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Abstract. Sparse matrices emerge in a number of problems in science
and engineering. Typically the efficiency of solvers for such problems
depends crucially on the distances between the first non-zero element in
each row and the main diagonal of the problem’s matrix — a property
assessed by a quantity called the size of the envelope of the matrix. This
depends on the ordering of the variables (i.e., the order of the rows and
columns in the matrix). So, some permutations of the variables may
reduce the envelope size which in turn makes a problem easier to solve.
However, finding the permutation that minimises the envelope size is
an NP-complete problem. In this paper, we introduce a hyper-heuristic
approach based on genetic programming for evolving envelope reduction
algorithms. We evaluate the best of such evolved algorithms on a large
set of standard benchmarks against two state-of-the-art algorithms from
the literature and the best algorithm produced by a modified version
of a previous hyper-heuristic introduced for a related problem. The new
algorithm outperforms these methods by a wide margin, and it is also
extremely efficient.

Keywords: Hyper-Heuristic, Genetic Programming, Envelope Reduc-
tion Problem, Graph Labelling, Sparse Matrices.

1 Background

A substantial number of problems in science and engineering require the solution
of large systems of linear equations. The effectiveness of methods designed to
handle such systems depends critically on finding an ordering for the variables
for which the distances between the first non-zero element in each row and the
main diagonal of the problem’s matrix is small [15]. This property is typically
assessed by a quantity called the size of the envelope of the matrix. Let us start
by providing a formal definition of it.

Let A be an N × N symmetric matrix with entries aij . The row bandwidth
of the ith row of A is defined as follows: bi(A) = i − min {j : aij �= 0}. In other
words, the row bandwidth is the distance (in columns) from the first non-zero
entry in a row to the diagonal [7]. The envelope of matrix A is directly related
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to its row bandwidths, and can be thought of as a function e(i, A) = bi(A) + 1,
which returns the number of elements between the first non-zero entry in a row
and the main diagonal (inclusive). Then the size of the envelope of the matrix
is defined as [20]:

|Env(A)| =
N∑

i=1

e(i, A) .

Finding a permutation of rows and columns of A which minimises the envelope
size |Env(A)| — a problem known as the Envelope Reduction Problem (ERP)
— is the focus of this paper. Since there are N ! possible permutations for an
N × N matrix, the ERP is considered, in general, a very difficult combinatorial
optimisation problem. Indeed, ERP was shown to be NP-complete [3].

1.1 Envelope Reduction Algorithms

A variety of methods have been proposed in order to address the ERP. One of
the earliest heuristic approaches for reducing the bandwidth and envelope size of
sparse matrices was introduced by Cuthill and McKee [6]. Their algorithm (CM)
is still one of the most widely used algorithms to (approximately) solve these
problems. In this method, the nodes in the graph representation of a matrix are
partitioned into equivalence classes based on their distance from a given root
node. The partition is known as level structure for the given node. In CM, the
root node for the level structure is normally chosen from the nodes of minimum
degree in the graph. George [8] observed that renumbering the CM ordering in
a reverse way (RCM) often yielded a result superior to the original ordering.
The GPS algorithm, introduced by Gibbs, Poole and Stockmeyer [10], also uses
level structures, and it is comparable with RCM in terms of solution quality,
while being several times faster. The GK (Gibbs-King) algorithm [9], which is
a variation of GPS, provides considerably better reduction of the envelope in
comparison with the original GPS, but it is often much slower in execution.
The Sloan algorithm [20] offered a significant improvement over the methods
mentioned earlier by introducing a new step in which the ordering obtained
from a variant of the GPS algorithm was locally refined. Adopting a very different
approach Barnard et al. [2] proposed the use of spectral analysis of the Laplacian
matrix associated with the graph representing the non-zero elements in a sparse
matrix as an effective method for the reduction of the envelope of a sparse matrix.
Recently, also a new variation of the GPS algorithm has been presented [21].

