
A Framework to Hybridize PBIL

and a Hyper-heuristic
for Dynamic Environments

Gönül Uludağ1, Berna Kiraz1, A. Şima Etaner-Uyar1, and Ender Özcan2

1 Istanbul Technical University, Turkey
{uludagg,etaner}@itu.edu.tr, berna.kiraz@marmara.edu.tr

2 University of Nottingham, UK
Ender.Ozcan@nottingham.ac.uk

Abstract. Selection hyper-heuristic methodologies explore the space of
heuristics which in turn explore the space of candidate solutions for
solving hard computational problems. This study investigates the per-
formance of approaches based on a framework that hybridizes selection
hyper-heuristics and population based incremental learning (PBIL), mix-
ing offline and online learning mechanisms for solving dynamic environ-
ment problems. The experimental results over well known benchmark
instances show that the approach is generalized enough to provide a
good average performance over different types of dynamic environments.

Keywords: hyper-heuristics, dynamic environments, multiple popula-
tions, incremental learning.

1 Introduction

Many real world optimization problems are dynamic in nature. When solving a
problem in such environments, it is better to take the dynamism into account and
choose an appropriate optimisation approach which is able to adapt and track
the moving optima. Different types of changes may occur in the environment over
time. The dynamism in the environment can be classified based on its severity,
frequency, predictability, cycle length and cycle accuracy [2]. There are many
techniques proposed in literature to solve dynamic optimization problems. A
recent survey can be found in [5].

Recently, there has been a growing interest in Estimation of Distribution Al-
gorithms (EDAs). The performance improvement of EDAs via the development
of different algorithmic frameworks, such as multi-population approaches, in-
clusion of mechanisms addressing issues, such as hyper-mutation to deal with
diversity loss and other mechanisms are of interest for many researchers and
practitioners to solve dynamic environment problems [1,6,14,16,13,18].

There is an emerging field of research in the semi-automated design of search
methodologies: hyper-heuristics. Burke et al. [3] defined hyper-heuristics as met-
hodologies that search the space of heuristics by selecting or generating them

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part II, LNCS 7492, pp. 358–367, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Framework to Hybridize PBIL and a Hyper-heuristic 359

to solve difficult problems. The focus of this study is selection hyper-heuristics
which attempt to improve an initially generated candidate solution iteratively
through heuristic selection and move acceptance stages [4,10]. In this paper, we
will use hyper-heuristics to denote selection hyper-heuristics. Özcan et al. [11]
proposed a hyper-heuristic framework for dynamic environments for the first
time, to the best of the authors’ knowledge. Empirical evidence suggests that
hyper-heuristics are effective solvers in dynamic environments for real valued
optimisation [7] as well as combinatorial optimisation [8].

Although variants of EDAs have been proposed to solve dynamic environment
problems, it has been observed that there is almost no single approach that
performs consistently well across different types of dynamic environments. This
is mostly because different types of methods are capable of handling particular
types of changes relatively better than others in such environments.

In this study, inspired from previous studies, we investigate the performance
of a general framework which is based on a bi-population approach hybridizing a
variant of EDA, in particular PBIL, and a selection hyper-heuristic across some
well known benchmark functions. The goal of the study is to enhance the per-
formance of PBIL enabling this approach to handle any given type of change
dynamic and hence, raise its level of generality. The framework can combine
any EDA based approach with any type of selection hyper-heuristic. We utilize
an offline learning mechanism to detect the useful operators (or operator com-
ponents) for different environments and then use an online learning selection
hyper-heuristic to select the best operator at a given time during the search pro-
cess while solving an unseen instance. The following sections discuss the details
of the proposed framework.

2 Proposed Framework

In this study, we propose a new framework exploiting the advantages of hyper-
heuristics and multi-population approaches. The framework can combine any
multi-population EDA with selection hyper-heuristics. Here we propose hyper-
heuristic based multi-population PBIL (HH-PBIL2), which is based on SPBIL2
introduced in [18]. SPBIL2 is a bi-population standard PBIL (SPBIL) algorithm.

