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Abstract. Global Equilibrium Search (GES) is a meta-heuristic frame-
work that shares similar ideas with the simulated annealing method.
GES accumulates a compact set of information about the search space
to generate promising initial solutions for the techniques that require
a starting solution, such as the simple local search method. GES has
been successful for many classic discrete optimization problems: the un-
constrained quadratic programming problem, the maximum satisfiability
problem, the max-cut problem, the multidimensional knapsack problem
and the job-shop scheduling problem. GES provides state-of-the-art per-
formance on all of these domains when compared to the current best
known algorithms from the literature. GES algorithm can be naturally
extended for parallel computing as it performs search simultaneously in
distinct areas of the solution space. In this talk, we provide an overview
of Global Equilibrium Search and discuss some successful applications.

Keywords: discrete optimization, meta-heuristics, global equilibrium
search.

1 Method Description

Simulated annealing (SA) [1] is a randomized metaheuristic approach that was
successfully applied to a variety of discrete optimization problems. Usually, the
search process under SA consists of a sequence of transitions between feasible
solutions that is guided by certain probabilistic rules. Standard simulated anneal-
ing is a memoryless optimization approach – the transitions between solutions are
independent from the previous search states. Global equilibrium search (GES) [2]
shares similar ideas, but, unlike simulated annealing, GES uses adaptive memory
structures to collect information about visited solutions, and actively uses this
knowledge to control future transitions.
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Consider a general formulation of a combinatorial optimization problem with
binary variables:

min{f(x)|x ∈ D ⊂ Bn}, (1)

where Bn is a set of all n-dimensional vectors, whose components are either 1
or 0, and f(x) is an objective function. At each stage of the simulated annealing
method, a set of solutions N(x) ∈ D that belong to a user-defined neighborhood
of x is generated according to some predefined rule. The method sequentially
evaluates N(x), and moves from the current solution to one of the solutions
in N(x) based on the Metropolis acceptance criterion [3], which describes the
change of states in thermodynamic systems. The transition from x to y ∈ N(x)
happens with the probability P (x → y), which depends on a temperature pa-
rameter μ:

P (x → y) =

{
exp(−μ[f(y)− f(x)]), if f(x) ≤ f(y);

1 if f(x) > f(y).

Given a sufficient number of iterations with constant temperature parameter μ,
the SA method will converge to an equilibrium state. If we decide to terminate
it after reaching the equilibrium, then the final solution – which can be modeled
by a random vector ξ(μ, ω) – will follow a Boltzmann distribution [4]:

P{ξ(μ, ω) = x} =

⎧⎪⎪⎨
⎪⎪⎩

exp(−μf(x))∑
x∈D

exp(−μf(x))
, x ∈ D

0, x /∈ D.

(2)

The set of feasible solutions D can be represented as a union of two disjoint
subsets: D1

j = {x | x ∈ D, xj = 1}, and D0
j = {x | x ∈ D, xj = 0}, representing

feasible solutions with the j-th component equal to 1 or 0 respectively. The
probability that the j-th component of random vector ξ(μ) is equal to 1 can be
expressed as

πj(μ) ≡ P{ξj(μ) = 1} =

∑
x∈D1

j
exp(−μf(x))∑

x∈D exp(−μf(x))
. (3)

The stationary probabilities πj(μ) can be used to generate random vectors that
have approximately Boltzmann distribution provided by (2). Usually, ξj(μ) and
ξi(μ) are not independent for all i �= j, therefore we can only achieve an approx-
imation of (2) when generating random solutions by fixing their components
independently according to (3). GES collects information about some solutions
from D and uses it to approximate the equilibrium distribution (2).

Let S be a subset ofD; S1
j = {x | x ∈ S, xj = 1}, and S0

j = {x | x ∈ S, xj = 0}.
For example, this set can contain all local optima discovered in the past search
stages. Instead of explicitly storing the solutions in S, it is sufficient to store
only the values that are required to approximate (3). Specifically, we set:



GES Algorithms for Combinatorial Optimization Problems 279

Z(μ) =
∑
x∈S

exp(−μ[f(x)−min
x∈S

f(x)]) (4)

Z1
j (μ) =

∑
x∈S1

j

exp(−μ[f(x)−min
x∈S

f(x)]) (5)

Every time a new solution is included in S, these memory structures can be
updated by adding the corresponding terms to (4) and (5), without storing
complete solutions with all attributes. These values are scaled using the value
of the best objective function in S, min

x∈S
f(x). Whenever the best objective is

improved by a newly found solution, Z(μ) and Z1
j (μ) are rescaled by multiplying

each value by exp(xoldbest − xnewbest), where xoldbest and xnewbest are the old
best objective value and the new best objective value, respectively.