1.2 Hyper-Heuristics

The term hyper-heuristic was first introduced by Cowling et al. [5]. According
to their definition, a hyper-heuristic manages the choice of which lower-level
heuristic method should be applied at any given time, depending upon the char-
acteristics of the heuristics and the region of the solution space currently under
exploration. Here, a heuristic is a rule-of-thumb or “educated guess” that reduces
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the search required to find a solution. More generally a hyper-heuristic could be
defined as “heuristics to choose other heuristics” [4]. Here, we embrace a slightly
different definition and see a hyper-heuristic as a search algorithm that explores
the space of problem solvers. Genetic Programming (GP) [13,16] has been very
successfully used as a hyperheuristic. For example, GP has evolved competitive
SAT solvers [1], state-of-the-art or better than state-of-the-art bin packing al-
gorithms [19], particle swarm optimisers [18], evolutionary algorithms [14], and
TSP solvers [11].

In this paper, a hyper-heuristic approach based on GP is introduced for evolv-
ing graph-theoretic envelope reduction algorithms. Our approach is to adopt the
basic ideas of some of the best algorithms for ERP, in particular their use of level
structures, but to evolve the strategy the algorithm uses to construct permuta-
tions.1 The paper is organised as follows: in Sec. 2, we describe the proposed
hyper-heuristic for the solution of the ERP in detail; in Sec. 3, we report the
results of our experiments; and finally, our conclusions are given in Sec. 4.

2 Proposed Hyper-Heuristic

In our method for addressing the ERP, which we call Genetic Hyper-Heuristic
or GHH for brevity, GP is given a training set of matrices as input, and it
produces a novel solver for ERPs as its output. To cope with such a complex
task, following the strategy adopted in previous work [19,12], we provide GHH
with the “skeleton” of a generic level-structure-based ERP solver and we ask GP
to evolve the “brain” of that solver, that is the decision-making element of the
system which prioritises nodes for insertion into a permutation.

A description of GHH is given in Algorithm 1. For efficiency, GHH computes
the fitness of all individuals in a new generation incrementally, by testing the
whole population on a problem in the training set before moving to the next
(Step 4). For the same reason, we operate on the graph representation of sparse
matrices instead of directly acting on the matrices. Note also that, unlike previ-
ous solvers (including our method [12]) which prioritise nodes at each level in a
level structure independently, GHH is capable of exploring and sorting vertices
located beyond a specific level. More details on Algorithm 1 are provided below.

2.1 Our GP System

We used a tree-based GP system with some additional decoding steps required
for the ERP. The initial population was generated randomly using a modified
version of the ramped half-and-half method [13,16] using the functions and ter-
minals shown in Table 1 (more on these below). As shown in Algorithm 1, the
1 To the best of our knowledge, no prior attempt to use a hyper-heuristic to evolve ERP

solvers has been reported in the literature. However, we conducted previous research
with a hyper-heuristic for the related bandwidth minimisation problem where the
objective is to minimise maxi bi(A) [12]. We will compare our new envelope reduction
approach against an envelope-reduction version of such hyper-heuristic in Sec. 3.



290 B. Koohestani and R. Poli

Algorithm 1. GHH for ERP
1: Randomly generate an initial population of programs from the available primitives.
2: repeat
3: Initialise the fitness of each program p ∈ population to 0.
4: for each instance Gi ∈ training set of ERPs do
5: Select a starting vertex s and construct a level structure rooted at s.
6: for each program p ∈ population do
7: l ← empty list
8: for each vertex v ∈ V (Gi) do
9: Insert s into array perm [1...n] and update l.

10: Scan l and if l.count = 0, then break.
11: for each vertex v′ ∈ l do
12: Execute p.
13: end for
14: Create permutation σ represented by p.
15: Sort vertices in l in order given by σ.
16: s← first element of the ordered list l; l.remove(s).
17: end for
18: Apply perm to the adjacency list of the graph Gi.
19: Compute the envelope.
20: fitness[p] = fitness[p] + envelope(Gi, p).
21: end for
22: end for
23: Apply selection.
24: Produce a new generation of individual programs.
25: until the termination condition is met.
26: return the best program tree.