Kiraz et al. [7], show that heuristic selection methods with learning, namely
choice function and reinforcement learning (see [10] for details) outperform oth-
ers. Both incorporate some form of a scoring mechanism. In choice function, when
scoring a heuristic, the difference between the fitness values of the offspring and the
current candidate solution is taken into account. In a dynamic environment setting,
this means that whenever a change occurs, the current candidate solution has to
be re-evaluated in the new environment. For the proposed approach this involves
re-evaluating all the candidate solutions in the current population, which is com-
putationally ineffective. Therefore, we do not use choice function as a heuristic se-
lection method. In reinforcement learning (RL) [9] heuristic selection method, each
low-level heuristic has a utility score. The scores of each heuristic are initialized to
the same value and updated during the search process based on its performance.

360 G. Uludağ et al.

At each step, the low-level heuristic with the maximum score is selected. If the se-
lected heuristic produces a better solution than the previous one, it is rewarded
by increasing its score, otherwise it is penalized by decreasing it. The scores are
restricted to vary between predetermined lower and upper bounds.

In SPBIL, a posterior probability distribution model of promising solutions is
built using statistical information obtained from the population of solution candi-
dates. This is termed as a probability vector, which is used to create a population
of solutions through sampling at each iteration. In SPBIL2, the population is
divided into two sub-populations. Each sub-population is sampled from its own
probability vector. The two probability vectors are evolved in parallel for a given
maximum number of generations. As in SPBIL, the first probability vector −→P 1 is
initialized with the central probability vector, and the second probability vector−→
P 2 is initialized randomly. The size of the initial sub-populations are equal. Af-
ter all candidate solutions are evaluated, sub-population sample sizes are slightly
adjusted within the range of [0.3 ∗ n, 0.7 ∗ n]. Then, each probability vector is
learnt towards the best solution(s) in the relevant sub-population. Similar to
SPBIL, mutation is applied to both probability vectors before sampling. Details
of SPBIL2 can be found in [18,17].

The approach proposed in this paper (HH-PBIL2) consists of two phases. In
the first phase, probability vectors corresponding to a set of different environ-
ments are learned offline, using SPBIL. Then, those learned probability vectors
are stored for later use. In the second phase, the probability vectors serve as
low-level heuristics for the RL based hyper-heuristic.

HH-PBIL2 is proposed to enhance the performance of SPBIL2 in dynamic
environments. As in SPBIL2, the population is divided into two sub-populations
and two probability vectors are used in parallel. The first probability vector −→P 1

is again initialized with the central probability vector, but the second probability
vector −→

P 2 is selected randomly from the previously stored probability vectors.
Each sub-population is sampled independently using the relevant probability
vector. The first probability vector −→P 1 is learned towards the best solution can-
didate(s) in the first population. There is no online learning step for the second
probability vector −→

P 2. At each iteration, RL heuristic selection mechanism se-
lects the probability vector with the largest score from among the previously
stored probability vectors and this probability vector is assigned as −→

P 2. The
score update scheme for the RL heuristic selection method is explained above.

We used two variants of HH-PBIL2 which differ in the information used to
update a low-level heuristic’s score. In the first variant, RL-PF, the best per-
forming candidate solution(s) from the two populations combined, are used to
update the score. In the second variant, RL-P2, the best performing solution
candidate(s) from only the second population is used to update the score.

Similar to SPBIL2, after the candidate solutions are evaluated, the next pop-
ulation sizes are slightly adjusted. However, mutation is applied only to −→

P 1.
Then, two sub-populations are sampled based on the relevant probability vec-
tors. The approach repeats the cycle until some termination criteria are met.
The pseudocode of HH-PBIL2 is shown in Algorithm 1.

A Framework to Hybridize PBIL and a Hyper-heuristic 361

Algorithm 1. Pseudocode of the proposed approach HH-PBIL2.
1: t := 0
2: initialize

−→
P 1(0) := −→0.5

3: −→
P 2(0) is selected from RL randomly

4: S1(0) := sample(
−→
P 1(0)) and S2(0) := sample(

−→
P 2(0))

5: while (termination criteria not fulfilled) do
6: evaluate S1(t) and evaluate S2(t)

7: adjust next population sizes for
−→
P 1(t) and

−→
P 2(t) respectively

8: place k best samples from S1(t) and S2(t) into
−→
B (t)

9: if (RL-PF) then
10: send the best fitness value from the whole population to RL
11: end if
12: if (RL-P2) then
13: send the best fitness value from the second population to RL
14: end if
15: learn

−→
P 1(t) toward

−→
B (t)

16: mutate
−→
P 1(t)

17: −→
P 2(t) is selected with maximum score from RL

18: S1(t) := sample(
−→
P 1(t)) and S2(t) := sample(

−→
P 2(t))

19: t := t + 1
20: end while

3 Experimental Design

In the experiments, the proposed approaches RL-PF and RL-P2 are compared
with SPBIL and SPBIL2. The original source codes which we compared are taken
from Yang’s web site1. Our approaches are implemented based on SPBIL2. These
two techniques are briefly explained in section 2.

