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Abstract. Many applications of swarm robotics require autonomous
navigation in unknown environments. We describe a new collective navi-
gation strategy based on diffusion limited aggregation and bacterial for-
aging behaviour. Both methods are suitable for typical swarm robots as
they require only minimal sensory and control capabilities. We demon-
strate the usefulness of the strategy with a swarm that is capable of au-
tonomously finding charging stations and show that the collective search
can be significantly more effective than individual-based search.

1 Introduction

Swarm robotics is becoming an increasingly active field of research. This is un-
surprising, as deploying a swarm of simple, small, and inexpensive robots can
present an extremely attractive alternative to the use of a single complex and
costly robot in a significant number of application scenarios. Clearly, there are
situations where a larger robot may not be able to operate effectively at all, for
example in space constrained areas under collapsed buildings in the aftermath
of an earthquake. Here, a swarm of small robots would be far more effective in
sifting through the rubble and exploring every small cavity. Robot swarms are
also generally thought to be more resistant to damage and disruption, and to be
more resilient in the face of changing environment conditions.

For robots used in tasks such as disaster response, space exploration, or en-
vironmental tracking it is immediately obvious that robustness and adaptivity
are core requirements. A case in point is the proposed NASA mission PAM
(Prospecting Asteroid Mission) [6]: it aims to deploy a swarm of approximately
1, 000 pico-spacecraft to explore the asteroid belt. In the asteroid belt it is not
unlikely for a spacecraft to be hit by another object, so that a mission relying on
a single complex spacecraft could easily fail. A self-organising swarm could be
more resilient and also help to address the challenge of delayed communication
by performing time-critical behaviour changes autonomously.

While swarm robotics has become a very active field of research, its real-world
applications have been limited so far. Limited battery power, poor communica-
tion facilities, minimal sensory equipment and low computational processing
capacity pose significant challenges, as does the design of distributed algorithms
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that reliably produce a desired collective behaviour. Typical academic test tasks
for self-organised collective control are clustering robots onto a particular po-
sition (such as a light source) [5], optimal dispersal of robots to cover a target
range [11] [8], collective transport [9], and various forms of structure formations,
such a assembling a chain of robots [4].

In this paper, we tackle a collective navigation task that arises in many realis-
tic applications: the guidance of swarm members to a common target. There are
uncountable scenarios where finding a particular target is an important sub-task
of the swarm’s mission. A prime example is a clean-up mission after an (indus-
trial) accident. Typically, more swarm members will have to be guided to the
source of contamination once it has been located by one of the swarm’s scouts to
assist with its removal and clean-up. This is akin to the recruitment mechanisms
in social insects that allow them effective exploitation of food sources through
collective transport [7].

This task is also required for the construction of our own experimental test bed
for swarm robotics. Our aim is to build a robot swarm that will autonomously
roam the building of Monash’s Computer Science Department to perform con-
tinuous inspection. One of the many challenges with this is the limited battery
capacity and thus operating time of individual swarm robots.

The e-puck robot that we are using in our experiments [12] is typically not able
to operate for more than three hours before having to be recharged. As we are
aiming for fully autonomous swarm operation, the first challenge to address was
the e-puck’s reliance on human intervention for recharging. We overcame this by
modifying the e-puck’s hardware to allow contact-less inductive charging. With
this modification it is sufficient for a robot to drive onto a specifically constructed
wireless charging platform and rest there until the batteries are fully recharged.
The details of this modification are beyond the scope of this paper and described
elsewhere [2].

However, even with autonomous charging being physically possible, the chal-
lenge remains for the robot to locate the charging platform before it runs out
of batteries. In the absence of perfect knowledge of the environment this clearly
requires the swarm to search for the charger.

A strategy for returning the e-puck to the charging platform autonomously
was developed in two parts: Firstly, a simple gradient search was implemented
on the physical e-puck robot after fitting its charging platform with an audible
beacon (Section 3.1). Audio was chosen as a gradient medium both for its relative
ease of experimentation and its imperfect gradient field (due to reflections and
interference), providing a test-case for other forms of perturbed fields such as
chemical gradients. Secondly, a collective navigation strategy was implemented,
such that an agent can be guided to the charging platform from beyond audible
range with the assistance of the swarm (Section 3.2). To do so, the swarm con-
structs a space-filling beacon structure in the environment which the searching
agent traverses toward the charging platform.1

1 For demos see http://www.csse.monash.edu.au/~berndm/autonomous_epuck/

http://www.csse.monash.edu.au/~berndm/autonomous_epuck/
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Since we are interested in swarm robots with extremely limited sensory capa-
bilities and processing power, we decided to use control algorithms that are so
simple that they can in theory be implemented on devices without any digital
computation capabilities whatsoever. To achieve this, we only used two types
of nature-inspired behaviours that could be implemented even with just analog
control circuits: bacterial gradient search [13] for the individual navigation and
Diffusion Limited Aggregation (DLA) [14] for the formation of the collective
navigation structure. The conclusion from our preliminary experiments is that
even with such extremely simple behaviours effective collective search is possible.

