
A Memetic Approach for the Max-Cut Problem

Qinghua Wu and Jin-Kao Hao�

LERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers Cedex 01, France
{wu,hao}@info.univ-angers.fr

Abstract. The max-cut problem is to partition the vertices of a weighted
graph G = (V,E) into two subsets such that the weight sum of the edges
crossing the two subsets is maximized. This paper presents a memetic
max-cut algorithm (MACUT) that relies on a dedicated multi-parent
crossover operator and a perturbation-based tabu search procedure. Ex-
periments on 30 G-set benchmark instances show that MACUT competes
favorably with 6 state-of-the-art max-cut algorithms, and for 10 instances
improves on the best known results ever reported in the literature.

Keywords: Multi-parent crossover, memetic algorithm, local search,
graph partitioning.

1 Introduction

Consider an undirected graph G = (V,E) with vertex set V = {1, ..., n} and
edge set E ⊂ V ×V . Let wij ∈ Z be the weight associated with edge {i, j} ∈ E.
The well-known max-cut problem is to seek a partition of the vertex set V into
two disjoint subsets S1 ⊂ V and S2 = V \ S1, such that the weight of the cut,
defined as the sum of the weights on the edges connecting the two subsets, is
maximized, i.e., max

∑
u∈S1,v∈S2

wuv. The max-cut problem, more precisely its
weighted version, is one of Karp’s 21 NP-complete problems [10].

The computational challenge of the max-cut problem has motivated a large
number of solution procedures including approximation algorithms, exact meth-
ods and metaheuristics. The approximation approach (see for example [5,9,11])
provides a guaranteed performance, but is generally outperformed by other meth-
ods in computational testing. Recent examples on exact methods include the
cut and price approach [14] and the branch and bound approach [18]. For large
instances, various metaheuristic algorithms have been extensively used to find
high-quality solutions in an acceptable time. Some representative examples in-
clude GRASP [4], ant colony [8], hybrid genetic algorithm [12], tabu search
[16,13,21], scatter search [15], global equilibrium search [19] and maximum neu-
ral network [20].

In this paper, we present a memetic algorithm for the max-cut problem which
is inspired by a very recent algorithm initially designed for the balanced max-
bisection problem [22]. Experiments on a set of 30 well-known benchmark in-
stances show that our memetic approach performs very well compared with state
of the art algorithms.

� Corresponding author.

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part II, LNCS 7492, pp. 297–306, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

298 Q. Wu and J.-K. Hao

2 A Memetic Algorithm for the Max-Cut Problem

2.1 Outline of the Memetic Algorithm

Memetic algorithms are hybrid search methods that typically blend population-
based search and neighborhood-based local search framework. The basic idea
behind memetic approaches is to combine advantages of the crossover that dis-
covers unexplored promising regions of the search space, and local optimization
that finds good solutions by concentrating the search around these regions. The
general architecture of our memetic algorithm for the max-cut problem is sum-
marized in Algorithm 1. From an initial population of solutions which are first
improved by a tabu search procedure, the algorithm carries out a number of evo-
lution cycles. At each cycle, which is also called a generation, m (m ≥ 2) parents
are randomly selected to serve as parents and the crossover operator is applied
to create an offspring solution, which is further optimized by tabu search. Sub-
sequently, the population updating rule decides whether the improved offspring
should be inserted into the population and which existing individual should be
replaced. We describe below the main components of our memetic algorithm.

Algorithm 1. Memetic algorithm for the max-cut problem

Require: A weighted graph G = (V,E,ω), population size p
Ensure: The best solution I∗ found
1: Pop = {I1, ..., Ip} ← GeneratePopulation(p) /* Section 2.3 */
2: I∗ ← Best(Pop)
3: while Stop condition is not verified do
4: (I1, ..., Im) ← ChooseParents(Pop) /*Randomly select m ≥ 2 parents */
5: I0 = Recombination(I1, ..., Im) /* Section 2.5 */
6: I0 ← Tabu Search(I0) /* Section 2.4 */
7: if f(I0) > f(I∗) then
8: I∗ ← I0 /* Update the best solution found so far */
9: end if
10: Pop ← Pool Updating(I0, P op) /* Section 2.6 */
11: end while