All approaches are applied to three Decomposable Unitation-Based Functions
(DUFs). All DUFs are composed of 25 copies of 4-bit building blocks. Each build-
ing block is denoted as a unitation-based function u(x) which gives the number
of ones in the corresponding building block. Its maximum value is 4. The fitness
of a bit string is calculated as the sum of the u(x) values of the building blocks.
The optimum fitness value for all DUFs is 100. The DUFs can be formulated as
follows [13].

fDUF1 = u(x) fDUF2 =

⎧
⎨

⎩

4 , if u(x) = 4
2 , if u(x) = 3
0 , if u(x) < 3

fDUF3 =

{
4 , if u(x) = 4
3 − u(x) , if u(x) < 4

DUF1 is the OneMax problem whose objective is to maximize the number of
ones in a bit string. DUF2 has a unique optimal solution surrounded by four
local optima and a wide plateau with eleven points having a fitness of zero.
DUF2 is more difficult than DUF1. DUF3 is fully deceptive [18].

The XOR dynamic problem generator [15,17] is applied to the three DUFs
to obtain dynamic test problems. The XOR generator can create a dynamic en-
vironment problem with varying degrees of difficulty from any binary-encoded
stationary problem using a bitwise exclusive-or (XOR) operator. Given a func-
tion f(x) in a stationary environment and x ∈ {0, 1}l, the fitness value of the
x at a given generation g is calculated as f(x, g) = f(x ⊕ mk), where mk is a
binary mask for kth stationary environment and ⊕ is the XOR operator. Firstly,

1 http://www.brunel.ac.uk/~csstssy/publications.html

http://www.brunel.ac.uk/~csstssy/publications.html

362 G. Uludağ et al.

the mask m is initialized with a zero vector. Then, every τ generations, the mask
mk is changed as mk = mk−1 ⊕ tk, where tk is a binary template.

SPBIL, SPBIL2 and HH-PBIL2 share some common settings which are used
as suggested in [18]. The problem consists of 25 building blocks, therefore solution
candidates are of length 100. Mutation rate is 0.02 and mutation shift is 0.05.
The learning rate α is taken as 0.25 and 3 best candidate solutions are used in
the online learning of probability vectors. The population size for SPBIL is set
to 100. For SPBIL2 and HH-PBIL2, each sub-population size is initialized as 50
and they are allowed to vary between 30 and 70. In RL, score of each heuristic is
initialized to 15 and allowed to vary between 0 and 30. If the selected heuristic
yields a solution with an improved fitness, its score is increased by 1, otherwise
decreased by 1. The RL settings are taken as recommended in [12].

In the first phase of HH-PBIL2, probability vectors corresponding to a set
of different environments are learned offline using SPBIL. To generate different
environments using the XOR generator, a set of M XOR masks are randomly
generated. Then, for each mask (i.e. environment), SPBIL is executed for 100
independent runs where each run consists of 10, 000 generations. During offline
learning, each environment is stationary. At the end, for each environment, the
probability vector producing the best solution found so far over all runs is stored.
These vectors are used in in all the rest of the experiments.

This study considers the frequency of changes τ , severity of changes ρ and
cycle length CL as the type of changes in the environment. In the cyclic environ-
ments, we assume that environments return to their previous locations exactly.
None of the tested methods require that the time of a change is known.

