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Abstract. A hyper-heuristic for the one dimensional bin packing prob-
lem is presented that uses an Evolutionary Algorithm (EA) to evolve a
set of attributes that characterise a problem instance. The EA evolves
divisions of variable quantity and dimension that represent ranges of a
bin’s capacity and are used to train a k-nearest neighbour algorithm.
Once trained the classifier selects a single deterministic heuristic to solve
each one of a large set of unseen problem instances. The evolved classifier
is shown to achieve results significantly better than are obtained by any
of the constituent heuristics when used in isolation.

Keywords: Hyper-heuristics, one dimensional bin packing, classifier sys-
tems, attribute evolution.

1 Introduction

The one dimensional bin packing problem (BPP) is a well researched NP-hard
problem which has been tackled using a diverse range of techniques includ-
ing mathematically complete procedures[16], deterministic heuristics[11], biolog-
ically inspired metaheuristics [8] as well as by the field of hyper-heuristics [15].
The plethora of research and benchmark problem instances available combined
with the fact that the problem constitutes an integral part of many other more
complex problems makes it an ideal domain for investigating new techniques.

This paper presents a hyper-heuristic which attempts to predict which heuris-
tic, from an available pool, will perform best on a given problem instance. The
system incorporates a classification algorithm within an EA in an attempt to
generate predictor attributes that improve upon the classification accuracy ob-
tained using predetermined characteristics. The system, once trained using half
of 1370 benchmark problem instances, achieves results substantially better than
any individual heuristic on the unseen problem instances.

The remainder of this paper is organised as follows. The field of hyper-
heuristics and related work are introduced in section 2 with the one dimen-
sional bin packing problem domain, the benchmark problem instances and the
deterministic heuristics used in this study covered in section 3. The experimen-
tal framework is described in section 4 with the results from those experiments
presented in section 5. The paper finishes with section 6 where conclusions are
drawn and potential for future research is suggested.
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2 Hyper-Heuristics

The term hyper-heuristics (HH) first appeared in relation to combinatorial opti-
misation (CO) problems in [5] although the term was first coined in [6] to describe
an amalgamation of artificial intelligence techniques in the domain of automated
theorem proving. However, the concept can be traced back to the 1960’s when
Fisher & Thompson [9] used machine learning techniques to select combinations
of simple heuristics to produce solutions to local job-shop scheduling problems.
Originally described as “heuristics to select heuristics” [2] the field has evolved
to encompass techniques including “heuristics to generate heuristics” using ge-
netic programming to create new heuristics from constituent component parts
[3,4]. All hyper-heuristics, no matter the approach, have the commonality that
they search over a landscape defined by a set of heuristics, or their component
parts, for a procedure to solve a problem rather than searching directly over the
space defined by the problem itself. A more concise review can be found in [2,1].

In [15] Ross et al., proposed a hyper-heuristic approach to bin-packing that
introduced the notion of describing the state of a problem instance according to
the percentage of items that fall into 4 pre-defined ”natural” categories relating
to item size, given as a ratio of the bin capacity1. A Michigan style Learning
Classifier System (LCS) was used to evolve a set of rules mapping problem states
to suitable heuristics. Each iteration the chosen heuristic packs a single bin with
the potential of a filler process being invoked that attempts to fill a partially filled
bin further. The remaining items are then reclassified using the new problem
state resulting in a deterministic selection of a sequence of heuristics for solving
each problem instance.

The approach presented here differs in that it does not use pre-defined cate-
gories to describe an instance’s state. Using a variable-length evolutionary algo-
rithm a set of categories is evolved that when used in conjunction with a classifier
algorithm, map the description of an instance to a suitable simple heuristic. In
contrast to [15], problem instances are only categorised once and solved using a
single heuristic. The motivation behind this is to determine whether it is possi-
ble to find an appropriate method of describing a set of problem instances such
that each instance can be mapped to the single heuristic that best solves it.
The authors of [15] showed this task to be non-trivial and were unable to find a
relationship using a perceptron. Whilst the ranges they used to describe a prob-
lem appeared “natural” choices they disregard potential relationships between
different item sizes that when combined allow for optimal bin packings.