Table 1. The functions and terminals used in our GP system

Primitive set Arity Description

+ 2 Adds two inputs
- 2 Subtracts second input from first input
∗ 2 Multiplies two inputs
ED 0 Returns the number of unvisited vertices connected to each vertex
DFSV 0 Returns the distance from starting vertex for each vertex
Constants 0 Uniformly-distributed random constants in the interval [−1.0,+1.0]

fitness of a program tree (to be minimised) is the sum of the envelopes of the
solutions that it creates when run on each problem instance in the training set.

The parameters of our GP runs are given in Table 2.2 Tournament selec-
tion was used. New individuals were created by applying reproduction, sub-tree
crossover and point mutation. We also used elitism to preserve the overall best
found solution. Also, to control excessive code growth, the Tarpeian method [17]
was utilised in the system. The termination criterion used was based on the
predetermined maximum number of generations to be run.

2.2 Specialised Primitives

To make it possible for GHH to exploit the new possibilities offered by its ability
to explore and prioritise vertices located at different depths in the level structure,
we provided two special primitives, ED and DFSV (see Table 1).
2 Parameters were selected after conducting a number of preliminary experiments,

considering both the quality of solutions and run times.
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Table 2. Parameters used for our runs

Parameter Value

Maximum Number of Generations 100
Maximum Depth of Initial Programs 3
Population Size 2000
Tournament Size 4
Elitism Rate 0.1%
Reproduction Rate 0.9%
Crossover Rate 70%
Mutation Rate 29%
Mutation Per Node 0.05%

The primitive ED, which stands for Effective Degree, is motivated by the com-
mon method of sorting vertices in a level structure based on their degree in
classical ERP solvers. The degree of a vertex is the number of vertices connected
to that vertex. There is no doubt that this is of fundamental importance in node
ordering algorithms for ERP. However, we found that prioritising using the prim-
itive ED, which does not include the vertices already visited when counting the
number of vertices connected to a vertex, provides more accurate guidance.

In a level structure, all vertices in a level are located at the same distances
from the root vertex. Since in traditional ERP solvers nodes are sorted only
within each level before moving to the next, node distance from the root is an
irrelevant feature for such algorithms. However, in GHH, after the first step of
the algorithm, nodes from different levels will be present in the list l. These
nodes will thus have different distances from the root node. The primitive DFSV
captures this information. This may help prioritise vertices and break ties.3

2.3 Vertex Selection

Let us analyse Algorithm 1 from the vertex selection point of view. First, a level
structure rooted at a suitable starting vertex s (vertex of minimum degree or a
pseudo-peripheral vertex ) is constructed (Step 5). Next, an empty list l is formed
for each program p in the population (Step 7). The vertex s is then inserted into
the first position of array perm, and l is updated (Step 9). The update process
includes finding all unvisited vertices connected to s and inserting them into l.
Note that further vertices will sequentially be assigned to s and inserted in the
second, third, etc. positions in perm.

Next, the GP interpreter is called k times, where k is the number of vertices
in l (Step 12). Each call of the interpreter executes the selected program with
respect to the different values returned by ED and DFSV. The outputs obtained
from each execution of the given program are stored in a one dimensional array.
This array is then sorted in ascending order while also recording the position
that each element originally had in the unsorted array. Reading such positions
sequentially from the sorted array produces a permutation associated with the
3 Sloan [20] also uses a distance quantity in his algorithm, but he computes distances

from the end node of a pseudo-diameter.



292 B. Koohestani and R. Poli

original program (Step 14). The vertices located in l are then ordered based on
the permutation generated (Step 15).