As a result of some preliminary experiments, we determined the change pe-
riods as 50 generations for low frequency (LF), 25 generations for medium fre-
quency (MF) and 5 generations for high frequency (HF) for DUF1 and DUF2.
The change periods for DUF3 are determined as 100 generations for LF, 35 gen-
erations for MF and 10 generations for HF. In convergence plots, these settings
for LF, MF and HF correspond respectively to stages where the algorithm has
been converged for some time, where it has not yet fully converged and where
it is very early on in the search. In addition, the severity of changes are chosen
as 0.1 for low severity (LS), 0.2 for medium severity (MS), 0.5 for high severity
(HS), and 0.75 for very high severity (VHS) for random dynamic environments.
These are determined based on the definition of the XOR generator. For cyclic
dynamic environments, the cycle lengths CL are selected as 2, 4 and 8. To con-
struct cyclic environments, the masks representing the environments are selected
among the randomly generated M masks used in the offline learning phase of
HH-PBIL2. For each run of the algorithms, 128 changes occur after the initial
environment. Therefore, the maximum number of generations is calculated as
maxGenerations = changeFrequency ∗ changeCount. We performed experi-
ments to explore the effects of the severity and the frequency of the changes on
the performance of the approaches for randomly changing environments, and the
effects of the cycle length and the frequency of the changes on the performance
of the approaches for cyclic environments.

A Framework to Hybridize PBIL and a Hyper-heuristic 363

In order to compare the performance of the algorithms, the results are reported
in terms of the offline error [2], calculated as the cumulative average of the
errors of the best candidate solutions found so far. The error of a candidate
solution is calculated as the difference of its fitness value from the fitness value
of the optimum solution at each time step. Fitness values are calculated using
the corresponding DUF definitions given above. In all our experiments, while
the location of the global optimum may change, its fitness value remains the
same and is 100 for all time steps. An algorithm solving a dynamic environment
problem aims to achieve the least overall offline error value obtained at the end
of a run. All reported results are averages over 100 independent runs. Anova and
Tukey’s HSD tests are applied to the results at a significance level of 95% to test
for statistically significant differences.

4 Results and Discussion

All test results are summarized in Table 2 for randomly changing environments
and in Table 3 for cyclic environments on all DUFs. The values in the tables
show the offline errors achieved at the end of a run, averaged over 100 runs. Due
to lack of space, the statistical significance comparison tables are not given in
the paper2.

Firstly, we analyze the effects of the learned probability vector counts (M) on
HH-PBIL2 in both randomly changing and cyclic environments. We experimen-
ted with M values of 8, 16, 32, 64. The results of the ANOVA and Tukey’s HSD
tests for statistical significance at a 95% confidence level are reported in Table 1.
In the table, each entry shows the total number of times the approach achieves
the corresponding significance state (s+, s−, ≥ and ≤) over the others on the
three DUFs for different change severity and frequency settings in randomly
changing environments and for different cycle length and change frequency set-
tings in cyclic environments. Here, the following notation is used: Given A vs B,
s+ (s−) denote that A (B) is performing statistically better than B (A), while
A ≥ B (A ≤ B) indicates that A (B) performs slightly better than B (A) and
this performance difference is not statistically significant. From the table, we can
see that M = 8 is better overall for the tested environments under all change
settings. Therefore, in the tables 2 and 3, we only report the results for M = 8.
The statistical significance tests show that the number of learned probability
vectors does not significantly affect the performance of HH-PBIL2 variants for
all change frequency-severity settings. However, for cyclic environments smaller
M values give better offline error values.

Secondly, we analyze the performance of HH-PBIL2 in dynamic environments
showing different change properties. Both for the randomly changing environ-
ments and the cyclic environments in all DUFs, SPBIL2 is significantly better
than SPBIL, except for HF cyclic changes in DUF1 and DUF2 where the per-
formance difference is not statistically significant. In the cyclic environments,
2 Statistical significance comparison tables can be download from
http://web.itu.edu.tr/etaner/ppsn2012_analysis.zip

http://web.itu.edu.tr/etaner/ppsn2012_analysis.zip

364 G. Uludağ et al.

RL-P2 is significantly better than RL-PF on average, SPBIL and SPBIL2 for all
M values and change frequencies. In the randomly changing environments, for all
HS and VHS severity settings RL-P2 is significantly better than RL-PF in all the
DUFs. For the LS and MS severity settings, their performance differences are not
statistically significant. However, statistically significant performance differences
appear in favor of RL-P2 for these severity settings in MF and HF settings in
all DUFs. In the randomly changing environments for all change severities (LS,
MS, HS, VHS) at the HF frequency setting, RL-P2 is better than SPBIL2 and
this performance difference is statistically significant. The same result is also
observed for all change frequencies (LF, MF, HF) at the HS and VHS severity
settings. For change frequency-severity combinations of LF and MF with LS and
MS, SPBIL2 is significantly better than RL-P2.

