
A Memetic Algorithm for Community Detection

in Complex Networks

Olivier Gach1,2 and Jin-Kao Hao2,�

1 LIUM & IUT, Université du Maine, Av. O. Messiaen, 72085 Le Mans, France
olivier.gach@univ-lemans.fr

2 LERIA, Université d’Angers, 2 Bd Lavoisier, 49045 Angers Cedex 01, France
hao@info.univ-angers.fr

Abstract. Community detection is an important issue in the field of
complex networks. Modularity is the most popular partition-based mea-
sure for community detection of networks represented as graphs. We
present a hybrid algorithm mixing a dedicated crossover operator and
a multi-level local optimization procedure. Experimental evaluations on
a set of 11 well-known benchmark graphs show that the proposed algo-
rithm attains easily all the current best solutions and even improves 6 of
them in terms of maximum modularity.

Keywords: heuristic, community detection, complex networks, graph
partitioning, modularity, combinatorial optimization.

1 Introduction

Complex networks are a graph-based model which is very useful to represent
connections and interactions of the underlying entities in a real networked sys-
tem [19]. A vertex of the complex network represents an object of the real system
while an edge symbolizes an interaction between two objects. A typical exam-
ple is social network where each vertex corresponds to a particular member of
the network while the edges incident to the vertex represent the relationships
between this member and other members. Other prominent complex networks
include biological networks, citation networks, and the World Wide Web.

Complex networks typically display non-trivial topological features and spe-
cial patterns which characterize its connectivity and impact the dynamics of
processes applied to the network [17]. Discovering these particular features and
patterns helps understand the dynamics of the networks and represents a real
challenge for research [6].

In particular, complex networks may contain specific groups of highly inter-
connected vertices which are loosely associated with other groups. Such a group
is commonly called community, cluster or still module [19] and all the communi-
ties of a network form a clustering. In terms of graph theory, a clustering can be
defined as a partition of the vertices of the underlying graph into disjoint subsets,

� Corresponding author.

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part II, LNCS 7492, pp. 327–336, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



328 O. Gach and J.-K. Hao

each subset representing a community. A community is typically characterized
by two basic factors: intra-cluster density and inter-cluster density. Intuitively,
a community is a cohesive group of vertices that are connected more ”densely”
to each other than to the vertices in other communities. To quantify the quality
of a given community and more generally a clustering, modularity is certainly
the most popular measure [18]. Under this quality measure, the problem of com-
munity detection is a pure combinatorial optimization problem. Formally, the
modularity measure can be stated as follows.

Given a weighted graph G = (V,E,w) where w is a weighting function, i.e.,
w : V × V �−→ R such that for all {u, v} ∈ E,w({u, v}) �= 0, and for all {u, v} /∈
E,w({u, v}) = 0. Let C ⊆ V and C′ ⊆ V be two vertex subsets, W (C,C′) the
weight sum of the edges linking C and C′, i.e., W (C,C′) =

∑
u∈C,v∈C′ w({u, v})

(in this formula, each edge is counted twice). The modularity of a clustering with
K communities I = {C1, C2, ..., CK} (∀i ∈ {1, 2, ...,K}, Ci ⊂ V and Ci �= ∅;
∪K
i=1Ci = V ; ∀i, j ∈ {1, 2, ...,K}, Ci ∩ Cj = ∅) is given by:

Q(I) =

K∑

i=1

[
W (Ci, Ci)

W (V, V )
−
(

di
W (V, V )

)2
]

(1)

where di is the sum of the degrees of the vertices of community Ci, i.e., di =∑
v∈Ci

deg(v) with deg(v) being the degree of vertex v.
It is easy to show that Q belongs to the interval [-0.5,1]. A clustering with a

small Q value close to -0.5 implies the absence of real communities. A large Q
value close to 1 indicates a good clustering containing highly cohesive commu-
nities. The trivial clustering with a single cluster has a Q value of 0.