2.2 Search Space and Fitness Function

Given a graph G = (V,E) where each edge {i, j} ∈ E is assigned a weight
wij , the search space explored by our memetic algorithm is defined as the set
of all the partitions of V into 2 disjoint subsets, i.e., Ω = {{S1, S2} : S1 ∩ S2 =
∅, S1 ∪ S2 = V }. For a given partition or cut I = {S1, S2}, its fitness f(I) is the
weight of the cutting edges crossing S1 and S2, i.e.,

f(I) =
∑

i∈S1,j∈S2

wij (1)

A Memetic Approach for the Max-Cut Problem 299

2.3 Initial Population

The initial population of size p is constructed as follows. For each individual, we
first assign randomly the vertices of the graph to the two vertex subsets S1 and
S2 to produce a starting solution, and then apply the tabu search improvement
procedure (see section 2.4) to obtain a local optimum. The resulting solution is
added to the population if the solution does not duplicate any solution in the
population. This procedure is repeated until 2 × p solutions are obtained from
which we retain the p best ones to form the initial population.

2.4 Perturbation-Based Tabu Search Improvement

To improve the newly generated offspring created by the crossover, we apply a
perturbation-based tabu search procedure which integrates a periodic perturba-
tion mechanism to bring diversification into the search. The general procedure
of our tabu search method is described in Algorithm 2. Starting from an given
solution, the tabu search procedure is first used to optimize the solution as far as
possible until the best solution found so far cannot be improved within a certain
number of iterations (lines 6–12), then the perturbation mechanism is applied
to the current solution to generate a new starting solution (line 13–15), where-
upon a new round of tabu search is launched. This process is repeated until a
maximum allowed number (MaxIter) of iterations is reached.

Algorithm 2. Perturbation-based tabu search for the max-cut problem

Require: A weighted graph G = (V,E, ω), initial solution I = {S1, S2}, number
Piter of consecutive iterations eclipsed before triggering a perturbation, number
MaxIter of tabu search iterations

Ensure: The best solution I∗ found and f(I∗)
1: I∗ ← I /* Records the best solution found so far */
2: Iter ← 0 /* Iteration counter */
3: Compute the move gain Δv according to Eq. 2 for each vertex v ∈ V .
4: Initiate the tabu list and tabu tenure
5: while Iter < MaxIter do
6: Select an overall best allowed vertex v ∈ V with the maximal move gain (ties

are broken randomly)
7: Move v from its original subset to the opposite set
8: Update the tabu list and the move gain Δv for each v ∈ V
9: if f(I) > f(I∗) then
10: I∗ ← I /* Update the best solution found so far */
11: end if
12: Iter ← Iter+ 1
13: if I∗ not improved after Piter iterations then
14: I ← Perturb(I) /* Apply perturbations to I */
15: end if
16: end while

300 Q. Wu and J.-K. Hao

Our tabu search procedure employs a neighborhood defined by the simple one-
flip move, which consists of moving a vertex v ∈ V from its original subset to the
opposite set. Notice that this neighborhood is larger than the neighborhood used
in [22] where the move operator displaces consecutively two vertices between the
two subsets of the current solution to keep the partition balance.

A

B

C

D

E

F

1
3

1

1
2

1

2

2

2

ΔA = wAB + wAC − wAD − wAE = −1

ΔB = wAB − wBD = 0

ΔC = wAC − wCE − wCF = −1

ΔD = wDF − wAD − wBD = 0

ΔE = wEF − wAE − wCE = −3

ΔF = wDF + wEF − wCF = 3

S1

S2

A

B

C

D

E

F

1

3

1

1

2

1

2

2

2

ΔA = ΔA = −1

ΔB = ΔB = 0

ΔC = ΔC + 2 × wCF = 1

ΔD = ΔD − 2 × wDF = −6

ΔE = ΔE − 2 × wEF = −5

ΔF = −ΔF = −3

S1

S2

Fig. 1. An example of the initialization (left) and update (right) of the move gain

The concept of move gain is used to represent the change in the fitness function
f (Eq. 1, Section 2.2). It expresses how much a cut could be improved if a vertex v
is moved from its subset to the other subset. In our implementation, we employ a
streamlined incremental technique for fast evaluation of move gains. Specifically,
let Δv be the move gain of moving vertex v to the other subset. Then initially,
each move value can be calculated in linear time using the following formula (see
Figure 1 (left)).

