edu/˜gerganaa)
for comparison.

3.1 Datasets

In this paper, we selected the following 5 well known real-world social and biological
networks to further verify the performance of CCDECD: 1) the Zachary’s Karate Club
network; 2) Dolphins network; 3) the American College Football network; 4) Protein
and Protein Interaction (PPI) network and 5) Erdös collaboration network.

We selected the above 5 datasets because for small to medium scale datasets 1) to
4), their true community structures are known, which provide gold-standards, e.g., nor-
malized mutual information, for the evaluation of our CCDECD algorithm. We also
selected the Erdös collaboration network which is the largest network tested in [9]. The
characteristics of the five networks are summarized in Table 1.

Table 1. The characteristics of the five networks tested in the paper. N and M stand for nodes
and edges of the network, respectively. Qopt is the known global optimal modularity value.

Dataset N M Qopt

Karate 34 78 0.41979
Dolphins 62 159 0.52852
Football 115 613 0.60457

PPI 1430 6531 –
Erdös 6927 11850 –

3.2 Small Real-World Social Networks

We first validate our algorithm on the small-scale real-wold social networks with true
community structure: 1) the Zachary’s Karate Club network; 2) Dolphins network; and
3) the American College Football network. As pointed out in [13], performance metrics
based on network modularity Q are not always reliable. Therefore, apart from Q, we
also adopt normalized mutual information (NMI) as proposed in [2] for performance
evaluation.

Since CCDECD, DECD and GACD are stochastic optimization algorithms, we per-
form the experiments 30 times on these three networks. The average values of Q and
NMI , e.g., Qavg and NMIavg and their best values, e.g., Qbst and NMIbst, are com-
pared with that obtained by GN (a deterministic algorithm) from one run of an exper-
iment. We also perform two sample student’s t-test between the results obtained from
CCDECD and those from other algorithms. The results are presented in Table 2
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Table 2. Experimental results of the Zachary’s Karate Club, Dolphins and the American College
Football networks. Npr is the average predicted number of communities; Qavg and NMIavg
are the average values of modularity Q and NMI , respectively. Qbst and NMIbst are the best
values of modularity Q and NMI , respectively. The results with asterisks indicate the results are
significantly difference from the results obtained from CCDECD.

Network Algorithm Npr Qavg Qbst NMIavg NMIbst

Karate
CCDECD 4.0± 0.0 0.41979± 0.00000 0.41979 0.69± 0.00 0.69

DECD 4.1± 0.3 0.41341± 0.00446∗ 0.41979 0.65± 0.06∗ 0.71
GACD 3.3± 0.9 0.39552± 0.01492∗ 0.41724 0.69± 0.10 0.84

GN 2 0.35996 0.35996 0.84 0.84

Dolphins
CCDECD 4.1± 0.3 0.52078± 0.00026 0.52162 0.80± 0.04 0.93

DECD 4.7± 0.8 0.51557± 0.00374∗ 0.52069 0.83± 0.05∗ 0.95
GACD 4.9± 0.8 0.50987± 0.01499∗ 0.51986 0.87± 0.07∗ 1.00

GN 4 0.50823 0.50823 0.84 0.84

Football
CCDECD 10.1± 0.7 0.60382± 0.00089 0.60457 0.89± 0.02 0.93

DECD 10.1± 0.8 0.60363± 0.00071 0.60457 0.90± 0.02 0.92
GACD 8.7± 1.4 0.59044± 0.01239∗ 0.60457 0.85± 0.05 0.93

GN 12 0.59726 0.59726 0.93 0.93

From Table 2, it can be seen that CCDECD performed better than the other three
competitors, i.e., DECD, GACD and GN on the three networks. In [9], the author pro-
posed a novel multi-objective genetic algorithm (MOGA-Net) for community detection.
The objective is not to maximize modularity but to maximizes the number of connec-
tions inside each community and minimizes the number of links between the modules.
The average best Q values obtained by MOGA-Net are 0.416, 0.505 and 0.515 for
Karate, Dolphin and Football networks, respectively; and the corresponding average
NMI values are 0.602, 0.506 and 0.775. The best NMI obtained by MOGA-Net on
the Football network is 0.795, even worse than NMIavg obtained by CCDECD. Such
results show that maximizing Q with our CCDECD can also achieve better NMI , a
gold standard for evaluating CD algorithms, than MOGA-Net.

3.3 Biological Network: Yeast Protein-Protein Interaction Network

We apply our CCDECD algorithm to a biological network, e.g., Yeast Protein-Protein
Interaction (PPI) Network [3], which contains 1430 nodes (proteins) and 6531 edges
(interactions). We use CYC2008 [10], a complete and up-to-date set of yeast protein
complexes (or communities) as a reference set to evaluate the predicted modules by
CCDECD. We compute precision, recall and F-measure to measure the performance of
CCDECD. The performance of CCDECD is compared with DECD, GACD and GN.
We also adopt results from recent literature, e.g., [12] for comparison.