Given the modularity measure Q, the community detection problem aims to
find, among the space of all possible clusterings (partitions) of a given graph, a
particular clustering with the maximal modularity Q. This is thus a highly com-
binatorial optimization problem and known to be NP-hard [3]. Consequently,
heuristic algorithms are a natural choice to handle this problem. The heuristic
algorithms proposed recently for community detection with the modularity mea-
sure belong to three general approaches: fast greedy agglomeration like [4], local
search [22,14] and hybrid algorithms like [1,13] as some examples.

In this paper, we introduce a memetic algorithm for community detection
(MA-COM). MA-COM combines a dedicated crossover operator and a multi-
level optimization procedure. MA-COM uses a quality-and-distance based pop-
ulation updating strategy to maintain population diversity. Tested on a set of
11 well-known complex networks, MA-COM attains improved solutions (with a
largerQ value) for 6 cases with respect to the best-known values of the literature.

2 Hybrid Evolutionary Algorithm

2.1 Main Scheme

Memetic algorithms are known to be highly effective for solving a number of
hard combinatorial optimization problems [16]. A memetic algorithm typically



A Memetic Algorithm for Community Detection 329

combines a recombination (or crossover) operator and a local optimization op-
erator. The recombination operator generates new solutions which are hopefully
located in new promising regions in the search space while the local optimiza-
tion operator searches around the newly generated solutions in order to discover
solutions of good quality.

The general scheme of our MA-COM algorithm for community detection is
summarized in Algorithm 1. Basically, MA-COM begins with an initial popu-
lation of solutions (line 1, Section 2.2) and then repeats an iterative process
for a number of times (generations) (lines 3–11). At each generation, two so-
lutions are randomly selected to serve as parents (line 4). The recombination
operator is applied to the parents to generate a new offspring solution which
is further improved by the local optimization procedure (lines 5–6, see Section
2.3). Finally, we apply a quality-and-distance based rule to decide whether the
improved offspring solution can be inserted into the population (line 10, Sec-
tion 2.4). The solution with the highest modularity discovered during the search
is always recorded (line 7-8). The whole algorithm stops if during g consecutive
generations, the modularity improvement is inferior to a given threshold ε. In the
following subsections, we give more details on the components of our algorithm.

Algorithm 1. Pseudo-code of memetic algorithm for community detection

Require: Graph G = (V,E).
Ensure: A clustering I∗ of G with a maximal modularity.
1: P = {I1, I2, ..., Ip} ← Initialize Population() /* Sect. 2.2*/
2: I∗ = argmaxI∈P {Q(I)} /* Record the best clustering found so far */
3: repeat
4: (Ii, Ij)← Choose Parents(P )
5: I ← Recombine Parents(Ii, Ij) /* Sect. 2.3 */
6: I ← Improve(I) /* Sect. 2.2 and 2.3 */
7: if Q(I) > Q(I∗) then
8: I∗ ← I
9: end if
10: P ← Update Population(I, P ) /* Sect. 2.4 */
11: until end criterion

2.2 Initial Population

Each solution (clustering) is represented by a n-vector C where n is the order of
the graph and C[i] ∈ {1, ...,K} is the community label of vertex i. To generate
the initial population P , we employ a randomized multi-level algorithm due to
Blondel et al. (named BGLL) [1] which uses the vertex mover (VM) heuristic [22]
as its refinement procedure. Each VM application displaces a vertex from its
current community to another community if the move increase the modularity.

Specifically, we begin with the initial graphG0 (called it the lowest level graph)
where each vertex forms a community and iteratively apply the VM heuristic to
improve the modularity of the clustering C of graph G0 until no improvement



330 O. Gach and J.-K. Hao

is possible for C. From this point, we transform G0 into a new (a higher-level)
graph G1 where each vertex is a community of the clustering C and an edge links
two vertices in G1 if they represent two neighboring communities in C. Now we
apply the VM heuristic to the new graph G1 to obtain another clustering and
then use the clustering to transform G1 to a new graph G2 of higher level. This
coarsening phase stops when the last graph cannot be further improved by the
VM heuristic.