To illustrate the tracking behavior of the approaches, in Figure 1 and
Figure 2, sample plots for the error values of the generation best solution candi-
dates versus the number of generations, for four consecutive environments after
the third change on DUF2 are given. The plots show that for randomly changing
environments, increased change severities result in significant differences between
the algorithms in favor of HH-PBIL2 variants. Increased cycle lengths in cyclic
environments have a similar effect on the algorithms. But as the frequency in-
creases, the differences get smaller. Increased change frequencies have a similar
effect on all approaches in the cyclic environments too.

Table 1. Overall (s+, s−, ≥ and ≤) counts for M = 8, 16, 32, 64 in RL-PF and RL-P2

RL-P2-8 RL-P2-16 RL-P2-32 RL-P2-64 RL-PF-8 RL-PF-16 RL-PF-32 RL-PF-64
s+ 376 356 342 283 202 167 137 104
s− 64 73 88 139 218 236 273 320
≥ 44 81 80 70 70 90 76 71
≤ 83 57 57 75 77 74 81 72

Table 2. Offline errors averaged over 100 runs, on the three DUFs for different change
severity and frequency settings in randomly changing environments

Alg.
LF MF HF

LS MS HS VHS LS MS HS VHS LS MS HS VHS

DUF1

RL-PF 4.22 8.12 9.02 9.22 9.91 16.74 20.58 22.06 27.91 32.13 36.65 38.73
RL-P2 4.24 8.15 7.23 4.25 9.95 16.73 14.39 12.55 26.95 29.67 33.17 35.12
SBIL 4.11 7.91 16.72 21.76 9.55 16.08 26.73 30.45 28.00 33.84 38.05 38.73
SPBIL2 3.46 7.21 16.21 20.72 9.05 15.81 26.00 29.18 27.75 33.35 37.23 38.12

DUF2

RL-PF 9.28 19.26 19.14 15.05 21.23 34.53 39.88 42.37 50.03 56.56 63.43 64.61
RL-P2 9.28 19.16 18.52 13.39 21.40 34.37 30.48 29.00 49.04 53.19 58.64 60.67
SPBIL 9.00 18.42 38.86 45.88 20.43 34.48 51.51 54.83 52.30 60.45 65.21 65.72
SPBIL2 7.63 17.21 37.06 43.15 19.53 33.71 49.71 52.59 51.79 59.35 64.07 64.57

DUF3

RL-PF 25.57 25.92 18.95 17.79 30.44 32.22 29.41 27.24 39.77 41.90 44.42 42.90
RL-P2 25.55 25.89 19.02 17.83 30.41 32.00 25.03 25.30 38.94 39.78 41.78 40.00
SPBIL 25.46 25.81 23.98 19.46 30.12 33.17 35.29 31.53 40.18 44.51 47.18 45.94
SPBIL2 25.00 25.26 23.19 18.52 29.44 32.38 34.36 30.71 39.48 43.65 46.35 45.09

A Framework to Hybridize PBIL and a Hyper-heuristic 365

Table 3. Offline errors averaged over 100 runs, on the three DUFs for different cycle
length and change frequency settings in cyclic environments