The system presented here, conceptualised in Figure 1 , uses a heuristic selec-
tion strategy to choose which from a set of deterministic constructive heuristics
to apply to a problem instance based on knowledge of the problem domain ob-
tained during an off-line training phase. This is achieved using a classification
algorithm that attempts to match an unseen problem instance to a procedure
for solving it based on the problem instance’s characteristics. The character-
istics used are the percentages of the items with weights within a number of
ranges, expressed as ratios of the bin capacity. The divisions used are not fixed
in number or dimension but are evolved by the EA during a training phase.

1 Described in Section 4, Figure 2.
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Fig. 1. During off-line training, the EA generates problem divisions, of varying dimen-
sion and number, that the classifier assigns the best known heuristic to. The classifier’s
accuracy in predicting which is the best heuristic for a set of unseen problem instances
is used as feedback to the EA. The two graphs show the same problem instance en-
coded by the two different chromosomes shown. The x-axis depicts the evolved ranges
expressed as a percentage of the bin capacity whilst the y-axis depicts the percentage
of the instances’ items with sizes falling within each range.

The system is described in more detail in Section 4 after introducing the BPP
domain,benchmark problem instances and heuristics used during this study.

3 One Dimensional Bin Packing Problem

The objective of the one dimensional bin packing problem is to find the optimal
number of bins, OPT (I), of fixed capacity c required to accommodate a set of
n items, J = {ω1 . . . ωn} with weights ωj : j ∈ {1 . . . n} falling in the range
1 ≤ ωj ≤ c whilst enforcing the constraint that the sum of weights in any
bin does not exceed the bin capacity c (Scholl, et al., 1997). For any instance
OPT (I) must lie between the lower and upper bounds shown in Equation 1 with
the upper bound occurring when all items are greater than half the bin capacity
and the lower bound achieved when the total free space summed across all bins
is less than the capacity of one bin.

�(
∑n

j=1
ωj)÷ c� ≤ OPT (I) ≤ n (1)

Table 1 shows the parameters from which the benchmark data sets used in this
study were generated. Data sets ds1, ds2 & ds3, introduced by Scholl et al., in
[16] all have optimal solutions that vary from the lower bound given by Equation
1. However all are known and have been solved since their introduction [17]. All
of the instances from FalU and FalT , introduced by Falkenauer in [8], have
optimal solutions at the lower bound except for one [12].

Four heuristics, three re-created and a fourth introduced here, were included
in the system. All pre-sort and select items in decreasing weight order.
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Table 1. Data sets ds1, ds3 and FalU were created by generating n items with weights
randomly sampled from a uniform distribution between the bounds given by ω. Those
in FalT were generated in a way[8] so that the optimal solution has exactly 3 items in
each bin with no free space. Scholl’s ds2 was created by randomly generating weights
from a uniform distribution in the range given by � ± δ. The final column gives the
number of instances generated for each parameter combination.

Data Set capacity (c) n ω #Problems
ds1 100,120,150 50,100,200,500 [1,100],[20,100],[30,100] 36× 20 = 720
ds3 100000 200 [20000,30000] 10
FalU 150 120,250,500,1000 [20,100] 4× 20 = 80
FalT 1 60,120,249,501 [0.25,0.5] 4× 20 = 80

Data Set c n � (avg weight) δ(%) # Problems
ds2 1000 50,100,200,500 c

3
, c
5
, c
7
, c
9

20,50,90 48× 10 = 480

– First Fit Descending (FFD) packs each item into the first bin that will
accommodate it. If no bin is available a new bin is opened. All bins remain
open for the duration of the procedure.

– Djang and Finch [7] (DJD) and an extension DJD more Tuples (DJT) in-
troduced in [15] both pack items into a bin until it is at least a third full.
Combinations of up to three (or five for DJT) items are then searched for
that best fill the remaining space with preference given to sets that use the
largest items. The bin is then closed and the procedure repeats.

– Adaptive DJD (ADJD), introduced here, packs items into a bin in descending
order until the free space in the bin is less than or equal to three times the
average size of the items remaining to be packed. It then operates like DJD
looking for the set of up to three items that best fills the remaining capacity.