2 Experiment Setup

To conduct the e-puck robot experiments, we constructed a rectangular environ-
ment measuring 2.4m x 3.6m with 5cm high walls from MDF and pine (Figure
1). An omni-directional audio beacon was placed midway down the long edge
of the environment, 30cm from the wall. Pink noise was emitted from the au-
dio beacon for detection by the robot, which averaged the volume of its three
microphones during experiments to minimise rotationally induced bias.

Fig. 1. Layout of the physical environ-
ment and audio beacon for conducting
e-puck experiments

For development of the collective nav-
igation strategy, 60 virtual e-pucks were
dispersed in a 10m x 10m virtual environ-
ment using the ASEBA Framework [10].
Simulation was used as no e-puck swarm
of adequate size was available and a real
e-puck swarm of similar size would cost in
excess of $50,000. ASEBA provided phys-
ically realistic simulation of the e-puck
swarm and charging platform, the e-puck
model simulating all sensors and motors
with the exception of the speaker and mi-
crophones (see Figure 5). We ported the
Swis2D audio plugin from Webots [3] to
ASEBA, which provides 2D audio simu-
lation, to overcome this limitation. Other physical robotics simulators (such as
Webots) were considered for the simulation component, however ASEBA was
determined to be the most flexible in terms of software customisation and the
sharing of control scripts between the real-world and virtual e-pucks.

3 Algorithms

3.1 E-coli Inspired Gradient Search

We developed an audio-based search strategy by adapting the foraging behaviour
of E. coli bacteria to the capabilities of the e-puck robot. E. coli perform a gra-
dient search on the nutrient in their environment in order to move to the most
favourable location by alternating between two states: tumble and run (Figure
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2). During a tumble, the bacterium briefly rotates on the spot, randomly picking
a new direction to start moving, slightly biased toward the current direction of
travel. During a run, the bacterium moves in a relatively straight line for an
amount of time, the length of which increases when the bacterium detects that
it is moving toward a more favourable nutrient source, or decreases if moving
toward a noxious substance. Eventually, convergence on the most favourable lo-
cation in the environment occurs. The foraging behaviour has previously been
applied to distributed function minimisation problems, and identified as a po-
tential search strategy for mobile agents [13]. Note that whilst E. coli occur in
groups, this foraging behaviour is conducted individually without real interac-
tions, so that this is not a true collective swarming mechanism.

Fig. 2. E. coli bacterium foraging behaviour [13]

Whereas the E. coli
bacterium constantly mea-
sures the improvement
or deterioration in nu-
trient level while moving
through its environment,
the motor noise of the e-
puck is such that ambient
audio can be accurately
sampled only when the robot is stationary. Consequently, rather than modu-
lating the length of the current run phase based on the measured gradient, we
instead modulate the length of the following run. Also, following a run that re-
sults in a volume increase, we select a new direction randomly from a normal
distribution around the current heading, otherwise the new direction is selected
uniformly random over all directions. The search terminates when both volume
and proximity measurements indicate that the target is reached.

Although initial experiments demonstrated the search strategy to be effective,
we observed instances where an unfortunate combination of tumbles would result
in the robot passing within a few centimetres of the target without acquiring
it. To improve the search performance at close proximity to the audio beacon,
two further behaviours were activated when the robot measured a volume v
greater than some pre-determined thresholds. This threshold Vwarm is selected
sufficiently high to guarantee the robot is near the beacon and not in some local
maximum elsewhere. The area in which the robot measures a volume level above
this threshold is defined as the warm zone. Once the robot enters the warm zone,
if a subsequent run phase results in a measurement below this threshold, the
robot backtracks to the previous location (Fig. 3a, 3b). The second threshold,
Vhot, is selected sufficiently high to guarantee the robot is within approximately
5cm of the beacon, allowing for the proximity sensors to be used to steer the
robot directly to the target (Fig. 3c, 3d).

Algorithm 3.1 describes the bacterial search adapted for the e-puck robot.
N(a, b) is defined as a random number taken from a normal distribution with
mean a and standard deviation b. U(a, b) is a random number taken from
a uniform distribution between a and b. Lmin and Lmax are constants
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representing minimum and maximum drive lengths, whilst Vmin and Vmax are
constants representing the noise floor volume of the e-puck microphone and the
volume it measures when at the target. vlast is the volume measured at the e-
puck’s previous location. A series of experiments were conducted to quantify the
performance of this simple algorithm compared to a random walk baseline. The
results and analysis are given in Section 4.