Alg.
LF MF HF

CL=2 CL=4 CL=8 CL=2 CL=4 CL=8 CL=2 CL=4 CL=8

DUF1

RL-PF 3.50 4.02 3.84 15.17 17.66 13.92 16.71 19.37 27.99
RL-P2 0.17 0.17 0.17 1.80 2.13 1.93 8.95 14.76 19.33

SPBIL 10.19 16.51 15.84 13.20 22.43 24.13 15.79 26.23 28.42
SPBIL2 9.08 15.73 15.29 10.73 21.05 23.08 16.24 26.20 28.19

DUF2

RL-PF 2.18 2.06 2.58 14.38 22.72 19.81 27.29 36.27 47.93
RL-P2 0.27 0.29 0.27 2.85 3.40 3.40 15.74 27.59 32.95

SPBIL 20.67 36.15 36.73 24.29 43.07 46.89 27.69 45.83 51.23
SPBIL2 17.79 33.71 34.63 20.91 40.40 44.58 28.60 45.82 50.77

DUF3

RL-PF 10.94 11.93 11.91 18.65 26.95 20.39 24.16 34.31 36.35
RL-P2 10.53 11.58 11.57 12.99 14.35 14.21 17.51 29.35 27.79

SPBIL 25.72 24.25 23.88 31.52 34.77 34.86 28.60 37.24 42.66
SPBIL2 25.00 23.48 23.07 30.35 33.49 33.95 28.44 36.38 41.49

 10

 20

 30

 40

 50

 60

 70

 150 200 250 300 350

E
rr

or
 o

f t
he

 b
es

t s
ol

ut
io

n

Number of generations

RL-PF RL-P2 SPBIL PBIL2

(a) Low Frequency

 10

 20

 30

 40

 50

 60

 70

 80 100 120 140 160

E
rr

or
 o

f t
he

 b
es

t s
ol

ut
io

n

Number of generations

RL-PF RL-P2 SPBIL PBIL2

(b) Medium Frequency

 10

 20

 30

 40

 50

 60

 70

 80 100 120 140 160

E
rr

or
 o

f t
he

 b
es

t s
ol

ut
io

n

Number of generations

RL-PF RL-P2 SPBIL PBIL2

(c) High Severity

 10

 20

 30

 40

 50

 60

 70

 80 100 120 140 160

E
rr

or
 o

f t
he

 b
es

t s
ol

ut
io

n

Number of generations

RL-PF RL-P2 SPBIL PBIL2

(d) Very High Severity

Fig. 1. Sample plots for the error values of the generation best solution candidates
versus the number of generations for randomly changing environments based on fixed
severity - HS- (first row) and based on fixed frequency -MF- (second row) settings.

366 G. Uludağ et al.

 0

 10

 20

 30

 40

 50

 60

 150 200 250 300 350

E
rr

or
 o

f t
he

 b
es

t s
ol

ut
io

n

Number of generations

RL-PF RL-P2 SPBIL PBIL2

(a) Low Frequency

 0

 10

 20

 30

 40

 50

 60

 80 100 120 140 160

E
rr

or
 o

f t
he

 b
es

t s
ol

ut
io

n

Number of generations

RL-PF RL-P2 SPBIL PBIL2

(b) Medium Frequency

 0

 10

 20

 30

 40

 50

 60

 80 100 120 140 160

E
rr

or
 o

f t
he

 b
es

t s
ol

ut
io

n

Number of generations

RL-PF RL-P2 SPBIL PBIL2

(c) CL=4

 0

 10

 20

 30

 40

 50

 60

 80 100 120 140 160

E
rr

or
 o

f t
he

 b
es

t s
ol

ut
io

n

Number of generations

RL-PF RL-P2 SPBIL PBIL2

(d) CL=8

Fig. 2. Sample plots for the error values of the generation best solution candidates
versus the number of generations for cyclic changing environments based on fixed CL=4
(first row) and based on fixed frequency -MF- (second row) settings.

5 Conclusion

In this study, we investigated the performance of a bi-population framework that
hybridizes a variant of population based incremental learning with a selection
hyper-heuristic. The framework can combine any EDA based technique with
any heuristic selection mechanism. In this study, a standard PBIL is hybridized
with a reinforcement learning selection hyper-heuristic. To explore the gener-
ality of the proposed approach we performed experiments across environments
exhibiting a range of different change dynamics on some well known benchmark
functions for two generic approaches and our proposed approach. Previous stud-
ies indicate that stand-alone generic approaches are not sufficient to deal with
different change dynamics. The results of the experiments in this study confirm
this and show that the proposed approach exhibits good performance in all the
tested change scenarios. This makes the proposed approach a solver which is
generalized enough to provide a good average performance over different types
of dynamic environments. As future work, we will experiment with hybridiz-
ing other types of EDA based methods and heuristic selection mechanisms, as
well as incorporate our approach into memory based techniques. The results are
promising which promote further study.

Acknowledgements. B. Kiraz is supported by TÜBİTAK 2211-National Schol-
arship Program for PhD students. The study is supported in part by EPSRC,
grant EP/F033214/1 (The LANCS Initiative Postdoctoral Training Scheme).