It has been noted [12] that many so called “hard” benchmark problem instances
can be solved easily by simple procedures. Often benchmark instances are in-
troduced in the literature alongside procedures specifically designed to solve
them, such as those from Falkenauer whose Hybrid Grouping Genetic Algorithm
(HGGA) utilises a local search heuristic inspired by Martello and Toth’s Reduc-
tion Procedure (MTRP) [14] tailored for finding optimal sets of three items. It
has been shown for FFD and MTRP[17], and thus DJD and HGGA which both
use searches inspired by MTRP, that instances with average weights, �j → c

3

are the most complex with those where �j → c
4 ,

c
5 ,

c
6 . . . proving difficult also.2

All of the problems used here, except for those in ds2, have an average item
weight of around c

3 .
In [15] the authors showed DJT to be the most successful heuristic when used

in isolation solving 73% of instances to the known optimum. The study however
omitted ds2, on which DJT finds only 45% of the optimal solutions.3 ADJD,

2 If a solution exists at the lower bound given in Equation 1 then the total free space
�free → 0 as �j → c

i
: i ∈ N : i ≥ 3.

3 DJT will perform best where � ≥ 2
15
c as once the initial filling procedure has filled

1
3
c the remaining 2

3
c can be filled by at most five items.
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introduced here, whilst the worst performer on the complete set of problems
achieves significantly better results on the problem instances from ds2. This is
accomplished by first packing items in descending order of size until the free
space in the bin is less than or equal to average size of the items remaining to
be packed thus improving the chance of finding a combination of items to fill
the remaining capacity for problems with smaller average item weights when
compared to DJD or DJT.

In order to get a better indication of a heuristic’s performance than can be
deduced solely from the number of optimal solutions found, Falkenauer’s fitness
function, given in Equation 2, is used with k set to 2 in order to reward solutions
where any free capacity is restricted to as few bins as possible allowing for a
distinction to be made between different solutions that use an equal numbers of
bins as well as a measure of a non-optimal solution’s quality.

f(x) =
∑n

j=1

(
fillj
c

)k

÷ n (2)

A third metric used that gives a measure of a heuristic’s ability to generalise over
a diverse range of problem instances is the number of extra bins required over
the optimal number. Table 2 shows the results obtained, for each heuristic, using
these three metrics. It is interesting to note for instance, that whilst FFD rates
highly if ranked in terms of the number of optimal solutions found, it achieves
this using the second largest number of bins. In contrast ADJD, which comes
4th in terms of the number of optimal solutions found, achieves 2nd best position
if ranked by either of the other two metrics.

Table 2. The table shows the results obtained by each heuristic on different data sets
using three metrics; The percentages of problems solved using the optimum number of
bins, the ratio for which the best fitness was attained and the percentage of extra bins
required over the optimal. The headings in row 2 depict the data sets as described in
Table 1 with Tr and Te depicting the training and test sets used during the experiments
described here in section 4 and All representing the complete set of 1370 instances.
None of the heuristics used here are able to find optimal solutions to any of the instance
from FalT or ds3.

Metric Optimal Fitness Bins
Heuristic ds1 ds2 FalU Tr Te All All T e All T e

# Problems 720 480 80 685 685 1370 1370 685 1370 685
FFD 75.83 49.17 7.5 57.66 57.37 57.52 27.52 27.45 1.78 1.81
DJD 79.03 24.05 57.5 52.55 51.97 52.26 47.74 47.74 2.00 2.02
DJT 83.75 44.58 57.5 63.21 62.77 62.99 54.96 55.47 0.73 0.75
ADJD 35.83 80.21 53.75 51.09 49.05 50.07 53.80 52.26 1.12 1.13

The following section describes the system implemented in an attempt to
harness the combined abilities of the heuristics used.
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4 Experimental Framework

The system, described in Figure 3, comprises of a database containing the prob-
lem instances and corresponding solutions attained by each heuristic along with
a classification algorithm and an EA. The classifier predicts which heuristic will
perform best on an unseen problem instance whilst the EA attempts to increase
classification accuracy by evolving the predictor attributes used. Unlike other
applications in which classifiers and EAs have been combined to select which
predetermined predictor attributes should be used, the approach here uses the
EA to evolve combinations of problem characteristics not known a priori. A com-
prehensive review of EAs combined use with classification algorithms is outwith
the scope of this paper for which the reader is directed to [10].

