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Abstract. This paper investigates the advantages provided by a
Meta-model Assisted Memetic Algorithm (MAMA) for the calibration
of a Cellular Automata (CA) model. The proposed approach is based
on the synergy between a global meta-model, based on a radial basis
function network, and a local quadratic approximation of the fitness
landscape. The calibration exercise presented here refers to SCIARA, a
well-established CA for the simulation of lava flows. Compared with a
standard Genetic Algorithm, the adopted MAMA provided much better
results within the assigned computational budget.
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1 Introduction

Most applications of Cellular Automata (CA) models to the simulation of real
complex systems, require a preliminary calibration process [1I2]. The latter con-
sists of finding the unknown values of the model parameters in such a way that
the outcomes of the model itself better correspond to the observed dynamics
of the system under consideration. For such purpose, automated methods have
been developed by defining calibration as a global optimization problem in which
the solution in terms of parameter values must maximize a fitness measure [2/f3].
Because of the size of the search space, such a process usually requires a large
number of fitness evaluations, which consist of computationally expensive CA
simulations. Hence, in dealing with CA calibration the use of parallel computing
is often mandatory [2]. As shown in [4], an additional strategy for increasing the
search efficiency may consists of the so-called meta-model assisted (or surrogate
assisted) optimization [5], which is based on inexpensive surrogate functions able
to approximate the fitness corresponding to the CA simulations.

However, in most cases the global search struggles to provide an accurate
solution. This is often because search heuristics, for example based on the Genetic
Algorithms (GA) operators, are more effective at exploring the search space
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rather than at the fine-tuning of a particular solution candidate. Therefore, a
further enhancement of the classical calibration based on a pure global search
approach, may be obtained introducing a local search (LS) phase, which in many
applications proved to be capable of providing much more efficient and accurate
global optimization processes. For example, in the hybrid GAs known as Memetic
Algorithms [6] a sub-process of LS is introduced to refine individuals by more
or less standard hill climbing procedures. As in the case of the meta-modelling
approach, such hybridization has the main aim of increasing the overall efficiency
of the optimization process (i.e., leading to better solutions within an assigned
computational budget). In some recent applications, also Meta-model Assisted
Memetic Algorithms (MAMAs) have been described and successfully applied to
optimization problems [7I8]. However, to our knowledge the advantages provided
by a MAMA for the calibration of CAs have not been explored. Some preliminary
results in this direction are the object of this paper, in which a MAMA has been
applied to the calibration of a well-established CA for the simulation of lava
flows, namely the SCIARA model [2]9].

The paper is organized as follows. In section [ the CA calibration problem
is formalized. Section [3] describes in detail the tested MAMA. Section M illus-
trates the results of the numerical experiments and section [l concludes the paper
outlining possible future work.

2  Optimization of Cellular Automata

In many applications of the CA modelling approach the cells’ transition function
depends on a vector of constant parameters p = [p1, ..., pn]7, which belongs to
aset A (e.g. [1I2]). In particular, the overall transition function @ gives the global
configuration 2(*+1) (i.e. the set of all cell states) at the step ¢ + 1 as:

QY = (02, p) (1)

The iterative application of @, starting from an initial configuration (%), leads
to the CA simulation:

O 2,00 2y 2 00— Q) = ¢t(RO) p) (2)

where the dependence of the automaton configuration at the time step ¢ on both
the initial configuration and the parameters is explicit, with the other automaton
characteristics (i.e. the model structure) being fixed.

The CA model can be optimized with respect to p to maximise the agreement
between the simulated patterns and those belonging to a spatio-temporal dataset
V, which come from an experiment of the real system behaviour. In particular,
let V be composed by a sequence of ¢ configurations:

vz{(z(k>;ke{o,ﬁ,...,rq}} (3)

where 7; € N indicates the time step in which a configuration is known. Starting
from 29 and given a vector p of parameters, the process @) can be executed
for the computation of the ¢ — 1 configurations:
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V:{n<k>;ke{ﬁ7...,7q}} (4)

where 20) = ¢7(2) p). The agreement 6 between the real and simulated
processes is usually measured by a suitable fitness function:

=0 (V,V)=0(V.p) (5)
Therefore, the calibration consists of the following maximisation problem:

eV, v 6

max 6 (V, V) (6)

which involves finding a proper value of p that leads to the best agreement
between the real and simulated spatio-temporal sequences.