In Step 16, the first element of l is then removed and considered as a new
starting vertex. This process is repeated for each vertex in V (Gi) until all the
vertices of graph Gi have been numbered. Finally, perm is applied to the ad-
jacency list of the initial graph (or matrix), a new adjacency list is generated
(Step 18), and its envelope is computed (Step 19).

2.4 Training and Test Sets

We used a training set of 25 benchmark instances Gi from the Harwell-Boeing
sparse matrix collection. This is a collection of standard test matrices aris-
ing from problems in FEM grids, linear systems, least squares, and eigenvalue
calculations from a wide variety of scientific and engineering disciplines. The
benchmark matrices were selected from 5 different sets in this collection, namely
BCSSTRUC1, BCSSTRUC3, CANNES, LANPRO and LSHAPE with sizes rang-
ing from 24 × 24 to 960 × 960. This training set was used only to evolve the
heuristics. The performance of the evolved heuristics was then evaluated using
a completely separate test set of 30 matrices taken from Everstine’s collection
(DWT) and BCSPWR, both included in the Harwell-Boeing database. DWT
set is closely related to CANNES and LSHAPE sets used in our training set in
terms of its discipline and the class of problems. We also picked the six largest
instances from the BCSPWR set, which is in a totally different class compared
to the training set used. We did this to assess how well the generated heuristics
generalised in unseen situations.

3 Results

Ten independent runs of GHH with the training set specified above were per-
formed, and the corresponding best-of-run individual in each was recorded. We
then selected as our overall best evolved heuristic the best program tree from
these ten best-of-run results.4 The simplified version of the best heuristic evolved
by GHH is as follows:

(((((((DFSV + ED) + (ED * ED)) * (((DFSV * ((0.616301555473498 + (DFSV * (DFSV - -
0.156489470580821))) + ((DFSV - -0.778113556456805) * ((DFSV * 0.680593788009413) + (DFSV *
ED))))) - (DFSV - -0.778113556456805)) - 0.273723254573403)) - 0.616301555473498) + (((ED - ED) +
DFSV) - -0.163010843639733)) + ((DFSV + (0.316761550175381 * DFSV)) - 0.889497244679135)) + -
0.00709300954225148)

This function is shown graphically in Figure 1. The function is monotonic in
both ED and DFSV. For small values of ED, nodes closer to the root are preferred
4 Due to the high computational load involved in the use of hyper-heuristics one

can normally only perform a very small number of runs. However, this is normally
considered acceptable since whenever focusing on human-competitive results one is
more interested in the algorithms resulting from the application of a hyper-heuristic
than on the analysis of the hyper-heuristic itself.
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Fig. 1. Plot of the best GHH heuristic

over nodes further away. So, in a highly sparse matrix the algorithm behaves
similarly to CM. However, if there are significant differences in ED values, the
algorithm looks ahead and may prefer a deeper node with a lower ED to a closer
one with a higher ED, thus exhibiting a previously totally unexplored strategy.

We incorporated this heuristic into a level structure system and carried out
experiments with the test set. In order to assess the performance of the heuristic
generated, we compared it against two well-known and high-performance algo-
rithms: RCM and GK. In practice, both algorithms are still among the best and
most widely used methods for envelope reduction. We also tested this heuristic
against GP-HH, which is the best algorithm produced by an envelope-minimising
version of our previous hyper-heuristic method for evolving bandwidth reduction
heuristics [12]. Unlike GHH’s heuristics, GP-HH is constrained to operating at
only one level of a level structure at a time.

Table 3 shows a performance comparison of the algorithms under test. All
results associated with RCM and GK on the DWT set were taken from [20].
Because there were no results available in the literature for the BCSPWR set,
we used the highly enhanced version of the RCM algorithm contained in the
MATLAB library to compute the related envelopes. We do not report the results
of GK on the BCSPWR problems as we did not have access to the original code,
or a reliable software package.