Δv =

⎧
⎨

⎩

∑

x∈S1,x �=v

wvx −
∑

y∈S2

wvy , if v ∈ S1

∑

y∈S2,y �=v

wvy −
∑

x∈S1

wvx, otherwise.
(2)

Each time one displaces a vertex v from its set to the other set, one just needs
to update a subset of move gains affected by this move by applying the following
abbreviated calculation (see Figure 1 (right)):

1. Δv = −Δv

2. for each u ∈ V − {v},

Δu =

{
Δu − 2× wuv, if u is in the same set as v before moving v
Δu + 2× wuv, otherwise.

A Memetic Approach for the Max-Cut Problem 301

Then each iteration of our tabu search procedure selects a move with the largest
Δ value (breaking ties randomly) whcih is not forbidden by the tabu list. Each
time a vertex v is moved from its original subset to the opposite subset, v is
forbidden to go back to its original set for a certain number tt of iterations (tt is
called the tabu tenure). The tabu tenure is tuned dynamically according to the
mechanism described in [6]. Finally, a simple aspiration criterion is applied which
allows a move to be performed in spite of being tabu if it leads to a solution
better than the current best solution.

When the best solution cannot be further improved by tabu search, a per-
turbation operator is triggered to vary the local optimum solution from which
a new round of tabu search is launched. The perturbation consists in randomly
moving γ vertices from their original subsets to the opposite subsets where γ is
a parameter which indicates the strength of the perturbation.

2.5 The Multi-parent Crossover

It is commonly admitted that, in order to be efficient, a crossover operator should
be adapted to the problem being solved and should integrate useful problem-
specific knowledge of the given problem.

1
3
4
6
7

S1
1

2
5
8
9
10

S1
2

I1

1
2
3
5
8
9

S2
1

4
6
7
10

S2
2

I2

1
2
5
6
8

S3
1

3
4
7
9
10

S3
2

I3

S1
1

⋂
S2

1

⋂
S3

1 = {1}
S1

1

⋂
S2

1

⋂
S3

2 = {3}
S1

1

⋂
S2

2

⋂
S3

1 = {6}
S1

1

⋂
S2

2

⋂
S3

2 = {4, 7}

S1
2

⋂
S2

1

⋂
S3

1 = {2, 5, 8}
S1

2

⋂
S2

1

⋂
S3

2 = {9}
S1

2

⋂
S2

2

⋂
S3

1 = ∅
S1

2

⋂
S2

2

⋂
S3

2 = {10}

2
5
8

SO
1 = S1

2

⋂
S2

1

⋂
S3

1

remove {2, 5, 8} from I1, I2, I3

1
3
4
6
7

S1
1

9
10

S1
2

I1

1
3
9

S2
1

4
6
7
10

S2
2

I2

1
6

S3
1

3
4
7
9
10

S3
2

I3

S1
1

⋂
S2

1

⋂
S3

1 = {1}
S1

1

⋂
S2

1

⋂
S3

2 = {3}
S1

1

⋂
S2

2

⋂
S3

1 = {6}
S1

1

⋂
S2

2

⋂
S3

2 = {4, 7}

S1
2

⋂
S2

1

⋂
S3

1 = ∅
S1

2

⋂
S2

1

⋂
S3

2 = {9}
S1

2

⋂
S2

2

⋂
S3

1 = ∅
S1

2

⋂
S2

2

⋂
S3

2 = {10}

4
7

SO
2 = S1

1

⋂
S2

2

⋂
S3

2

randomly assign

the left vertices

2
3
5
6
8
10

SO
1

1
4
7
9

SO
2

IO

Fig. 2. An example of the multi-parent crossover operator

The max-cut problem is a grouping problem [3], i.e., a cut is composed of two
distinct groups of vertices. An important principle in crossover design for group-
ing or partitioning problems is to manipulate promising groups of objects rather
than individual objects. Such an approach for designing crossover operators has
been successfully applied to solve a number of grouping problems such as graph
coloring [7,17], bin packing [3] and graph partitioning [1,6].