Different heuristics have been used to tackle the automatic solution of problem
() [2/3]. In this paper a MAMA has been adopted, which is designed according
to some of the basic ideas described in [7]. The optimization process consists of
a GA assisted by a fitness approximation model and endowed with a LS phase.
The MAMA is used to evolve a population, whose generic chromosome is a n-
dimensional vector p. In the latter, the i-th element is obtained as the binary
encoding of the parameter p;. Each chromosome can be decoded back in a vector
of parameters p and, through performing a CA simulation, the corresponding
fitness can be computed.

3 A Meta-Model Assisted Memetic Algorithm

In the MAMA object of this paper the original fitness evaluations are partly
replaced by the fitness estimates provided by an inexpensive model. This allows
to reduce the number of CA simulations needed to evaluate the individuals
generated by the genetic operators during the search. As detailed later, the CA
simulations carried out during the optimization provide a training set 7T:

7={", p), (92, p@), ..., (6", p) } (™)

where each fitness value 0¥ corresponds to a parameter vector p(*). Thus, on
the basis of the patterns in 7 a meta-model 6 is dynamically built for evaluating
each candidate solution p through the estimated fitness value é(p)

It is worth noting that, given the patterns in 7T, either a global meta-model
or a local one can be trained [57]. For example, an ad-hoc surrogate of the
real fitness can be constructed for each individual p to be evaluated using only
the k nearest neighbours of p in 7. However, even if a local meta-model can
potentially be more accurate than a global one, the cost of training a number of
local surrogates should be compared with the cost of the true fitness evaluation.

Since the meta-model only provides a more or less accurate approximation
of the fitness landscape, to avoid convergence to false optima the surrogate-
assisted optimization should also use, in some way, the true fitness function
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[5]. On the other hand, the involvement of the latter should be minimized due
to its high computational cost. A trade-off is provided by a suitable evolution
control strategy. In particular, the approach adopted in this paper is the so-
called individual-based control, which consists of using the true fitness function to
evaluate at each generation some of the offspring individuals (i.e. the controlled
individuals). The latter are chosen according to the so-called best strategy, in
which the exact fitness value is assigned to some of the individuals that are the
best according to the meta-model. For a detailed discussion about the commonly
adopted evolution control strategies, the reader is referred to [5].

The pseudo-code of the corresponding MAMA is outlined in Figure [II As
in other elitist GAs, the optimization procedure begins with the initialization
and exact evaluation of a population of individuals encoding CA vectors of pa-
rameters. The evolutionary search is iterated until the assigned budget n,,, of
CA evaluations is exhausted. During the search, each CA simulation leads to
a new element for the archive T of the training patterns. Usually, in the first
GA generations the set T does not contains enough elements to build a reliable
meta-model. Thus, while the current number of elements in 7 is less than the
threshold p1 n.., (see line 6), where py € [0, 1], the search consists of a standard
GA, in which the fitness evaluations are carried out through CA simulations (see
line 8). Subsequently, when |T| > p;i n.,, the meta-model 0 is built /updated at
each generation (see line 10) in order to estimate the fitness of each individual
belonging to the set of offspring & . The adopted global surrogate is a Radial

1 Q « populationInit();

2 for each q in Q do

3 simulateCA AndUpdateArchive(q, T);

4  while (|T] < Ngim )

5 S « crossoverAndMutation(Q);

6 i ([T] < p1 i)

7 for each q € S do

8 simulateCAsAndUpdateArchive(q, T);
9 else

10 0 «+ createRBFN(T);

11 for each q € S do

12 surrogateFitnessFEvaluation(q, é),

13 k< m |S];

14 controlTheBestAndUpdate Archive(S, k, T);
15 if (|T] > p2Nsim )

