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Abstract. Whenever a new problem needs to be tackled, one needs to
decide which of the many existing metaheuristics would be the most ade-
quate one; but it is very difficult to know their performance a priori. And
then, when a metaheuristic is chosen, there are still its parameters that
need to be set by the user. This parameter setting is usually very problem-
dependent, significantly affecting their performance. In this work we
propose the use of an Adaptive Operator Selection (AOS) mechanism to
automatically control, while solving the problem, (i) which metaheuris-
tic to use for the generation of a new solution, (exemplified here by a Ge-
netic Algorithm (GA) and a Differential Evolution (DE) scheme); and (ii)
which corresponding operator should be used, (selecting among five oper-
ators available for the GA and four operators for DE). Two AOS schemes
are considered: the Adaptive Pursuit and the Fitness Area Under Curve
Multi-Armed Bandit. The resulting algorithm, named as Adaptive Hyper-
Heuristic (HH), is evaluated on the BBOB noiseless testbed, showing supe-
rior performance when compared to (a) the same HH without adaptation,
and also (b) the adaptive DE and GA.

Keywords: Hyper-heuristics, adaptive operator selection, parameter
control, multi-armed bandits, area under the curve.

1 Introduction

Metaheuristics have been used to solve a wide range of complex optimization
problems. Many different algorithmic schemes can be found in the literature,
each of them presenting its own specifications, resulting into different behaviors
with respect to the exploration of the search space. The resulting characteris-
tics might be more adequate or not to a given problem or class of problems. It
is very difficult, however, to know a priori which would be the most adequate
metaheuristic whenever a new problem needs to be tackled. Additionally, meta-
heuristics usually have many user-defined parameters that might significantly
affect their behavior and performance. In the case of evolutionary algorithms,
for example, there is the population size, the selection and replacement mech-
anisms and their inner parameters, the choice of variation operators and their
corresponding application rates, etc. As a result, once a given metaheuristic is
chosen, there is still the need of correctly setting its parameters, what can be
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seen as a complex optimization problem per se. There are thus two levels of
decision: (i) which algorithm should be used, and (ii) which values should be
used for setting its parameters. As of today, these decisions are usually done
by following the user’s intuition, or by using an off-line tuning procedure aimed
at identifying the best strategy for the problem at hand. Besides being com-
putationally expensive, off-line tuning however generally delivers sub-optimal
performances, as the appropriate strategy depends on the stage of the optimiza-
tion process: intuitively, exploration-like strategies should be more frequently
used in the early stages while priority should be given to exploitation when
approaching the optimum. Regarding the first decision, a solution might come
from the so-called hyper-heuristics. In [10], a hyper-heuristic is described as a
heuristic scheduler that does the scheduling over a set of heuristics in a deter-
ministic or non-deterministic way. A more comprehensive survey can be found
in [2]. Concerning the second decision, more specifically in the case of setting the
application rates of variation operators, a recent trend is to use methods that
control, while solving the problem, which variation operator should be applied
according to the recent performance of all available operators. These methods
are commonly referred to as Adaptive Operator Selection (AOS) [6].

In fact, the problem of selecting which variation operator to apply can be
seen as exactly the same problem of selecting which metaheuristic to use, but
at a different abstraction level. Thus, in this paper we propose the use of AOS
schemes at the two levels of abstraction (the hyper- and the lower level), in an
independent way, while solving the problem.

We empirically analyze the use of two prominent schemes found in the liter-
ature, the probability-based Adaptive Pursuit (AP) method [I3], and the most
recent bandit-based method, referred to as the Fitness-based Area-Under-Curve-
Bandit (AUC) [5]. Both are compared with each other at both levels, and also
with what would be the choice of a Naive user, namely, the uniform selec-
tion of the operators. On the hyper-level, the AOS schemes are expected to
autonomously select, while solving the problem, which metaheuristics (in our
numerical experiments, Differential Evolution (DE) or Genetic Algorithm (GA))
should be applied. At the lower level, there are five operators for the GA case,
and four in the case DE is chosen. DE and GA were chosen because they have
been widely used in many fields and their efficiency has already been verified
several times. Other heuristics as well as more than two could have been used.

A brief overview of the GA and the DE adopted in this work, as well as
an introduction to AOS and to the existing schemes employed, is presented
in section @ In section ] the proposed schemes are depicted. The computer
experiments are presented in sectiond] and the paper ends with some conclusions
in Section Bl

2 Background

In this work, AOS schemes are used at the hyper-level in order to select between
the DE and GA metaheuristics. Both of them will now be briefly described.
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2.1 Genetic Algorithms

Here a real-coded GA was applied with a rank-based selection scheme. Moreover,
a large number of genetic operators have already been developed and those
we adopted are listed below (considering z;, ¢ = 1,..., N the variables in a
chromosome, r¥ and 2V respectively the lower and upper bounds for ;):

— The one-point (1X) crossover operator which is the analogue of the standard
one-point crossover for binary-coded GAs.