302 Q. Wu and J.-K. Hao

We propose a grouping-based multi-parent crossover for the max-cut problem,
the proposed crossover tries to preserve subsets (or grouping vertices) of the
vertex partitions which are common to all parent individuals. More formally,
given m chosen parents {I1, ..., Im} (m ≥ 2 is chosen randomly from a given
range, fixed at {2,3,4} in this paper), each cut Ii can be represented as Ii =
{Si

1, S
i
2}. Then we produce an offspring solution IO = {SO

1 , SO
2 } using these m

parent individuals as follows.
We first select one subset from each of the m parents such that the cardinality

of intersection of these chosen subsets is maximal. Then we build SO
1 as the

intersection of these m selected subsets, i.e., SO
1 = arg max{|S1

x1
∩ ... ∩ Sm

xm
| :

x1, ..., xm ∈ {1, 2}}. When SO
1 is built, for each v ∈ SO

1 , v is removed from all the
parent individual subsets in which it occurs. Then, SO

2 is constructed in the same
way as for building SO

1 such that SO
2 = arg max{|S1

x1
∩ ... ∩ Sm

xm
| : x1, ..., xm ∈

{1, 2}}. If a vertex v is left unassigned after this procedure, v is placed either to
SO
1 or SO

2 at random. Figure 2 shows an example with 3 parents.
Notice that this crossover differs from that of [22] for at least two reasons. It

operates on multi-parents (instead of 2 parents) and its offspring is not required
to be a balanced cut.

2.6 The Population Updating Rule

The updating procedure of Pop is invoked each time an offspring solution is
created by the crossover operator and then improved by tabu search. Specifically,
the improved solution IO is added into Pop if IO is distinct from any solution in
Pop and the fitness f(IO) is higher (better) than the worst solution Iw in Pop.
Under this circumstance, we update Pop by replacing Iw with IO.

3 Computational Results

3.1 Experimental Protocol and Benchmark Instances

Our MACUT algorithm is coded in C and compiled using GNU GCC on a PC
(Pentium 2.83GHz CPU and 8G RAM). We show our results on a selection of 30
well-known G-set benchmark graphs (see Table 1)1 [4,13,15,16,19,21]. The first
24 instances (with at most 3000 variables) are the most popular and we include
6 additional larger instances with 5000 to 10000 variables. The edge weights of
these graphs take values in the set {-1,0,1}.

The parameters of our algorithm are determined by a preliminary experiment
on a selection of problem instances and are fixed as follows: population size p =
10, non-improvement tabu search iterations before perturbation Piter = 500,
perturbation strength γ = 150, number of tabu search iterations applied to each
offspring MaxIter = 106, number of parents for crossover m ∈ {2, 3, 4}. Given
the stochastic nature of MACUT, each instance is independently solved 20 times,
each run being limited to 30 minutes for graphs with |V | < 5000 and 120 minutes

1 Available at http://www.stanford.edu/~yyye/yyye/Gset/

http://www.stanford.edu/~yyye/yyye/Gset/

A Memetic Approach for the Max-Cut Problem 303

for graphs with |V | ≥ 5000. These timeout limits are comparable with the stop
conditions used in [15,21].

3.2 Comparisons with the Best Known Results

Table 1 presents the detailed computational results of our MACUT algorithm
as well as its underlying perturbation-based tabu search (PTS). The first two
columns in the table indicate the name and the number of vertices of the
graph. Column 3 presents the best-known objective value fpre in the literature
[4,13,15,16,19,21]. Columns 4 to 7 show MACUT’s results including the best
objective value (fbest), the averaged objective value (favg) over the 20 runs, the
success rate (hit) for reaching fbest and the average CPU time in seconds (time)
over the 20 runs for which the fbest value is reached. The last 4 columns present
the results of its underlying perturbation-based tabu search.

Table 1. Computational results of MACUT and its underlying PTS on 30 G-set max-
cut instances