16 for i =0 to x do

17 S[i] +—localSearchAndUpdateArchive(S[i], T);
18 end if

19 end if

20 Q « elitistSelection(Q, S);

21 end while

Fig. 1. Outline of the meta-model assisted memetic CA optimization. The variable
Neim indicates the assigned budget of CA evaluations for the optimization process.
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Basis Function Network (RBFN), a special type of artificial neural network that
uses radial basis functions as activation functions [I0]. The RBFN is often used
as surrogate to assist optimizations because of its good generalization ability
and because of its simpler topology compared to other networks [5l7]. Formally,
the adopted RBFN can be expressed as:

o) = D wlp ) ©

where ny, is the number of hidden neurons, §(x) is the kernel function, c; is the
i-th center and w; are the weights. The adopted kernel function is the Gaussian:

2
5(p o Ci) = exp < ||p - CZH > (9)

2
207

where o; is the bandwidth assumed for the centre c;. In particular, the RBFN
implementation has been based on the SHARK C++ library, a machine learning
framework for regression and classification tasks including neural networks and
kernel methods [IT]. The first stage for building 6 consists of a fully unsupervised
learning in which the centres and the corresponding bandwidths are determined.
In particular: (i) first the RBFN centres ¢; are obtained by few iterations of a
k-means clustering algorithm on the set 7 (ii) then the value of o; for a given
cluster centre c; is set to the average Euclidean distance between c¢; and the
training vectors which belong to that cluster. Subsequently, the weights w; need
to be trained to achieve good generalization. In this work, the weights of 0 are
trained using the iRprop algorithm [12] implemented in the SHARK library,
which is quite fast and efficient.

Once all the offspring are evaluated through 0, in order to avoid convergence
towards false optima, the control strategy mentioned above is applied at line
14 by invoking the function controlTheBestAndUpdateArchive. In particular, the
latter ensures that the fraction 7 of the individuals in & which are the best
according to § are re-evaluated through CA simulations. As a further result
of the function controlTheBestAndUpdateArchive, the first kK = 7 |S| offspring
in § are sorted in descending order according to their fitness. Also, each CA
simulation carried out during the control process contributes to the enrichment
of the archive 7, which is used for future meta-model buildings/updates.

In an advanced stage of the optimization, in particular when |7| > pa g,
with pa € [0,1] and p2 > p1, the s controlled individuals are taken as start-
ing point of the LS. The latter starts from each controlled individual p and is
conducted on the local Quadratic Polynomial Approximation (QPA) defined as:

0(p) = Bo + Z Bipi + Z Bin-14i+) Pip; =B P (10)

1<i<n 1<i<j<n

where:

/8 = [ﬂoa 517 CERE 677,/”*1]:,1 (11)
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is the vector collecting the n, = (n + 1)(n + 2)/2 model coefficients and:
f):[]-aplap27 ...y P1P2, 7pi]T (12)

is the vector of the CA parameters mapped into the polynomial model. In par-
ticular, in order to improve the LS reliability, an ad-hoc local QPA is built for
each individual p on the basis of its ns > n, nearest neighbours in 7. In this
study, the model coefficients 3 are estimated using the least square method.

Even using an accurate QPA, the LS procedure may converge towards a point
that does not represent an actual improvement of the starting individual p.
Hence, at the cost of some more CA simulations, the LS has been based on a
trust-region approach [I3]. In the latter, the LS iteratively operates on a region in
which the accuracy of the QPA is verified by executing ad-hoc CA simulations.
In particular, if the QPA accuracy is satisfying then the region is expanded;
conversely, if the QPA accuracy is poor then the region is contracted. In practice,
following the classical trust-region approach, the LS is structured in a sequence
of subproblems as follows:

max ¢ (p) + d), j=0,1,2,...,\

. 13
subject to ||d|| < () (13)

where ’(/A)(X) is the QPA meta-model, p¥) is the starting point of the j-th itera-
tion (i.e. p(@ is the individual to optimize), p¥) + d represents a point within
the current trust-region radius 7). In this paper, the BLG code for solving an
optimization problem with bound constraints through a gradient method, de-
scribed in [I4], is used for the trust-region subproblems. At the first sub-problem
of the LS, the radius r(?) is initialized as the average of all the n, nearest neigh-
bours of p(® in 7. Then, the value of 7(9) is determined for each of the following
sub-problems on the basis of a parameter w(?), which is computed at the end of
each subproblem as follows:

w(j) — eA(p(])) - ‘?(pc(iz) (14)