At this point, a second phase (uncoarsening) unfolds the hierarchy of graphs
starting from the highest level. At each uncoarsening step, the communities
represented by the vertices of the current graph are recovered. The uncoarsening
phase stops when the lowest level is reached to recover the initial graph G0. The
corresponding clustering of G0 constitutes an individual of the initial population
of our memetic algorithm.

Experiments show that this initialization procedure is able to provide the
memetic algorithm with diversified initial solutions of good quality.

2.3 A Priority-Based Crossover Operator

Crossover is a key element for the effectiveness of the memetic approach [16].
We develop a crossover operator which is dedicated to the clustering problem,
named priority-based crossover operator. Our crossover uses two parents (which
are selected at random from the population) to generate a new offspring clus-
tering. Random selection suffices in our context because 1) all the individuals
of the population are generally of good quality (since they are improved by lo-
cal optimization) and 2) they are sufficiently distanced in terms of community
structure due to the pool updating strategy used in Section 2.4.

The key idea of this operator is to take communities as genetic material and
try to preserve some communities from the parents. Specifically, let (I1, I2) be
two parent clusterings and p a priority vector. Let s and r be respectively the
number of communities of clusterings I1 and I2. The vector p, indexed from
1 to s + r, is defined by a random permutation of {1, 2, ..., s+ r}. The indices
between 1 and s of p denotes the communities of one parent and those between
s + 1 and s + r the communities of the other parent. Thus each community
of the parents is designated by a unique number from 1 to s + r. For each
community Ci, i ∈ {1, 2, ..., s+ r}, the corresponding value in p (i.e., p[i]) gives
the priority of Ci. By convention, a smaller p value indicates a higher priority
for the community and vise versa.

The crossover procedure generates from (I1, I2) its offspring clustering Io as
follows. We go through one by one all the communities by following the pri-
ority order given by the vector p. We begin by selecting the highest priority
community C according to p and transfer all the vertices of the community to
form a community of the offspring Io. We then pick the community C′ with
the second highest priority, remove the vertices already in Io and use the re-
maining vertices of C′ to form a new community of Io (empty community is



A Memetic Algorithm for Community Detection 331

discarded). We repeat this process until the community with the lowest priority
is handled. Finally, the communities of Io are re-labeled from one to the number
of communities contained in the offspring.

Figure 1 illustrates the crossover procedure applied to a small graph. Among
the 7 communities of the two parents, the one with the highest priority 1
(labeled 5 in parent 2 with vertices {1,2,8,10,13,17}) is transfered to the off-
spring. The second selected community is the one labeled 2 from parent 1 (i.e.,
{3,7,9,13,16}). After removing vertex 13 which appears already in the offspring,
we use {3,7,9,16} to form another community of the offspring. The next selected
community is labeled 1 from parent 1 ({1,2,8,10,17}), removing the shared ver-
tices leads to an empty community which is discarded. This process continues
until all the 7 communities are examined. The resulting offspring is composed
of 5 communities originating from both parents. This crossover operator leads
generally to an offspring with more communities than in the parents, deterio-
rating thus the modularity objective. To improve the quality of the offspring,
we apply the BGLL algorithm described in Section 2.2 by taking the offspring
as its initial solution. The improved offspring is then considered for inclusion
in the population according to the quality-and-distance strategy explained in
Section 2.4.

1

8

2

13

10

3

16

9

7

6

11

15

5

14
12

417

1

8

2

13

10

3

16

9

7

6

11

15

5

14
12

417

1

8

2

13

10

3

16

9

7

6

11

15

5

14
12

417

1

2

3

4

5

6

7

4

7

1

6

5

2

3

7

6

5

4

3

2

1

5 → 1

3 → 5

4 → 3

7 → 4

2 → 2

priority
community

Parent I1 Parent I2

Offspring

Priority vector p

Fig. 1. Illustration of the crossover operator. Five new communities in the offspring
are created from seven communities of two parents.