Using these memory structures, the stationary probabilities πj(μ) from (3)
can be approximated as

pj(μ) =
Z1
j (μ)

Z(μ)
. (6)

1.1 Intensification and Diversification

GES generates solutions according to the distribution defined by (6), or applies
a sequence of perturbations to the components of a given solution guided by (6),
which is usually more efficient in practice. The latter approach to generating new
solutions should be used when a single perturbation might lead to an infeasible
solution, in which case such perturbations are simply prohibited.

By increasing the value of the temperature parameter we can generate solu-
tions that more closely resemble the best solution in the set of known solutions
S. Let xmin ∈ S denote the best solution in S: f(xmin) = min

x∈S
f(x). If all other

solutions in S have larger objective functions, then

lim
μ→∞ pj(μ) = xmin

j .

This follows from the definition of pj(μ) and the fact that limμ→∞ Z(μ) = 1. This
property is used in GES to alternate between diversification and intensification
stages using a monotonically increasing sequence of temperature parameters:
μ1, μ2, . . ., μK . In order to calculate pj(μk) for all temperature values from this
sequence, we need to store (n+1) ·K values corresponding to Z1

j (μk) and Z(μk),
where n is the number of binary variables in the problem definition.

The specific values for the temperature parameters are usually calculated
using simple recursive formulas: μ0 = 0, μk+1 = αμk for k = 1, . . . ,K − 1. The
parameters involved in this recursion (μ1, α and K) are chosen to guarantee the
convergence to the best solution in the set S:

‖xmin
j − pKj ‖ ≈ 0
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Below, we will address the dynamic adjustment of the temperature schedule that
can be easily implemented in practice.

1.2 Alternative Memory Implementations

Even for small values of the temperature parameter μ, the expression given
by (6) can provide biased probabilities. For example, if we generate solutions
with temperature equal to zero and the set S contains only solutions with jth
component equal to 1, then the probability pj(0) = 1. To deal with this bias,
one can use alternative memory implementations.

For example, the probabilities can be approximated using the best objective
values corresponding to each component:

f0
j =

{
min{f(x) : x ∈ S0

j } if |S0
j | �= 0

∞ otherwise

f1
j =

{
min{f(x) : x ∈ S1

j } if |S1
j | �= 0

∞ otherwise

Let xmin be a solution from the set S with a minimum value: f(xmin) =
min{f(x) : x ∈ S}. The probability pj(μ) can be approximated as:

pj(μ) =
exp(−μ[f1

j − f(xmin)])

exp(−μ[f1
j − f(xmin)]) + exp(−μ[f0

j − f(xmin)])
(7)

In Figure 1, we present a pseudo-code of the procedure that calculates the gener-
ation probabilities using f1

j and f0
j . To achieve convergence to the best solution

in the set S when using Formula (7), we penalize solutions that have the same
objective value as xmin (Figure 1, lines 10–13; 20–23). In addition, if S1

j (or S0
j )

is empty, one can use the maximum absolute difference between objective values
instead of f1

j − f(xmin) (f0
j − f(xmin)) to avoid premature convergence (Figure

1, lines 5, 15).
The general scheme of the GES method is presented in Figure 2. In the begin-

ning memory structures are initialized by a randomly generated solution. The
temperature cycle is repeated until nfailmax cycles without improvement to
the best found solution, xbest. Generation probabilities are recalculated at every
temperature stage using the corresponding temperature parameter. These prob-
abilities are used to generate ngen solutions that are used as initial points for
local search procedure. Locally-optimal solutions are used to update the adaptive
memory structures, which will affect the future generation probabilities.