— The Uniform crossover (UX) [I2], where each gene in the offspring is cre-
ated by copying the corresponding gene from either parent according to a
randomly generated crossover mask.

— The blend crossover operator (BLX-a) [3].

— A simple mutation operator (delta mutation — DM) that increments each
variable with a given rate of application according to:

T = pi +0Anax

where p is the parent, z is the offspring, J is a random number, and A,,,, is
a fixed quantity, which represents the maximum permissible change in the
parent.

— The non-uniform mutation (NUM) operator [9]. When applied to an individ-
ual = at generation gen and when the total number of generations allowed
is mazxgen, mutates a randomly chosen variable x; according to

o z; + A(gen,z¥ — ;) if 7=0
! z; — A(gen,z; — k) if 7=1

where 7 is randomly chosen as 0 or 1 and the function A(gen, y) is defined as

— gen n
Algen,y) = y(1 — pt~ mazgen)")

with p randomly chosen in [0, 1] and the parameter i set to 2.

2.2 Differential Evolution

The original proposal of DE by Storm and Price [I1] presents a simple and
efficient algorithm for global optimization over continuous spaces. The main
variants (or strategies) of the DE modify the way the individuals are selected to
participate in the mutation, which in the original proposal was done randomly
(called DE/rand/1/bin). The Algorithm[shows the pseudo-code for this variant.
The additional variants considered here basically change line 11 of Algorithm/[Tk
— DE/rand/2/bin:
Uji = Tjpy + F(xj,m - xjﬂ":s) + F(xjarél - xjﬂ"s)
— DE /rand-to-best/2/bin:
Uji = Tjry + F (@5 0est = Tjor) + F (20, = Tjirs) + F(Tjirs — Tjirs)
— DE/current-to-rand/1/bin:
Wi = Tji+ F(@jr — Tjr) + F (20, = Tjirs)
where 7y, 72, 73, 74 and 75 are randomly selected individuals and x; pest is the
best individual in the population.
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Algorithm 1. Algorithm DE/rand/1/bin.

input : NP (population size), GEN (# of generations), F (mutation scaling),
CR (crossover rate)
1 G« 0
2 CreateRandomInitialPopulation(NP );
3 for i <— 1 to NP do
4 Evaluate f(?iﬂq) ; /* ?i,c is an individual in the population */
5 for G — 1 to GEN do
6 for i — 1 to NP do

7 SelectRandomly (71, 72,73) ; /¥ 1 FEraFEr3 £ x/
8 jRand «<RandInt(1, N ) ; /* N is the number of variables */
9 for j — 1toN do
10 if Rand(0,1) < CR or j = jRand then
11 Uij,G+1 = Try .G + FoTr) 5.6 — Ty 5.G);
12 else
13 Ui j,G+1 = Tij,G;
14 if f(ﬁqj,GJrl) < f(?l,c) then
— —
15 Ti,G+1 = Ui,G+1;
16 else
17 Tig1 = Tia;

2.3 Adaptive Operator Selection

The Adaptive Operator Selection aims to adjust the application of operators while
the search process is performed, according to the operators performance. Thus,
we need to define two aspects: how to measure the performance of the operators,
usually referred to as Credit Assignment, and how to select among them after these
performance measurements are made, simply called here Operator Selection.

More specifically, the Credit Assignment firstly measures the impact caused by
the operator application in the optimization process, and then transforms this im-
pact into a meaningful numerical credit that will be used for updating the empirical
quality estimates of each operator. The most common impact measure is simply
the fitness improvement achieved by the generated offspring w.r.t. its parent(s).
Then, the credit assigned to the operator can be: (i) the Instantaneous reward, i.e.,
received after the last application; (ii) the Average of the rewards received over a
few recent applications; (iii) or the Extreme reward recently received by the oper-
ator [4]. The number of recent applications considered for the latter two is usually
a user-defined parameter, referred to as W (size of the sliding window).

For the Operator Selection, we consider here two existing schemes from the
literature, which were chosen for having shown superior performance in recent
works. The first one is called Adaptive Pursuit (AP) [13]. It calculates an ap-
plication probability for each operator, and use a roulette wheel to select the
next operator to be applied. A lower bound on the probabilities is employed
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to preserve some level of exploration, and a winner-takes-all scheme is used to
push forward the current best operator. In this work, the AP Operator Selection
scheme is used in combination with the Extreme Credit Assignment.