332 O. Gach and J.-K. Hao

The time complexity of the crossover operator is O(n). With appropriate data
structures, the crossover operator can be implemented in one pass of the vertices
of the graph.

Finally, we notice the the priority associated to each community can be defined
by considering other factors like the modularity and size of the community. Due
to space limitations, we do not explore these possibilities in this paper. Yet, as
shown in the experimental evaluation section, our memetic algorithm equipped
with the crossover operator using random priorities works well for the set of the
test graphs.

2.4 Population Updating Strategy

Population diversity is another critical issue in a memetic algorithm to avoid
premature convergence [16]. Our experiments show that this particularly holds
in our case due to the small size of the population used (typically several tens of
solutions). For this reason, we employ a population updating strategy which con-
siders not only the quality of the offspring, but also its distance to the solutions
of the population.

Distance Function. Let X = {X1, X2...XK} and Y = {Y1, Y2...YK′} be two
clusterings of graph G = (V,E). For an edge e = {u, v} ∈ E and a community
C of X or Y , we use e ∈ C to state the fact that the vertices u and v of e are in
the same community. Then we use the Rand Index [21] to define our distance d
between X and Y as follows:

d(X,Y ) =

∑
e∈E de(X,Y )

m
(2)

where de(X,Y ) of edge e = {u, v} is defined by:

de(X,Y ) =

⎧
⎨

⎩

0 if ∃Xi ∈ X , ∃Yj ∈ Y s.t. e ∈ Xi and e ∈ Yj OR
if ∀Xi ∈ X , ¬(e ∈ Xi) and ∀Yi ∈ Y,¬(e ∈ Yj)

1 otherwise.
(3)

We can show that d (called Edge Rand Index - ERI) satisfies the conditions of
a mathematical distance and its values belong to [0,1]. Intuitively, this distance
measures the edge disagreements between two clusterings.

Updating Procedure. Let P be the current population and Io be the offspring
to be considered for inclusion in P . Let Ic ∈ P be the closest clustering to Io

according to the above distance and Iw ∈ P the worst clustering (with the small-
est modularity). Let δmin is a fixed distance threshold. We apply the following
replacement rule: if d(Io, Ic) < δmin and Q(Io) ≥ Q(Ic), then Io replaces Ic in
P ; otherwise, if Q(Io) ≥ Q(Iw) then Io replaces Iw in P .

By taking into account both quality and distance, this updating strategy
reinforces the population diversity when the search progresses.



A Memetic Algorithm for Community Detection 333

3 Computational Results

3.1 Experimental Setup

This section is dedicated to a performance assessment of our MA-COM algo-
rithm which is coded in Pascal. We carry out extensive experiments on a set
of 11 networks (with 34 to 27519 vertices) commonly used for community de-
tection (Table 1). Directed graphs are transformed into undirected graphs and
loops are removed. Our algorithm also takes into account weighted graphs (Cond-
mat2003). We run the program 20 times on each graph and report the maximal
modularity, the average modularity and the average computing time, based on
a PC equipped with a Pentium Core i7 870 of 2.93 GHz and of 8 GB of RAM.
The algorithm stops after 500 consecutive generations without an improvement
of modularity greater than 10−4. The values for the other parameters are the
following: population size (30), distance threshold δmin used for population man-
agement (0.01). These same values are used to report all the results of this
section, though better results could probably be obtained by fine tuning some
parameters. Experiments show that population size and distance threshold have
an important influence on MA-COM’s performance. In Section 3.2, we show our
results in terms of the modularity criterion while in Section 3.3 we analyze some
structural features of the solutions found.