The chromosome representation used by the EA is based on that used in [15]
in which an instances’ state is described by characteristics which included the
percentage of each instances items with weights within certain predetermined
ranges, measured as ratios of the bin capacity. The ranges used, and adopted
here as a benchmark, are shown in the chromosome representation depicted in
Figure 2. These were deemed ‘ ‘natural” choices by the authors as at most one
Huge, two Large or three Medium items can be placed in any individual bin.
These ranges, or divisions, are used as the classifiers predictor attributes with
the best heuristic being the goal, or class attribute.

In this study the EA evolves variable length chromosomes which are deliber-
ately constrained to a maximum length that was incrementally increased for each
experiment conducted. A chromosome encodes each instance from the evolution
training set by determining the percentage of items with weights in each range
which along with the known best heuristic 4 for each instance is used to train the
classifier. The ratio of evaluation training problems correctly classified is then
used as the objective fitness value. Each data used in this study was created
by generating either ten or twenty problems for each parameter combination as
described in Table 1. The partitioning of these sets used here ensures an even
distribution of instances from each parameter combination between the training
and test sets and also the subdivisions of the training set described by Figure 3.

Huge: C
2
< ωj

Large: C
3
< ωj ≤ C

2

Medium: C
4
< ωj ≤ C

3

Small: ωj < C
4

Fig. 2. For a chromosome with n genes numbered from left to right the percentage of
items pi falling into each range ri < pi ≤ ri+1 ∀i = 1, . . . , n− 1 is encoded and passed
to the classifier as predictor attributes. The terminal alleles, 0 & 100 were inferred.

4 Determined using Equation 2 with ties awarded to the computationally simplest
heuristic in the order FFD, DJD, DJT and ADJD.
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1. Separate every alternate problem into training and test sets.

2. Split the training set into evolution and evaluation sets with every

5th problem put into the evaluation set.

3. Using the best chromosome encode the evolution set and use

as predictor attributes for the classifier.

4. Train the classifier using the predictor attributes with the goal

attribute being the best heuristic for each instance.

5. Use the classifier to predict the best heuristic for each problem in

the evaluation set.

6. Measure the classification accuracy and use this figure as the

fitness measure for that chromosome.

7. After 1000 iterations use the best chromosome and the complete

training set to train the classifier.

8. The results, presented in section 5, show the ability of the classifier

to select the best heuristic for the as yet unseen test set.

Fig. 3. The system elements and numbered steps explained by the pseudo code

The classification algorithm used was taken from the Waikato Environment
for Knowledge Analysis (WEKA) package [13]. After some initial observations
a K-Nearest Neighbour Classifier was chosen and used with all parameter set-
tings as default with the exception of the variable k which was set to 2. The EA
employed, uses a steady state population, of size 40, with crossover performed
to generate one offspring each iteration with a probability of 60%. Each parent
is selected by means of a tournament between two randomly chosen competi-
tors. Crossover takes the first parent and selects all alleles up to and including
a random position, placing these into the offspring. The second parent is then
searched sequentially until an allele value is found greater than has been intro-
duced from the first parent. This and subsequent genes are appended to the
offspring. Mutation occurs with a probability of 2% and simply adds or removes,
with equal probability, one random value to the chromosome. In order to limit
the chromosome length a trimming process is employed. Should the chromosome
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produced exceed the maximum length stipulated then the closest two allele val-
ues are merged, taking on the average value of the two. This trimming procedure
is repeated as necessary until the chromosome is at most the maximum length
allowed for that experiment. Each iteration the worst member of the popula-
tion is replaced by the child if its fitness is better and an identical chromosome
does not already exist in the population. Seven experiments were conducted,
each consisting of thirty runs with each run terminated after 1000 iterations.
For each experiment, the only parameter modified was the maximum allowed
chromosome length, l. The values used were l = {3, 5, 10, 20, 50, 100, 200}. A
chromosome length of l corresponds to l + 1 ranges once the terminal alleles
representing 0 & 100 were added.