6(p9) — O(pil)

where each evaluation of the function 6(x) requires a CA simulation. Then, the
trust region is contracted or expanded for low or high values of w() respectively,
according to the empirical rule described in [7].

The LS process terminates when the maximum number of subproblems A is
reached. The latter parameter represents the individual learning intensity, that
is the amount of computational budget in terms of CA simulations devoted on
improving a single solution. At the end of each LS, any locally optimized vector
of CA parameters is encoded back into the offspring according to a Lamarckian
evolutionary approach [15].

4 Calibration Tests and Discussion

A Master-slaves parallel version of the MAMA described above has been devel-
oped and applied to the last release of SCIARA, a CA model for lava flows simu-
lation. In the current implementation, based on the Message Passing paradigm, a
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Table 1. Parameters object of calibration, explored ranges and target values

Parameter Explored range Target value
for calibration

Ts [0, 1] 0.096

T [0, 1] 0.853

hs [m] [1, 50] 13.67

hy [m] [1, 50] 1.920

De [0, 100] 8.460

master process executes the algorithm outlined in Figure [l while the remaining
processes carry out all the required CA simulations.

In the SCTARA model, which is described in detail in [9], a specific component
of the transition function computes lava outflows from the central cell towards
its neighbouring ones on the basis of the altitudes, lava thickness and tempera-
tures in the neighbourhood. In the model, lava can flow out when its thickness
overcomes a critical height, so that the basal stress exceeds the yield strength.
The critical height mainly depends on the lava temperature according to a power
law. Moreover, viscosity is accounted in terms of flow relaxation rate, being this
latter the parameter of the distribution algorithm that influences the amount
of lava that actually leaves the cell. At each time-step the new cell temperature
is updated according to the mass and energy exchange between neighbouring
cells and also by considering thermal energy loss due to lava surface irradiation.
The temperature variation, besides the change of critical height, may lead to
the lava solidification which, in turn, determines a change in the morphology. In
SCIARA the transition function depends on the following scalar parameters: r;,
the relaxation rate at the temperature of solidification; r,,, the relaxation rate at
the temperature of extrusion; hg, the critical height at the temperature of solid-
ification; h,, the critical height at the temperature of extrusion; p., the “cooling
parameter”, which regulates the thermal energy loss due to lava surface irradi-
ation. Once that the input to the model has been provided, such as parameter
values, terrain topography, vents and the effusion rates as a function of time,
SCIARA can simulate the lava flow. The simulation stops when the fluxes fall
below a small threshold value. However, before using the model for predictive
applications, the parameters must be optimized for a specific area and lava type.
To this end, the following fitness measure was defined:

RN S|

b= |[RUS|

(15)
where R and S represent the areas affected by the real and simulated event,
respectively. Note that 6 €[0,1]; its value is 0 if the real and simulated events
are completely disjoint, being |[R N .S|=0; it is 1 in case of perfect overlap, being
|[RNS|=|RUS]|.

For the calibration task the MAMA was compared with the corresponding
standard GA (SGA). In both algorithms a population of 100 bit-strings, each
encoding a candidate solution p = [rs, 4, hs, hy, Dc], was evolved. In particular,
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Fig. 2. The rugged fitness landscape generated by SCTARA

each of the SCIARA parameters was encoded on a string of 12 bits using the
intervals shown in Table [Il As for the genetic operators, the standard 1-point
crossover applied with probability p. = 1.0 was adopted, while the mutation
consisted of a bit flipping with probability p,, = 1/ny, being n; the number
of bits per individual. Also, the standard Roulette Wheel Selection was applied
together with an elitist replacement scheme.