As shown in the table, the results of GHH are extremely encouraging with
respect to the mean of the envelope values and the number of the best results
obtained (shown in the “Wins/Draws” rows). GHH’s best evolved program out-
performs RCM, GK and GP-HH’s best evolved program by a significant margin,
and produces extremely good results for the BCSPWR set.

Our system was implemented in C#, and all the experiments were performed
on an AMD Athlon(tm) Dual-core Processor 2.20 GHz. We measured the time
required for our method to solve each problem instance on this computer. The
running times for DWT 59 (the smallest instance) and BCSPWR10 (the largest
instance) were 0.0307 and 1.0094 seconds, respectively, while the average running
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Table 3. Comparison of GHH’s best evolved program against the RCM and GK algo-
rithms as well as GP-HH’s best evolved program

Envelope

Instance Dimension RCM GK GP-HH GHH

DWT 59 59 × 59 314 314 327 297

DWT 66 66 × 66 217 193 193 194

DWT 72 72 × 72 244 244 355 291

DWT 87 87 × 87 696 682 685 556

DWT 162 162 × 162 1641 1579 1611 1610

DWT 193 193 × 193 5505 4609 4851 5196

DWT 209 209 × 209 3819 4032 3851 3580

DWT 221 221 × 221 2225 2154 2335 2053

DWT 245 245 × 245 4179 3813 4884 3081

DWT 307 307 × 307 8132 8132 8644 7693

DWT 310 310 × 310 3006 3006 3045 2974

DWT 361 361 × 361 5075 5060 5060 5060

DWT 419 419 × 419 8649 8073 8635 7411

DWT 503 503 × 503 15319 15042 15139 13759

DWT 592 592 × 592 11440 10925 11933 11160

DWT 758 758 × 758 8580 8175 8479 8250

DWT 869 869 × 869 19293 15728 16942 15296

DWT 878 878 × 878 22391 19696 22074 21572

DWT 918 918 × 918 23105 20498 22032 22471

DWT 992 992 × 992 38128 34068 37288 37288

DWT 1005 1005 × 1005 43068 40141 41525 38107

DWT 1007 1007 × 1007 24703 22465 24692 24156

DWT 1242 1242 × 1242 50052 52952 50515 44666

DWT 2680 2680 × 2680 105663 99271 105967 92500

Mean 16893.50 15868.83 16710.92 15384.20

Wins/Draws 0/1 8/3 0/2 13/1

BCSPWR05 443 × 443 11227 NA 10246 5377

BCSPWR06 1454 × 1454 64636 NA 55897 29499

BCSPWR07 1612 × 1612 75956 NA 65675 32664

BCSPWR08 1624 × 1624 79811 NA 80057 33045

BCSPWR09 1723 × 1723 80983 NA 76222 42477

BCSPWR10 5300 × 5300 672545 NA 655482 296313

Mean 164193.00 NA 157263.20 73229.16

Wins/Draws 0/0 NA 0/0 6/0

Numbers in bold face are the best results.
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time was 0.1605 seconds. This reveals that our evolved algorithm is not only very
effective but also extremely efficient.

4 Conclusions

We have proposed a hyper-heuristic approach (GHH) based on genetic program-
ming for evolving envelope reduction algorithms. The algorithm is novel not
only from the point of view of being the first to use GP on this problem but
also because it incorporates new ideas for using a level structure system without
its conventional constraints. Also, we have employed two novel features in the
process of prioritising nodes for the construction of permutations.

The best heuristic generated by GHH were compared against two well-known
and high-performance algorithms, i.e., the RCM and GK, as well as the best
heuristic evolved by a hyper-heuristic method we previously developed, on a
large set of standard benchmarks from the Harwell-Boeing sparse matrix col-
lection. GHH’s best evolved heuristic showed remarkable performance, both on
benchmark instances from the same class as the training set and also on large
problem instances from a totally different class, confirming the efficacy of our
approach. The evolved heuristic was also extremely efficient.
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