5 Results

The results obtained are shown in Figure 4. The best single individual heuristic,
when ranked by the number of optimal solutions found, was DJT which solved
62.77% (430) of the instances in the test set using an extra 0.75% more bins (452)
than the optimum. In comparison the hyper-heuristic presented here found 521

Accuracy Solved Bins
Att 3 200 3 200 3 200
Mean 72.62 74.93 73.40 74.74 0.41 0.39
SD 1.32 0.83 0.75 0.45 0.018 0.008
Normal Y Y Y Y N Y

t-test 1.27−10 6.84−11

Wilcoxon 5.86−06

Shown are the statistical test results ob-
tained for each graph by comparing the data
found for 3 and 200 attributes.

Fig. 4. The three plots, taken over 30 runs show, for the unseen 685 test problems,
the percentages of problems correctly classified and solved to the known optimal along
with the percentage of extra bins over the optimal of 60257 required. The default values
show the results obtained when using benchmark attributes (0.25,0.33,0.5). The results
of two unpaired two tailed t-tests with no assumption of equal sample variance are
given for the data sets that a Shapiro-Wilk Normality test reported as being normally
distributed with a non-parametric Wilcoxon Mann-Witney test used for the other.
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(76.06%) optimal solutions using only 0.37% (223) more bins. A ten fold cross-
validation was also conducted using the complete set of 1370 problems and the
best set of evolved predictor attributes achieving 72.99% accuracy in comparison
to 68.90% using the non-evolved default attributes.

Unlike in [15], the system described here is unable to solve any instances to
the optimum that are unsolved by any of the constituent heuristics. As different
heuristics, methodologies and problem instances are used a direct comparison is
not entirely possible. However for comparison, when trained using the evolved
characteristics that gave the best result in terms of the number of optimal so-
lutions obtained along with the truncated training set of problems used in [15]
the system presented here was able to find optimal solutions to 172 of the 223
test problems used in [15] as opposed to 166 reported by the papers authors.

6 Conclusions and Future Work

By combining heuristics the number of optimal solutions found is increased sub-
stantially over the number found by any individual heuristic. Furthermore by
evolving relevant predictor attributes for use by the classifier the goal of gen-
erating a problem description that maps individual instances to an appropriate
heuristic for solving it was achieved. The system developed is able to better gen-
eralise over a wider range of problem instances with varying characteristics than
can be addressed by any of the heuristics when used in isolation. The new heuris-
tic introduced, ADJD, has been shown to perform better on problem instances
with certain characteristics than any of the other heuristics investigated and al-
though the single worst heuristic over the complete set of benchmark instances
it is shown to increase the generality of the hyper-heuristic system presented.

It is intended to investigate expanding the work presented here in a number of
directions. Separate classifiers, one or more for each heuristic, could be combined
with each attempting to predict the fitness that its associated heuristic would
achieve when presented with an unseen problem instance. This would allow for
multiple classifiers, even of different types, to compete potentially giving rise to
improved accuracy in a similar way to ensemble classification techniques.

Another possible direction for further study is to closer emulate the research
that inspired this work, where rather than using one heuristic to completely
solve a problem instance, a sequence of different heuristics is used which are
predicted after each new bin has been packed. All of the heuristics work in this
manner already with the exception of FFD which is easily adapted, as in [15], to
exhibit the same behaviour. Initial investigations into increasing the number and
variety of heuristics used suggests that whilst the classification task increases in
complexity with the number of heuristics used, the potential for solving more in-
stances increases also. Although other heuristics were investigated initially many
were deemed too similar, such as BFD which found only one optimal solution
that FFD did not. The use of Genetic Programming techniques to generate new
heuristics could potentially allow for a broader set of simple heuristics with a
more diverse range of abilities to be incorporated such as has been investigated
in [4] albeit using a considerably smaller set of ninety benchmark instances.



A Hyper-Heuristic Classifier for One Dimensional Bin Packing Problems 357

References

1. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.: Hyper-
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