A Framework to Hybridize PBIL and a Hyper-heuristic 367

References

1. Barlow, G.J., Smith, S.F.: Using memory models to improve adaptive efficiency in
dynamic problems. In: IEEE Symposium on Computational Intelligence in Schedul-
ing, CISCHED, pp. 7–14 (2009)

2. Branke, J.: Evolutionary optimization in dynamic environments. Kluwer (2002)
3. Burke, E.K., Gendreau, M., Hyde, M.R., Kendall, G., Ochoa, G., Özcan, E., Qu,

R.: Hyper-heuristics: A survey of the state of the art. To appear in the Journal of
the Operational Research Society (2012)

4. Cowling, P.I., Kendall, G., Soubeiga, E.: A Hyperheuristic Approach to Scheduling
a Sales Summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079,
pp. 176–190. Springer, Heidelberg (2001)

5. Cruz, C., Gonzalez, J., Pelta, D.: Optimization in dynamic environments: a survey
on problems, methods and measures. Soft Computing - A Fusion of Foundations,
Methodologies and Applications 15, 1427–1448 (2011)

6. Fernandes, C.M., Lima, C., Rosa, A.C.: Umdas for dynamic optimization prob-
lems. In: Proc. of the 10th Conference on Genetic and Evolutionary Computation,
GECCO 2008, pp. 399–406. ACM (2008)

7. Kiraz, B., Uyar, A.Ş., Özcan, E.: An Investigation of Selection Hyper-heuristics
in Dynamic Environments. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M.,
Ekárt, A., Esparcia-Alcázar, A.I., Merelo, J.J., Neri, F., Preuss, M., Richter, H., To-
gelius, J., Yannakakis, G.N. (eds.) EvoApplications 2011, Part I. LNCS, vol. 6624,
pp. 314–323. Springer, Heidelberg (2011)

8. Kiraz, B., Topcuoglu, H.R.: Hyper-heuristic approaches for the dynamic gener-
alized assignment problem. In: 2010 10th International Conference on Intelligent
Systems Design and Applications (ISDA), pp. 1487–1492 (2010)

9. Nareyek, A.: Metaheuristics, pp. 523–544. Kluwer (2004)
10. Özcan, E., Bilgin, B., Korkmaz, E.E.: A comprehensive analysis of hyper-heuristics.

Intelligent Data Analysis 12, 3–23 (2008)
11. Özcan, E., Uyar, Ş., Burke, E.: A greedy hyper-heuristic in dynamic environments.

In: GECCO 2009 Workshop on Automated Heuristic Design: Crossing the Chasm
for Search Methods, pp. 2201–2204 (2009)

12. Özcan, E., Misir, M., Ochoa, G., Burke, E.K.: A reinforcement learning - great-
deluge hyper-heuristic for examination timetabling. International Journal of Ap-
plied Metaheuristic Computing 1(1), 39–59 (2010)

13. Peng, X., Gao, X., Yang, S.: Environment identification-based memory scheme for
estimation of distribution algorithms in dynamic environments. Soft Comput. 15,
311–326 (2011)

14. Wu, Y., Wang, Y., Liu, X., Ye, J.: Multi-population and diffusion umda for dynamic
multimodal problems. Journal of Systems Engineering and Electronics 21(5), 777–
783 (2010)

15. Yang, S.: Constructing dynamic test environments for genetic algorithms based on
problem difficulty. In: Proc. of the 2004 Congress on Evolutionary Computation,
pp. 1262–1269 (2004)

16. Yang, S., Richter, H.: Hyper-learning for population-based incremental learning in
dynamic environments. In: Proc. 2009 Congr. Evol. Comput., pp. 682–689 (2009)

17. Yang, S., Yao, X.: Experimental study on population-based incremental learning
algorithms for dynamic optimization problems. Soft Comput. 9(11), 815–834 (2005)

18. Yang, S., Yao, X.: Population-based incremental learning with associative memory
for dynamic environments. IEEE Trans. on Evolutionary Comp. 12, 542–561 (2008)

	A Framework to Hybridize PBILand a Hyper-heuristic
for Dynamic Environments
	Introduction
	Proposed Framework
	Experimental Design
	Results and Discussion
	Conclusion
	References