Instance |V | fpre MACUT PTS

fbest favg hit time(s) fbest favg hit time(s)
G1 800 11624 11624 11624 20/20 8.0 11624 11624 20/20 6.9
G2 800 11620 11620 11620 20/20 6.3 11620 11620 20/20 7.5
G3 800 11622 11622 11622 20/20 3.0 11622 11622 20/20 2.8
G11 800 564 564 564 20/20 2.5 564 564 20/20 1.9
G12 800 556 556 556 20/20 2.5 556 556 20/20 4.0
G13 800 582 582 582 20/20 3.4 582 582 20/20 4.1
G14 800 3064 3064 3063.95 19/20 450.0 3064 3063.9 18/20 661.2
G15 800 3050 3050 3050 20/20 22.1 3050 3050 20/20 24.9
G16 800 3052 3052 3052 20/20 11.6 3052 3052 20/20 10.7
G22 2000 13359 13359 13359 20/20 74.8 13359 13359 20/20 206.2
G23 2000 13342 13344 13344 20/20 280.0 13344 13343.2 12/20 651.7
G24 2000 13337 13337 13337 20/20 252.2 13337 13335.6 20/20 815.6
G32 2000 1410 1410 1410 20/20 349.2 1410 1408.3 3/20 844.6
G33 2000 1382 1382 1382 20/20 391.4 1380 1379.6 18/20 667.6
G34 2000 1384 1384 1384 20/20 220.7 1384 1381.6 2/20 512.4
G35 2000 7685 7686 7685.9 18/20 895.7 7676 7674.2 2/20 1400.9
G36 2000 7677 7679 7676.3 6/20 1395.4 7671 7669.3 1/20 1024.7
G37 2000 7689 7690 7689.65 16/20 903.7 7678 7675.8 1/20 1175.3
G43 1000 6660 6660 6660 20/20 3.6 6660 6660 20/20 3.7
G44 1000 6650 6650 6650 20/20 3.7 6650 6650 20/20 3.0
G45 1000 6654 6654 6654 20/20 18.2 6654 6654 20/20 20.1
G48 3000 6000 6000 6000 20/20 0.2 6000 6000 20/20 0.2
G49 3000 6000 6000 6000 20/20 0.4 6000 6000 20/20 0.4
G50 3000 5880 5880 5880 20/20 15.0 5880 5880 20/20 13.6
G55 5000 10236 10299 10290.8 2/20 2496.0 10235 10221 1/20 1807.3
G56 5000 3934 4016 4006.9 2/20 2897.2 3954 3941.7 1/20 2108.9
G60 7000 14057 14186 14171.1 1/20 5827.1 14065 14048.4 1/20 789.3
G65 8000 5518 5550 5538.7 1/20 5879.6 5488 5479.1 1/20 1476.5
G66 9000 6304 6352 6331.9 1/20 6203.8 6266 6255.2 1/20 2748.2
G67 10000 6894 6934 6922.4 1/20 6761.3 6901 6892.1 1/20 1142.0

From Table 1, we observe that MACUT attains the best-known result for each
of the 30 graphs. More importantly, MACUT improves on the best known results
for 10 instances (indicated in bold). The average computing time required for
MACUT to reach its best results fpre varies from 3 seconds to 1.8 hours. It is
clear that the required time to attain the current best-known objective value of
column fpre is shorter for the 10 graphs where MACUT finds improved solutions.

When comparing MACUT with its underlying PTS, one observes that MA-
CUT outperforms PTS in terms of the best and average objective values. Indeed,

304 Q. Wu and J.-K. Hao

for 10 instances, MACUT is able to achieve better solution with much larger cut
values. For 15 instances, MACUT reaches larger average objective values than
PTS. In particular, it is remarkable that for each of the instances with at least
5000 vertices, MACUT performs far better than PTS. These comparative re-
sults demonstrate that the crossover operator is essential for the success of our
MACUT algorithm and help MACUT to discover better solutions that are not
attainable by our tabu search algorithm alone.

3.3 Comparisons with State-of-Art Max-Cut Algorithm

To further assess the performance of our MACUT approach, we now compare
the results of our MACUT algorithm with the most effective heuristic algorithms
in the literature. Due to the differences among the programming languages, data
structures, compiler options and computers, we do not focus on computing time.
Instead, we are mainly interested in solution quality for this experiment. We just
mention that the timeout limits we used are quite similar to those adopted by
some recent references like [15,21].