The calibration exercise concerns a real event occurred on Mt. Etna (Sicily,
Ttaly) in 2001 which is described in details in [2]. However, the target final config-
uration was obtained with SCTARA itself, using the set of parameters shown in
Table[Il This guarantees the existence of a zero-error solution of the calibration
problem, thus allowing for a more objective evaluation of the calibration proce-
dures. In Figure [ the landscape generated by the fitness defined in Equation
(I3 is depicted. In particular, the two surfaces were obtained executing a num-
ber of SCIARA simulations on a grid covering the whole search space, with a
refinement in a neighbourhood of the target point shown in Table[Il The rugged-
ness of the fitness landscape, which can be observed in Figure [2, is known as
one of the causes of slow convergence when using most optimization heuristics.
In these cases, it is known that using global meta-models can help on smoothing
the fitness landscape, thus speeding-up the optimization convergence. In the
preliminary experiments presented here, besides the overall effectiveness of the

Table 2. Overview of the calibration results obtained assigning to each search al-
gorithm a budget of 1000 SCTARA evaluations. The statistics were computed on 10
independent run of each algorithm.

A Average Min Max  Std. Dev.

SGA - 0.821  0.740 0.910 0.048
0 0.918  0.901 0.950 0.015
2 0.894  0.872 0.925 0.017
MAMA 4 0.910  0.862 0.966 0.035
6 0.939  0.912 0.971 0.019
10 0.901  0.860 0.921 0.019
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Fig. 3. Average behaviour of the optimization heuristics SGA and MAMA. In the
latter, different learning intensities were tested.

MAMA, also the influence of the individual learning intensity (i.e., the parame-
ter ) was investigated. In particular, five different values of A were considered,
namely 0, 2, 4, 6 and 10. To all runs, a budget of n,, = 1000 CA simulations
was assigned. In the MAMA, the remaining parameters were p; = 0.2, po = 0.3
and m = 0.1. Therefore, up to 200 CA simulations the MAMA worked as the
SGA. Starting from 200 CA simulations, the MAMA operated exploiting the
RBFN as fitness surrogate. Only after the first 300 CA simulations, the LS was
applied to about 10 individuals per generation. For each type of heuristic search,
10 independent runs were carried out. In Table [2] an overview of the results is
shown. Within the limited budget of 1000 CA evaluations, the SGA achieved
an average fitness value of § ~ 0.82 and a maximum of 6 ~ 0.91. As expected,
the MAMA outperformed the SGA providing the best result for A = 6, that is
a final average § =~ 0.94 and a maximum 6 =~ 0.97. Figure Bla shows the av-
erage behaviour of the algorithms during the search process. Interestingly, for
any number of SCTARA simulations and regardless of the learning intensity, the
MAMA attained an average fitness significantly higher than that of the SGA.
In particular, the MAMA with A = 6 reached a significant average speed of
convergence, by requiring only about one half of the computational budget to
achieve the same fitness given by the SGA at the end of the process. Since each
CA evaluation takes several minutes on a standard PC, the MAMA can thus
provide the same results of a SGA saving a few hours of computation.

As can be seen on Table[2] in the present application the trade-off between ex-
ploration and exploitation regulated by A had a limited influence (i.e. about 5%
at most) on the achieved optimum. Probably, in this case the beneficial smooth-
ing effects provided by the global meta-model plays a major role on speeding-up
the optimization. However, it is important to remark that a small gain in the
fitness defined by Equation (H]) corresponds to a significant difference in the
final map of the lava invasion.
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5 Conclusions and Future Work

The preliminary results of this study indicate that the automatic optimization
of CA models can greatly benefit by the use of a MAMA. Future work will focus
on more sophisticated strategies for choosing the individuals on which it is worth
investing CA simulations for a Lamarckian learning. In particular, an interesting
direction to explore is that proposed in [7], where a pre-selection criterion based
on a probability of improvement was adopted to rank the promising individuals.
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