Similar to the experiments in [12], we use the affinity score to decide whether a
predicted module is matched with a reference complex:

Affinity(A,B) =
|A⋃

B|2
|A| × |B| , (3)
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where A and B are two modules of proteins, e.g., one of predicted module or reference
complexes. We assume a module A matches module B if and only if Affinity(A,B) is
above a predefined threshold ω. Then we can define Hit(A,B) which contains all the
matched modules:

Hit(A,B) = {Ai ∈ A|Affinity(Ai, Bj) > ω, ∃Bj ∈ B}. (4)

We define precision, recall and F-measure as follows:

Recall =
|Hit(R,P)|

|R| , (5)

Percision =
|Hit(P ,R)|

|P| , (6)

F-measure =
2× Recall× Percision

Recall + Percision
, (7)

where P is the predicted module set and R is the reference complex set.
Following the experimental settings in [12], we set ω = 0.4 and 0.5 and select the

best results from 30 runs of experiments in order to compare with their algorithms fairly.
We compared the results from Critical Module (CM) algorithm proposed in [12]. It is
worth mentioning that, due to the large size of the PPI network, the GN algorithm in
the Matlab Tools for Network Analysis failed to produce results in reasonable time.
Therefore, we adopt the results of the GN algorithm from [12] for comparison.

Table 3. The best results from 30 runs of experiments of the Yeast Protein-Protein Interaction
Network

ω Algorithm #. pred. complex Precision Recall F-measure

0.4

CCDECD 108 0.5093 0.3 0.3776
DECD 143 0.5083 0.2927 0.3715
GACD 109 0.5046 0.2902 0.3685

CM 65 0.5745 0.0667 0.1195
GN 65 0.383 0.042 0.0757

0.5

CCDECD 94 0.4681 0.2683 0.3411
DECD 115 0.4696 0.2390 0.3168
GACD 106 0.4340 0.2220 0.2937

CM 65 0.6154 0.0691 0.1241
GN 65 0.5231 0.0568 0.1025

From Table 3, we can see that compared with other algorithms, CCDECD has bet-
ter performance. It is interesting to see that, the difference of performance among
CCDECD, DECD and GACD is not as significant as those between CCDECD and
other non-population-based algorithms, e.g., CM. Such results indicate that, at least for
medium size networks, which are commonly seen in biology, population-based algo-
rithms are preferred because of their better search performance.
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3.4 Large-Scale Network: Erdös Collaboration Network

In this section, we further evaluate the performance of CCDECD with a large-scale
network: Erdös collaboration network. We report the results, e.g., average number of
communities and average values of modularity obtained by our CCDECD in compari-
son with those of DECD, GACD, GN and MOGA-Net [9] in Table 4.

Table 4. Experimental results of Erdös collaboration network. Npr is the average number of
communities; Qavg are the average values of modularity Q. The results with asterisks indicate
the results are significantly difference from the results obtained by CCDECD.

Algorithm Npr Qavg

CCDECD 194.8± 17.89 0.6390± 0.0042
DECD 407.5± 44.92 0.5598± 0.0095∗

GACD 277.4± 22.47 0.6070± 0.0108∗

MOGA-Net 302 0.5502
GN 57 0.6723

Table 4 clearly show that in terms of Qavg, CCDECD performed much better than
the other three population-based algorithms. More specifically, in contrast to the results
on small scale networks presented in Section 3.2, the performance of CCDECD in terms
of Qavg is much better than DECD and GACD, which indicates that CCDECD is more
scalable to handle large-scale networks. However, we should notice that, compared with
the greedy based GN algorithm, the results of our CCDECD is still not competitive.

4 Conclusion

This paper, for the first time, introduces the Cooperative Co-evolutionary algorithm to
detect community structure in complex networks. We have proposed the Bias Grouping
scheme to dynamically decompose the complex network into smaller subcomponents
for independent and co-adaptive evolution. We have also designed the global network
mutation operator specifically for community detection problems which exploits the
network connectivity information. We have tested our CCDECD on several benchmark
real-world social and biological networks, including the Erdös collaboration network
which consists of 6927 nodes, in comparison with DECD, GACD, GN and MOGA-Net
algorithms. Apart from the modularity value, for the small scale real-world networks,
we have also employed NMI based on true community structure as the performance
metric [13]. Compared with other state-of-the-art EACD algorithms, the experimental
results have demonstrated that CCDECD is very effective for community detection in
complex networks. Compared with greedy based CD algorithms, e.g., GN algorithm,
our CCDECD generates more accurate results on small to medium scale networks.
However, although it is a step forward, it is still not competitive to handle large-scale
network. It will be our future work to incorporate local search algorithm into our CC
framework to further improve CCDECD’s scalability.
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