Algorithm 3.1. bacterialSearch()

while target not found

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if v < Vwarm < vlast
then backtrack

else

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if Vmin < v > vlast

then

{
rotate N(0, 60)

drive length = (Lmax−Lmin)(v−vlast)
Vmax−Vmin

else

{
rotate U(0, 360)
drive length = Vmin

if v > Vhot

then drive towards closest object
else drive forward

Fig. 3. E-puck searching without backtracking (a) and with backtracking (b); without
proximity assistance (c), and with proximity assistance (d)

3.2 DLA Inspired Navigation

The usable area of the single-agent bacterial search is constrained to the area in
which the beacon is audible. To extend this area when operating as part of an
e-puck swarm, a collective navigation strategy based on DLA was implemented.
DLA is a natural process where particles aggregate in a random manner, forming
fractal-like tree structures rooted at the starting particle (Figure 4). The process
was first described in [14], and examples in nature include dust and snowflake
formation, coral growth and the path taken by lightning. The simple, self or-
ganised process generates a space-filling structure from a fixed point, making it
a suitable approach for our e-puck swarm to construct a traversable structure
rooted at the charging platform.
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3.3 Implementation

In contrast to the real-world audio beacon which emitted pink noise, the sim-
ulated audio beacon emits a single tone, such that it is identifiable as the root
of the DLA structure. The collective navigation strategy is initiated when an
agent beyond the audible range of the charging platform requires a recharge,
and sounds a call for help using a specific frequency. The assisting agents re-
transmit the call for help throughout the swarm and begin random walking.

Fig. 4. Simulated DLA structure [1]

Each assistant random walks until in
range of a DLA tone (either the signal
of the charging platform itself or that of
an aggregated agent), at which point it
stops (aggregates) and retransmits the de-
tected DLA tone at a slightly higher fre-
quency. The result is a tree of audible
nodes with the lowest frequency at the
charging platform. Each node remains in
this state until the DLA tone it initially
detected (its parent) is disabled, at which
time the agent disables its own tone and
returns to its primary task.

The agent requiring recharging contin-
uously performs the bacterial search on
the lowest audible DLA tone. As it approaches each non-root node in the struc-
ture, the node’s parent becomes audible and becomes the new target. When the
charging platform detects the agent has boarded, the root DLA tone is disabled,
releasing the entire swarm back to its primary task. As the agent traverses the
structure, node agents that detect it on its way past (using proximity sensors)
disconnect from the structure, as they are no longer required. This causes dis-
connection of all the node’s children, dramatically reducing the amount of total
agent time committed to the process. Figure 7 depicts the states and decisions
that each agent implements as part of the strategy.

3.4 Synchronisation

Scenarios were observed where one or more assisting agents broke away from
the swarm during the random walk state, but never aggregated onto the DLA
structure before the recharge request was completed. In such cases, once the
disconnected agents(s) rejoined, the swarm was incorrectly commanded back
into the random walk state, even though no agent required recharging.

With no guarantee of a fully connected swarm with respect to audio com-
munication (and thus no inherent temporal ordering of events), this issue was
resolved by having each agent maintain a clock, synchronised with the swarm.
Alert signals are no longer transmitted on one single frequency, but can fall
anywhere in the range Alo to Ahi. The frequency of an alert signal is defined
as Alo + talert, where talert is the time the alert was initiated. Each agent also
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Fig. 5. Alert signal from initiating agent (labelled “low battery”) is being relayed
through the swarm. The red cylinder (centre bottom) is the charging platform beacon;
yellow lines indicate audio communication.

Fig. 6. DLA structure has been constructed (red/orange lines), agent is travers-
ing it toward the charging platform. See also http://www.csse.monash.edu.au/

∼berndm/autonomous epuck/.

maintains a record of the most recent time they transitioned back to the primary
task state, trelease. An agent that detects an alert signal a, first confirms that
a − Alo > trelease. If it is, it relays the alert as normal. If not, the alert is ig-
nored and the agent with the more recent trelease time updates the transmitting
agent’s stale release time. To do so, we define another frequency range Rlo to
Rhi, where Rlo > Ahi. The updating agent transmits a tone on Rlow + trelease,
and upon reception, the stale agent updates its own trelease and returns to the
primary task state.

http://www.csse.monash.edu.au/~berndm/autonomous_epuck/
http://www.csse.monash.edu.au/~berndm/autonomous_epuck/
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Fig. 7. Statechart of DLA Collective Navigation Strategy

The above modifications ensured that break-away agents were brought up
to date with the state of the swarm upon their return, however it did so with
the added cost of requiring agent’s clocks to be synchronised. It is hoped that
our navigation strategy can be improved by solving the synchronisation problem
through some decentralised means.