3.2 Results in Terms of Modularity

Table 1 shows the results of the proposed memetic algorithm (MA-COM) com-
pared to the current best-known results (BKR) ever reported in the literature
in terms of the modularity values. We also include the results of the BGLL algo-
rithm which is used to generate the initial population of our memetic algorithm.
From Table 1, we observe that the proposed MA-COM algorithm obtains clus-
terings of equal or greater modularity for all the tested graphs. In particular, for
the 6 largest graphs (from C. elegans to the last network), MA-COM improves
the current best-known results by finding solutions with a larger modularity. For
the first 5 graphs which are also the smallest ones (with no more 200 vertices
and 3000 edges), even BGLL alone attains the current best-known modularity
values during the population initialization phase.

We also observe that the average modularity of our MA-COM algorithm is
very closed to the maximum and, for all the graphs, is always equal to or better
than the best-known result. This shows that MA-COM is quite stable, despite of
its stochastic nature. The computing time grows more than linearly with respect
to the number of edgesm. Experimental statistics show that the time complexity
could be approximated by O(mα) with α ≈ 1.3.

3.3 Structural Changes in Clusterings

In the last section, we show that MA-COM improves the solutions of the BGLL
algorithm in terms of modularity. Now we turn our attention to structural trans-
formations of solutions achieved by MA-COM from solutions given by BGLL.



334 O. Gach and J.-K. Hao

Table 1. Results on 20 runs of the proposed MA-COM algorithm on 11 commonly used
real graphs (sources in brackets). The BKR column shows the best known result with
its sources in brackets. The other columns give the average and maximum modularity
of the best solutions in the initial population (BGLL) and the final population of MA-
COM. The number of communities of the best solution is indicated between parenthesis.
Improved results are highlighted in bold.

Graph BKR BGLL [1] MA-COM
Avg Q Max Q (K) Avg Q Max Q (K) Time(s)

Karate Club [23] 0.4198 [13,20,14] 0.4198 0.4198 (4) 0.4198 0.4198 (4) 0.3
Dolphins [15] 0.529 [13] 0.5281 0.5286 (5) 0.5286 0.5286 (5) 0.5
Political Books [12] 0.527[13] 0.5273 0.5273 (5) 0.5273 0.5273 (5) 1.0
College Football [7] 0.605 [13] 0.6046 0.6046 (10) 0.6046 0.6046 (10) 1.4
Jazz [8] 0.4452 [14] 0.4452 0.4452 (4) 0.4452 0.4452 (4) 5.2
C. elegans [5] 0.452 [13] 0.4457 0.4497 (11) 0.4531 0.4533 (10) 8.3
E-mail [10] 0.582 [13] 0.5748 0.5772 (10) 0.5828 0.5829 (10) 23.1
Erdos [9] 0.7162 [20] 0.6993 0.7021 (32) 0.7184 0.7188 (34) 88.4
Arxiv [11] 0.813 [1] 0.8166 0.8181 (60) 0.8246 0.8254 (56) 197.2
PGP [2] 0.8841 [13,20] 0.8841 0.8850 (95) 0.8865 0.8867 (94) 156.7
Condmat2003 0.8146 [20] 0.8112 0.8116 (77) 0.8165 0.8170 (73) 1369.7

For this purpose, we consider, for each of the 11 graphs and each of the 20 runs
of MA-COM, the best solution I∗init (i.e., the clustering with the largest modu-
larity) from the initial population (generated by BGLL) and the best solution
I∗final from the final population (generated by MA-COM). We compute then the
distance between I∗init and I∗final using two distance measures: the well-known
Normalized Mutual Information (NMI) and the Edge Rand Index (ERI) which
is defined in Section 2.4 for population management. While NMI measures the
information shared by I∗init and I∗final, ERI indicates the percentage of edges
which disagree in the clusterings I∗init and I∗final. Table 2 show the statistics
of these measures averaged over the 20 runs for each graph. Additionally, we
indicate the averaged number of communities (indicator K) in the initial and
final population. Finally, we present the averaged sizes of the smallest and the
largest communities in the initial and final best solutions.