Table 2. Comparison with 6 state-of-the-art algorithms in terms of the best results
obtained

Instance fpre fbest Best results of 6 reference max-cut algorithms

GES[19] SS[15] TS-UBQP[13] VNSPR[4] CirCut[2] GRASP-
TS/PM[21]

G1 11624 11624 11624 11624 11624 11621 11624 11624

G2 11620 11620 11620 11620 11620 11615 11617 11620

G3 11622 11622 11622 11622 11620 11622 11622 11620

G11 564 564 564 562 564 564 560 564

G12 556 556 556 552 556 556 552 556

G13 582 582 582 578 580 580 574 582

G14 3064 3064 3064 3060 3061 3055 3058 3063

G15 3050 3050 3050 3049 3050 3043 3049 3050

G16 3052 3052 3052 3045 3052 3043 3045 3052

G22 13359 13359 13359 13346 13359 13295 13346 13349

G23 13342 13344 13342 13317 13342 13290 13317 13332

G24 13337 13337 13337 13303 13337 13276 13314 13324

G32 1410 1410 1410 1398 1406 1396 1390 1406

G33 1382 1382 1382 1362 1378 1376 1360 1374

G34 1384 1384 1384 1364 1378 1372 1368 1376

G35 7685 7686 7685 7668 7678 7635 7670 7661

G36 7677 7679 7677 7660 7660 7632 7660 7660

G37 7689 7690 7689 7664 7664 7643 7666 7670

G43 6660 6660 6660 6656 6660 6659 6656 6660

G44 6650 6650 6650 6648 6639 6642 6643 6649

G45 6654 6654 6654 6642 6652 6646 6652 6654

G48 6000 6000 6000 6000 6000 6000 6000 6000

G49 6000 6000 6000 6000 6000 6000 6000 6000

G50 5800 5800 5880 5880 5880 5880 5880 5880

G55 10236 10299 - - 10236 - - -

G56 3934 4016 - - 3934 - - -

G60 14057 14186 - - 14057 - - -

G65 5518 5550 - - 5518 - - -

G66 6304 6352 - - 6304 - - -

G67 6894 6934 - - 6894 - - -

Better 4 18 18 18 19 12

Equal 20 6 12 6 5 12

Worse 0 0 0 0 0 0

A Memetic Approach for the Max-Cut Problem 305

Table 2 compares our MACUT algorithm with 6 state-of-the-art algorithms,
which cover the best known results for the tested instances. Columns 2 and
3 recall the previous best known results (fpre) and the best results found by
MACUT (fbest). Columns 4 to 9 present the best results obtained by these ref-
erence algorithms. The last three rows show the summary of the comparison
between our MACUT algorithm and these reference algorithms. The rows ‘Bet-
ter’, ‘Equal’ and ‘Worse’ respectively denotes the number of instances for which
our MACUT algorithm gets better, equal and worse results than the correspond-
ing reference algorithm. From the last three rows of Table 2, it is observed that
our MACUT algorithm outperforms the 6 reference algorithms in terms of the
quality of the best solution found. In comparison with each of these 6 algorithm,
MACUT achieves at least 4 better solutions and in no case, MACUT’s result is
worse than that of these reference algorithms. This experiment confirms thus the
effectiveness of the proposed memetic approach to deliver high quality solutions
for the tested 30 benchmark max-cut instances.

4 Conclusions

We presented an effective memetic algorithm for the NP-hard max-cut prob-
lem. The proposed MACUT algorithm integrates a grouping-based multi-parent
crossover which tries to preserve groups of the vertex shared by the parent solu-
tions and a dedicated perturbation-based tabu search procedure. The design of
our crossover operator is motivated by an experimental observation (not shown
in the paper due to the page limit) that groups of vertices are always shared by
high quality solutions. Experimental results confirmed that the crossover oper-
ator boosts the performance of the algorithm and helps the search to discover
high quality solutions unachievable by a local search algorithm alone. The exper-
iments of MACUT on 30 well-known G-set benchmark instances demonstrated,
by providing new best results for 10 instances, its competitiveness compared to 6
state-of-the-art algorithms. Additional studies are needed to better understand
the proposed algorithm.

Acknowledgment. We are grateful to the referees for their comments and
questions which helped us to improve the paper. The work is partially supported
by the RaDaPop (2009-2013) and LigeRO (2010-2013) projects (Pays de la Loire
Region, France).