1.3 Parallel Implementations

GES algorithm can be naturally extended for parallel computing as it performs
search simultaneously in distinct areas of the solution space. One can trivially
accelerate GES by initiating a set of copies of GES procedures with different ran-
dom seeds. Due to the randomness, each copy will follow a distinct search trajec-
tory, which often leads to significant parallel acceleration in practice [5]. Further
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Require: µ – temperature parameter µ, xmin – current best solution, f0 and f1 –
vectors of the best object values corresponding to each component, n – number
of solution components;

1: maxdif = max
j
{abs(f0

j − f1
j ) : f

1
j <∞; f0

j <∞; }
2: sum0 = sum1 = 0
3: for j = 1 to n do
4: if f0

j =∞ then
5: sum0 = sum0 + exp(−µ ·maxdif)
6: else
7: if f0

j > f(xmin) then
8: sum0 = sum0 + exp(−µ[f0

j − f(xmin)])
9: else
10: if xmin

j = 0 then
11: sum0 = sum0 + 1
12: else
13: sum0 = sum0 + exp(−µ)
14: if f1

j =∞ then
15: sum1 = sum1 + exp(−µ ·maxdif)
16: else
17: if f1

j > f(xmin) then
18: sum1 = sum1 + exp(−µ[f1

j − f(xmin)])
19: else
20: if xmin

j = 1 then
21: sum1 = sum1 + 1
22: else
23: sum1 = sum1 + exp(−µ)
24: pi(µ) =

sum1
sum1+sum0

25: return p(µ)

Fig. 1. Calculation of the transition probabilities

improvements can be achieved by sharing the best found solutions and/or the
adaptive memory structures (for example, by sending the updates to vectors
f0 and f1

j ) between different copies. Such sharing is equivalent to increasing
the number of solutions, ngen, generated at each temperature stage of GES
algorithm.

2 Applications

Global equilibrium search has a number of advantages when compared to the
simulated annealing method. Firstly, the presence of adaptive memory allows
GES to outperform SA in terms of solution quality and computational speed.
Its performance was tested on classic optimization problems that capture the
complexities of modern optimization applications. Here we mention some of these
applications and provide detailed results for the quadratic assignment problem.
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Require: µ – vector of temperature values, K – number of temperature stages,
maxnfail – restart parameter, ngen – # of solutions generated during each stage

Ensure:
1: xbest = construct random solution; S={xbest}
2: while stopping criterion = FALSE do
3: x← construct random solution
4: xmin = x
5: S = {xmin} (set of known solutions)
6: for nfail = 0 to nfailmax do
7: xold = xmin

8: for k = 0 to K do
9: p(µk) = calculate generation probabilities(S, µk)
10: for g = 0 to ngen do
11: x = generate solution(x, p(µk))
12: x = local search method(x)
13: S = S ∪ x
14: xmin = argmin{f(x) : x ∈ S}
15: if f(xmin) < f(xbest) then
16: xbest = xmin

17: if f(xold) > f(xmin) then
18: nfail = 0
19: return xbest

Fig. 2. Pseudo-code of the GES method

2.1 Unconstrained Binary Quadratic Problem

One of the well-known and most interesting classes of integer optimization prob-
lems is the maximization of the quadratic 0–1 function:

max
x∈{0,1}n

f(x) =

n∑
i=1

n∑
j=1

qijxixj , (8)

where qij are elements of an n×n symmetric real matrix Q ∈ R
n×n. This prob-

lem is referred to as an unconstrained binary quadratic programming problem.
Many fundamental problems in science, engineering, finance, medicine and other
diverse areas can be formulated as quadratic binary programming problems.
Quadratic functions with binary variables naturally arise in modeling selections
and interactions.

GES was applied to a wide spectrum of large-scale instances of the uncon-
strained binary quadratic programming problem [6]. The computational experi-
ments revealed favorable performance compared to the best known heuristics on
a set of publicly available benchmark instances [7,8,9].

2.2 Maximum Satisfiability Problem

Maximum satisfiability problem consists of finding an assignment of boolean
variables that satisfies as many given logical clauses as possible. In the weighted
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maximum satisfiability problem each logical clause has a predetermined positive
weight, and the goal is to search for an assignment, which maximizes the total
weight of the satisfied clauses.

Among various heuristic approaches for solving this problem – such as, al-
gorithms based on reactive tabu search [10], simulated annealing [11], GRASP
[12,13,14,15,16], iterated local search [17] and guided local search [18] – GES
provides the state-of-the-art performance [19] on many benchmark instances
[20,21,22,23].

2.3 Quadratic Assignment Problem

The Quadratic Assignment Problem (QAP) stated for the first time by Kooper
and Beckman in 1957 is a well known combinatorial optimization problem and
remains one of the greatest challenges in the field [24], [25]. Firstly it was for-
mulated in the context of the plant location problem. Given n facilities with
some physical products flow between them and n locations with known pairwise
distances, one should determine to which location each facility must be assigned
in order to minimize total distance × flow.