4 Results and Discussion

The single-agent bacterial search was compared to a pure random walk using
the target acquisitions completed over 150 minutes (hence variation in n acqui-
sitions). Albeit a low baseline, we were interested in demonstrating an effective
search strategy with minimal processing and memory requirements. Between
each target acquisition, the robot performed a random walk to a new starting
position in the environment. The results indicated that the bacterial algorithm
performed significantly better than the random walk, even without the back-
tracking and proximity assistance at close range. Table 1 shows a comparison
between the algorithms.

We compared the DLA collective navigation strategy to an individual agent
search in identically configured simulation environments, such that the perfor-
mance improvement could be quantified and assessed with respect to the time
cost to the swarm. To measure the individual (unassisted) search performance,
an agent was positioned toward the opposing wall of the environment from the
charging platform, well beyond audible range. Unsurprisingly, the time to com-
plete a search from outside the audible range is extremely large, as it was simply
random walking until coming within range. A total of 21 experiments were com-
pleted, with a mean search time of 01:37:27 (hh:mm:ss), and a standard deviation
of 01:12:58. The high variance stems from the fact that the search starts out-
side of the reach of the audio beacon so that initially a pure random walk is
performed.
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Table 1. Comparison of e-puck search algorithms (150 min. observation time)

Algorithm n acquisitions μ σ

Random walk 14 8m 56s 6m 38s

Bacterial search 37 3m 05s 2m 50s

Bact. search with backtracking / prox. assist 47 2m 29s 1m 52s

Performance of the collective navigation strategy was measured by deploying
a swarm of 60 agents randomly in the environment, one agent initiating an
alert from the same location that the individual search was measured from.
As evident in the dramatically improved search time, the collective navigation
strategy proved very effective, however it did so with a substantial time-cost
to the swarm. Table 2 shows the summary of results, where tsearch is the total
search time from when the agent sounded an alert until arriving at the charging
platform, and tcost is the total time committed to the process by assisting agents.
ttraversal is the search time from the moment the searching agent makes contact
with the DLA structure through to search completion, provided to distinguish
the DLA assembly time from the structure traversal time.

Table 2. Performance of collective search over 22 experiments (hh:mm:ss)

μ σ

tsearch 00:15:06 00:06:46

ttraversal 00:09:13 00:05:33

tcost 10:58:19 05:40:20

The single-agent bacterial search proved to be an effective means of perform-
ing a gradient search with minimal processing requirements on an audio source.
It is conceivable that the search strategy could be implemented on miniaturised
robots with simple analog circuitry, making it potentially very useful for swarm
robotics applications requiring basic localisation capability with minimal hard-
ware. Whilst our experiments were limited to a simple rectangular environment,
it is anticipated that the search may also perform well in more complex environ-
ments, as audio does not require a sightline for detection, and effectively provides
a profile of the physical environment through the propagation and reflection of
sound waves.

The DLA collective navigation strategy was demonstrated in simulation to
successfully guide an agent toward its charging platform from outside audible
range. If only a single agent needs to be guided, the experiment results indicate
that the time cost to the swarm outweighs the gain in single-agent search time.
However, in applications where multiple agents need to home in on the target,
such as where collective transport is required, the net time-cost amortises quickly.
In fact, the strategy would break even in total time cost with just 7 of the 60
agents homing in on the target. At the same time the actual duration of the



Collective Robot Navigation Using Diffusion Limited Aggregation 275

homing phase is dramatically reduced. Similarly, applications where loss of a
single agent is unacceptable would also warrant this approach.

The experiments conducted on both the e-puck and the simulated e-puck
swarm were limited to specific environment configurations, and we consider them
proof-of-concept only. With performance data for more environment configura-
tions and specifically different swarm densities, a more complete analysis of both
search strategies’ characteristics could be ascertained.

Variations on the strategy could be applied to other behavioural requirements,
for example the navigation of an entire swarm to a single location (collective
homing) or the retrieval of some object to a pre-defined point (collaborative
search-and-retrieve). In a more general sense, such a strategy may be useful for
any application requiring navigation toward a single target from anywhere in
an environment. Our research demonstrates the usefulness of two very simple
nature-inspired strategies, single-agent bacterial search and DLA-based collabo-
rative search, as the basis of such applications.
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