References

1. Benlic, U., Hao, J.K.: A multilevel memetic approach for improving graph k-
partitions. IEEE Transactions on Evolutionary Computation 15(5), 624–642 (2011)

2. Burer, S., Monteiro, R.D.C., Zhang, Y.: Rank-two relaxation heuristics for max-cut
and other binary quadratic programs. SIAM Journal on Optimization 12, 503–521
(2001)

3. Falkenauer, E.: Genetic algorithms and grouping problems. Wiley, New York (1998)

306 Q. Wu and J.-K. Hao

4. Festa, P., Pardalos, P.M., Resende, M.G.C., Ribeiro, C.C.: Randomized heuristics
for the max-cut problem. Optimization Methods and Software 7, 1033–1058 (2002)

5. Frieze, A., Jerrum, M.: Improved approximation algorithm for max k-cut and max-
bisection. Algorithmica 18, 67–81 (1997)

6. Galinier, P., Boujbel, Z., Fernandes, M.C.: An efficient memetic algorithm for the
graph partitioning problem. Annals of Operations Research 191(1), 1–22 (2011)

7. Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. Journal
of Combinatorial Optimization 3(4), 379–397 (1999)

8. Gao, L., Zeng, Y., Dong, A.: An ant colony algorithm for solving Max-cut problem.
Progress in Natural Science 18(9), 1173–1178 (2008)

9. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. Journal of
the Association for Computing Machinery 42(6), 1115–1145 (1995)

10. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thacher,
J.W. (eds.) Complexity of Computer Computation, pp. 85–103. Plenum Press
(1972)

11. Karish, S., Rendl, F., Clausen, J.: Solving graph bisection problems with semidef-
inite programming. SIAM Journal on Computing 12, 177–191 (2000)

12. Kim, S.H., Kim, Y.H., Moon, B.Y.: A Hybrid Genetic Algorithm for the
MAX CUT Problem. In: Genetic and Evolutionary Computation Conference,
pp. 416–423 (2001)

13. Kochenberger, G., Hao, J.K., Lü, Z., Wang, H., Glover, F.: Solving large scale max
cut problems via tabu search. Accepted to Journal of Heuristics (2012)

14. Krishnan, K., Mitchell, J.: A semidefinite programming based polyhedral cut and
price approach for the Max-Cut problem. Computational Optimization and Appli-
cations 33, 51–71 (2006)

15. Marti, R., Duarte, A., Laguna, M.: Advanced scatter search for the max-cut prob-
lem. INFORMS Journal on Computing 21(1), 26–38 (2009)

16. Palubeckis, G.: Application of multistart tabu search to the MaxCut problem.
Information Technology and Control 2(31), 29–35 (2004)

17. Porumbel, D.C., Hao, J.K., Kuntz, P.: An evolutionary approach with diversity
guarantee and well-informed grouping recombination for graph coloring. Comput-
ers and Operations Research 37(10), 1822–1832 (2010)

18. Rendl, F., Rinaldi, G., Wiegele, A.: Solving Max-Cut to optimality by intersecting
semidefinite and polyhedral relaxations. Mathematical Programming 121, 307–335
(2008)

19. Shylo, V.P., Shylo, O.V.: Solving the maxcut problem by the global equilibrium
search. Cybernetics and Systems Analysis 46(5), 744–754 (2010)

20. Wang, J.: An Improved Maximum Neural Network Algorithm for Maximum Cut
Problem. Neural Information Processing 10(2), 27–34 (2006)

21. Wang, Y., Lü, Z., Glover, F., Hao, J.K.: Probabilistic GRASP-tabu search algo-
rithms for the UBQP problem. Accepted to Computers and Operations Research
(2012), http://dx.doi.org/10.1016/j.cor.2011.12.006

22. Wu, Q., Hao, J.K.: Memetic search for the max-bisection problem. Accepted
to Computers and Operations Research (2012), http://dx.doi.org/10.1016/

j.cor.2012.06.001

http://dx.doi.org/10.1016/j.cor.2011.12.006
http://dx.doi.org/10.1016/j.cor.2012.06.001
http://dx.doi.org/10.1016/j.cor.2012.06.001

	A Memetic Approach for the Max-Cut Problem
	Introduction
	A Memetic Algorithm for the Max-Cut Problem
	Outline of the Memetic Algorithm
	Search Space and Fitness Function
	Initial Population
	Perturbation-Based Tabu Search Improvement
	The Multi-parent Crossover
	The Population Updating Rule

	Computational Results
	Experimental Protocol and Benchmark Instances
	Comparisons with the Best Known Results
	Comparisons with State-of-Art Max-Cut Algorithm

	Conclusions
	References