Although alleviating the user from the need of selecting which operators
should be applied to the problem at hand, and doing so in an on-line man-
ner, the most common operator selection schemes, including the AP method,
involve some hyper-parameters that need to be tuned as well. The use of credit
assignment schemes based on the raw values of the fitness improvements make
these hyper-parameters highly problem-dependent.

Motivated by this issue, the Fitness-based Area-Under-Curve - Bandit (AUC),
a fully comparison-based adaptive operator selection was recently proposed][5].
Its robustness comes from its Credit Assignment scheme, which is based on the
ranks of the fitness improvements, and not on their raw values. Briefly, it works
as follows. The latest W rewards achieved by all operators are ranked, and an
exponentially decaying factor is applied over the rank values, so that the top
ranked rewards have a significant weight, while the very low rewards have a
weight close to zero. These decayed rank values are then used to construct a
curve analog to the Area Under the ROC Curve, a criterion originally used in
Signal Processing and later adopted in Machine Learning to compare binary
classifiers. The ROC Curve associated to a given operator s is drawn by scan-
ning the ordered list, starting from the origin: a vertical segment is drawn when
the current offspring has been generated by s, a horizontal segment is drawn oth-
erwise, and a diagonal one is drawn in case of ties. The length of each segment is
proportional to its decayed rank value. Finally, the credit associated to operator
s is the area under this curve. This Credit Assignment scheme is coupled with a
bandit-based Operator Selection which deterministically chooses the strategy to
be applied based on (a variant of) the Upper Confidence Bound algorithm [I].

3 Adaptive Hyper-Heuristic

The adaptive algorithm proposed here combines the GA and DE techniques by
choosing during the evolutionary process which metaheuristic and which op-
erators should be used. The metaheuristics are used in an interleaved way by
choosing one of them to generate each new individual in the population, i.e.,
each new individual is generated following the choice algorithm with its opera-
tors and parent selection mechanism. The generated individual is thus compared
with the target (current) individual of the population and the fittest one is main-
tained in the population of the next generation, following the DE replacement
mechanism. The algorithms and operators are chosen by AOS methods where
the impact measure is defined by the improvement in fitness between the off-
spring (generated individual) and its parent (target individual for DE and the
best parent for GA).

A similar idea was applied to select the operators of each algorithm, i.e., the
four variants described in section in the DE case, and the five operators in
section 21l in the GA case are selected according with the response of the AOS
method. The pseudo-code of the proposed algorithm is presented in Algorithm 2
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Algorithm 2. HH-AOS

input : NP (population size), GEN (# of generations)
1 G« 0
2 CreateRandomInitialPopulation(NP );

3 for i — 1 to NP do
4 Evaluate f(?iﬂq) ; /* ?i,c is an individual in the population */

5 for G — 1 to GEN do

6 for i — 1 to NP do

7 op < ADS-selectOperator();

8 if op == DF then

9 % = DE-generate-one-individual (NP, Z'¢);

10 else

11 % = GA-generate-one-individual (NP, T, P);
12 if Evaluate f(ﬂ)) < Evaluate f(?i,(;) then

13 ?’i,GJrl = ﬂ);

14 if op == DF then

15 ADS-ApplyReward(Tic - T i,G+1);

16 else

17 AOS-ApplyReward(p - Tig+1) ; /* P is the best parent

selected to generate the new individual */

4 Comparative Results

In order to evaluate the performance of our proposal, experiments were con-
ducted using the BBOB noiseless testbed [7],which includes 24 single-objective
functions from 5 different classes with very different characteristics and levels of
complexity. The default guidelines were followed: 15 trials per function [8], with
the maximum number of function evaluations being fixed at 10° x d. The BBOB
experimental set-up uses as performance measurement the Expected Running
Time (ERT), defined as follows: given a target function value, ERT is the empir-
ical expected number of function evaluations for attaining a fitness value below
the target. In other words, it is the ratio of the number of function evaluations
for reaching the target value over successful trials, plus the maximum number of
evaluations for unsuccessful trials, divided by the number of successful trials. Due
to space constraints, the presented results are restricted to dimension d = 20,
although similar conclusions can be taken for the other considered dimensions.