Mathematically QAP can be formulated as follows: let An×n = a(i, j) be a
matrix, where ai,jR

+ represents product flow between facilities fi and fj, let
Bn×n = (bi,j) be a matrix, where bi,j ∈ R+ represents the distance between
locations li and lj. Let p : {1, . . . , n} → {1, . . . , n} be a permutation of integers.
The cost of a permutation is defined as follows:

c(p) =

n∑
i=1

n∑
j=1

aijbp(i)p(j).

The goal is to find a permutation p∗ with a minimal cost. The QAP is well
known to be strongly NP-hard, and even small instances may require long com-
putational time. A number of practical problems can be formulated as QAP.
Among those are problems dealing with backboard wiring, scheduling, manufac-
turing, statistical data analysis, typewriter keyboard design, image processing,
turbine balancing and so on [25], [26].

We performed a series of computational experiments on well known
benchmark problems from the QAPLIB library [27] (online version is available
at http://www.opt.math.tu-graz.ac.at/qaplib/). In our implementation we used
Tabu Search algorithm as a local search method [28]. The neighborhood of a
given permutation p̂ was defined as N(p̂) = {p : ‖p − p̂‖ = 2}, where ‖ · ‖
denotes Hamming distance.

We compared our algorithm to Robust Tabu search (RoTabu), Ant Colony
and Simulated Annealing (SA) algorithms (the codes for these algorithms were
obtained from QAPLIB resource as well). Each algorithm was executed on each
instance 10 times. The experiments were performed on a 3GHz AMD computer.
In Table 1 and Table 2 we report the average deviation (in %) between the best
solution found by the algorithm and the best known solution.



284 O. Shylo, D. Korenkevych, and P.M. Pardalos

Table 1. Experiments on real world instances. Instance - problem instance name,
n - size of the instance, BKS - best known solution value, time - maximum allowed
computational time in seconds.

Instance n BKS RoTabu SA Ant Colony GES time, s

bur26a 26 5426670 0.03 0.52 0.02 0.03 0.1
bur26b 26 3817852 0.09 0.32 0.03 0.07 0.1
bur26c 26 5426795 0.03 0.29 0 0 0.1
bur26d 26 3821225 0.05 0.10 0 0 0.1
bur26e 26 5386879 0.01 0.18 0 0 0.1
bur26f 26 3782044 0.01 0.06 0 0 0.1
bur26g 26 10117172 0.01 0.30 0 0 0.1
bur26h 26 7098658 0.13 0.13 0 0 0.1
chr25a 25 3796 4.23 45.5 1.24 0 2
nug30 30 6124 0.04 5.29 0.15 0 2
kra30a 30 88900 0 3.77 0.70 0 4
kra30b 30 91420 0.01 3.59 0.04 0.01 4
tai64c 64 1855928 0.37 1.28 0 0 1
tai20b 20 122455319 0.05 8.75 0.09 0 0.1
tai25b 25 344355646 0.02 2.82 0 0 0.5
tai30b 30 637117113 0.04 2.66 0 0 1
tai35b 35 283315445 0.1 3.09 0 0 2
tai40b 40 637117113 0.43 2.12 0.11 0 2
tai50b 50 458821517 1.58 0.57 0.26 0 8
tai60b 60 608215054 1.05 0.66 0.32 0 20
tai80b 80 818415043 0.84 1.43 0.94 0.12 40

Table 2. Experiments on randomly generated instances. Instance - problem instance
name, n - size of the instance, BKS - best known solution value, time - maximum
allowed computational time in seconds.

Instance n BKS RoTabu SA Ant Colony GES time, s

tai20a 20 703482 0.05 0.55 0.44 0.06 2.5
tai25a 25 1167256 0 0.93 1.5 0 5
tai30a 30 1818146 0.29 0.47 0.93 0.03 7.5
tai35a 35 2422002 0.63 0.86 1.14 0.16 10
tai40a 40 3139370 0.78 1.01 1.43 0.30 30
tai50a 50 4941410 1.04 1.37 1.75 0.64 45
tai60a 60 7205962 1.17 1.25 1.94 0.84 60
tai80a 80 13546960 1.28 1.07 1.39 0.62 120

3 Conclusions

One of the most important qualities of GES is its ability to process and uti-
lize the solutions that are obtained by different search techniques. GES offers
a mechanism of information processing that can be used to organize an intelligent
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multi-start search that involve different optimization techniques. This collabora-
tive functionality can be effectively used in parallel implementations. Numerous
successful applications on a wide range of combinatorial optimization problems
corroborate the efficiency of the GES method.
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