Table 2 shows that for the small graphs except Dolphins, the memetic al-
gorithm has a limited effect on the best BGLL clustering. On the contrary,
structural changes for other graphs are more or less important because an edges
difference of 2.7% to 13.1% are observed in the initial best and the final best
solutions. Some graphs have probably a simple structure with few local optima,
for instance PGP (with a high NMI). Some smaller graphs like C. elegans seem
to have a more complexe modularity landscape (13.1% of edges of the initial
best solutions are changed in final best solutions).

The indicator K confirms the well-known propensity of modularity based
methods to reduce the number of communities. However, the reduction is mod-
erate, indicating that the changes revealed by the ERI distance are mainly due to
moves of vertices rather than merges of communities. The good surprise comes
with the smallest and largest communities. The memetic algorithm has a clear
trend to help discover small communities (which are known to be difficult to
detect). More generally, we believe that the crossover operator of the algorithm



A Memetic Algorithm for Community Detection 335

Table 2. Several structural measures to compare the best solution in the initial pop-
ulation and the best solution in the final population: NMI (Normalized Mutual Infor-
mation), ERI (Edge Rand Index), K (number of communities), average sizes of the
smallest and largest community over 20 runs.

Graph NMI ERI K Smallest com. size Largest com. size
Initial Final Initial Final Initial Final

Karate Club 1.000 0.0% 4.0 4.0 5.0 5.0 12.0 12.0
Dolphins 0.976 1.9% 5.0 5.0 5.0 5.0 19.9 20.0
Political Books 0.982 0.4% 5.0 5.0 3.0 3.0 40.6 40.0
College Football 1.000 0.0% 10.0 10.0 9.0 9.0 16.0 16.0
Jazz 0.999 0.1% 4.0 4.0 21.9 22.0 62.1 62.0
C. elegans 0.733 13.1% 10.2 9.2 7.5 5.0 92.0 82.2
E-mail 0.780 9.1% 10.8 10.1 43.2 36.2 185.8 168.5
Erdos 0.771 12.0% 32.5 33.9 23.8 9.7 622.5 619.6
Arxiv 0.795 7.6% 59.6 55.5 4.5 4.5 920.5 812.2
PGP 0.915 2.7% 98.0 95.0 5.9 6.0 668.5 641.7
Condmat2003 0.758 8.9% 75.8 70.6 18.5 6.6 2478.7 2266.6
Total 0.883 5.1% 28.6 27.5 13.4 10.2 465.3 431.0

acts mainly on the ambiguous vertices which are attached to several communities
and help discover the right community for these vertices.

4 Conclusion and Perspectives

This paper deals with the community detection problem in complex networks
with the popular modularity criterion. To approximate this hard combinatorial
problem, we proposed a memetic algorithm mixing a dedicated crossover op-
erator and a multi-level local optimization procedure. The proposed crossover
operator blends the communities of two clusterings (parents) according to a pri-
ority rule. Offspring solutions are improved with the multi-level local optimizer.
To maintain a healthy population diversity, we introduce a Rand Index based
distance and consider for population management both the quality of the off-
spring and its distance to the solutions of the population. Experimental results
on a set of 11 popular networks showed that the proposed approach can easily
match the best known results in 5 cases and discover improved solutions for
the 6 other largest networks. The analysis of initial solutions and final solutions
showed the benefit of memetic approach in discovering communities of small size
that are difficult to find. This work demonstrated that the memetic approach is
a very promising method for modularity maximization. The proposed algorithm
could also be used to devise more powerful methods. One possible way would be
to embed the memetic approach into the multi-level approach in order to handle
very large networks.