Our proposal, herein called Adaptive Operator Selection at the Hyper-
Heuristic (HH) level, was compared with each algorithm (DE and GA) indi-
vidually with three different selection techniques: (i) uniform selection (Naive),
(ii) the adaptive pursuit selection (AP) and (iii) the fitness area under curve
bandit selection (AUC).
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The first analysis, depicted in Figs.[Iland[2] presents a comparison among the
three operator selection techniques within HH. The uniform choice reached the
target value in an least one instance, for the highest level of precision (1e-8), in
only 12 of the 24 function, while the HH with any of the two AOS techniques
solved 17 functions. Besides, the AOS methods require fewer function evaluations
to reach the target value (Fig.[2)): for 50% of the cases, HH using an AOS method
is at least two times faster than HH with the naive uniform operator selection.
Although no significant difference could be found between the AP and the AUC
AOS schemes, considering the speed-up ratio presented in the figure 2 and also
the analysis described in [6] only the latter will be used in the following. A further
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Fig. 1. Empirical cumulative distribution of the bootstrapped distribution of ERT over
dimension for 50 targets in 101752 for all functions to HH
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Fig. 2. Empirical cumulative distributions (ECDF) speed-up ratios in 20-D to HH.
ECDF of FEval ratios of Adaptive Pursuit (AP) and AUC-Bandit (AUC) divided by
Naive, all trial pairs for each function. Pairs where both trials failed are disregarded,
pairs where one trial failed are visible in the limits being > 0 or < 1. The legends
indicate the number of functions that were solved in at least one trial (AP/AUC first)



Adaptive Operator Selection at the Hyper-level 385

L ey S At S A “Best 200¢
n
c
ke
2
g AUC
2
=
S 0.5
C
ks
£ AUC
[oX
o
a.
P et AUC
0.0~ 3 4 5 6 7 8

2
log10 of (ERT / dimension)

Fig. 3. Empirical cumulative distribution of the bootstrapped distribution of ERT over
dimension for 50 targets in 10752 for all functions to DE, GA and HH, all using the
AUC adaptive operator selection
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Fig. 4. Empirical cumulative distributions (ECDF) speed-up ratios in 20-D to DE-
AUC, GA-AUC and HH-AUC. ECDF of FEval ratios of HH-AUC respectively divided
by DE-AUC and GA-AUC, all trial pairs for each function. Pairs where both trials
failed are disregarded, pairs where one trial failed are visible in the limits being > 0
or < 1. The legends indicate the number of functions that were solved in at least one
trial (HH-AUC first).

analysis compares the performance of the HH-AUC with both DE and GA also
using the AUC AOS mechanism. The difference is that the HH variant uses
independent AOS schemes in the two levels of abstraction, while DE and GA
have only one AOS instance selecting between their operators in the usual way.
The results are presented in Figs. Bl and @ As it can be seen, the autonomous
selection between DE and GA done by the HH algorithm by means of the AOS
methods is able to solve more instances than both DE and GA individually. This
empirically confirms that the efficient mixture of DE and GA is better than each
of the original methods alone.
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5 Conclusions

In this paper, we propose the use of existing Adaptive Operator Selection (AOS)
schemes at the Hyper-level, in order to automatically select between different
metaheuristics for the generation of each new solution. The metaheuristics exem-
plified here were Differential Evolution (DE) and Genetic Algorithm (GA). Addi-
tionally, an independent AOS instance was also employed to automatically select
between the corresponding variation operators in the usual way, selecting between
four different operators whenever DE was chosen by the Hyper-AOS, and five op-
erators otherwise. The resulting algorithm, that can be seen as an adaptive Hyper-
Heuristic (HH), employs thus three independent instances of the recent Fitness
Area Under Curve Multi-Armed Bandit AOS algorithm [5]: one instance control-
ling the choices at the Hyper-level, and the other selecting between the operators
for the DE and GA algorithms. For both levels of abstraction, the impact of each
AOS decision is computed by means of the fitness improvement achieved when
comparing the newly generated offspring with its parent.

The proposed algorithm, tested under the light of the very comprehensive
Black Box Optimization Benchmarking (BBOB) noiseless testbed [7], showed
superior performance when compared to: (i)the same Hyper-Heuristic without
adaptive behavior (uniformly selecting between the metaheuristics and opera-
tors), and (ii) the single-heuristic counterparts, i.e., the DE and GA alone, using
the same AOS mechanism to select between their corresponding variation op-
erators. These results empirically confirm that the AOS at the Hyper-level is
efficient, and that the intelligent switching between different metaheuristics is a
path worth to be further investigated.

There are mainly two different paths that might be taken in the follow up of
this work. One concerns its extension from the algorithmic point of view, by try-
ing to improve and/or propose new AOS mechanisms for better efficiency at the
Hyper-level. The other regards its extension from the application point of view,
by analyzing the same adaptive scheme selecting among different metaheuristics
and/or considering different problem domains.
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