Acknowledgment. We are grateful to the referees for their comments and
questions which helped us to improve the paper. The work is partially supported
by the Pays de la Loire Region (France) within the RaDaPop (2009-2013) and
LigeRO (2010-2013) projects.



336 O. Gach and J.-K. Hao

References

1. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech.: Theory Exp., P10008 (October
2008), doi:10.1088/1742-5468/2008/10/P10008

2. Boguñá, M., Pastor-Satorras, R., Dı́az-Guilera, A., Arenas, A.: Models of social
networks based on social distance attachment. Phys. Rev. E 70(5), 056122 (2004)

3. Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z., Wagner,
D.: On modularity clustering. IEEE Trans. Knowl. Data Eng. 20(2), 172–188 (2008)

4. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very
large networks. Phys. Rev. E 70(6), 066111 (2004)

5. Duch, J., Arenas, A.: Community detection in complex networks using extremal
optimization. Phys. Rev. E 72(2), 027104 (2005)

6. Fortunato, S.: Community detection in graphs. Physics Reports 486, 75–174 (2010)
7. Girvan, M., Newman, M.E.J.: Community structure in social and biological net-

works. Proc. Natl. Acad. Sci. USA 99(12), 7821–7826 (2002)
8. Gleiser, P., Danon, L.: Community structure in social and biological networks.

Advances in Complex Systems 6, 565–573 (2003)
9. Grossman, J.: The Erdös number project (2007), http://www.oakland.edu/enp/

10. Guimerà, R., Danon, L., Dı́az-Guilera, A., Giralt, F., Arenas, A.: Self-similar com-
munity structure in a network of human interactions. Phys. Rev. E 68(6), 065103
(2003)

11. KDD. Cornell kdd cup (2003), http://www.cs.cornell.edu/projects/kddcup/
12. Krebs, V.: A network of books about recent us politics sold by the online bookseller

amazon.com. (2008), http://www.orgnet.com
13. Liu, X., Murata, T.: Advanced modularity-specialized label propagation algorithm

for detecting communities in networks. Phys. A 389(7), 1493–1500 (2009)
14. Lü, Z., Huang, W.: Iterated tabu search for identifying community structure in

complex networks. Phys. Rev. E 80(2), 026130 (2009)
15. Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.:

The bottlenose dolphin community of Doubtful Sound features a large proportion
of long-lasting associations. Behav. Ecol. Sociobiol. 54(4), 396–405 (2003)

16. Neri, F., Cotta, C., Moscato, P. (eds.): Handbook of Memetic Algorithms. SCI,
vol. 379. Springer (2011)

17. Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Natl.
Acad. Sci. USA 98(2), 404–409 (2001)

18. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E 69(2), 026113 (2004)

19. Newman, M.E.J.: Networks: An Introduction. Oxford University Press (2010)
20. Noack, A., Rotta, R.: Multi-level Algorithms for Modularity Clustering. In: Vahren-

hold, J. (ed.) SEA 2009. LNCS, vol. 5526, pp. 257–268. Springer, Heidelberg (2009)
21. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Amer.

Statistical Assoc. 66(336), 846–850 (1971)
22. Schuetz, P., Caflisch, A.: Efficient modularity optimization by multistep greedy

algorithm and vertex mover refinement. Phys. Rev. E 77(4), 046112 (2008)
23. Zachary, W.W.: An information flow model for conflict and fission in small groups.

J. Anthropol. Res. 33, 452–473 (1977)

http://www.oakland.edu/enp/
http://www.cs.cornell.edu/projects/kddcup/
http://www.orgnet.com

	A Memetic Algorithm for Community Detectionin Complex Networks
	Introduction
	Hybrid Evolutionary Algorithm
	Main Scheme
	Initial Population
	A Priority-Based Crossover Operator
	Population Updating Strategy

	Computational Results
	Experimental Setup
	Results in Terms of Modularity 
	Structural Changes in Clusterings

	Conclusion and Perspectives
	References




