
Improving Lin-Kernighan-Helsgaun

with Crossover on Clustered Instances
of the TSP

Doug Hains, Darrell Whitley, and Adele Howe

Colorado State University, Fort Collins CO, USA

Abstract. Multi-trial Lin-Kernighan-Helsgaun 2 (LKH-2) is widely con-
sidered to be the best Interated Local Search heuristic for the Traveling
Salesman Problem (TSP) and has found the best-known solutions to a
large number of benchmark problems. Although LKH-2 performs excep-
tionally well on most instances, it is known to have difficulty on clus-
tered instances of the TSP. Generalized Partition Crossover (GPX) is a
crossover operator for the TSP that efficiently constructs new solutions
by partitioning a graph constructed from the union of two solutions.
We show that GPX is especially well-suited for clustered instances and
evaluate its ability to improve solutions found by LKH-2. We present
two methods of combining GPX with multi-trial LKH-2. We find that
combining GPX with LKH-2 dramatically improves the evaluation of so-
lutions found by LKH-2 alone on clustered instances with sizes ranging
from 3,000 to 30,000 cities.

1 Introduction

The Traveling Salesman Problem (TSP) can be stated as follows: Given n cities
and an n×n cost matrix C, where entry Cij is the cost of traveling between cities
i and j, find a Hamiltonian circuit on the n cities which minimizes the sum of
travel costs between cities on the route. We restrict our attention to symmetric
instances, that is Cij = Cji.

Although the TSP is simply stated, the problem is NP-hard, necessitating
the use of heuristics for larger instances. Lin-Kernighan-Helsgaun 2 (LKH-2) [2]
is a state-of-the-art local search heuristic for the TSP based on the variable
depth local search of Lin and Kernighan (LK-search) [4]. While LKH-2 performs
exceptionally well on most instances of the TSP, its performance degrades on
clustered instances [2].

Generalized Partition Crossover (GPX) [10,9] is a crossover operator for the
TSP that produces offspring from a graph constructed from the union of two
parent solutions. It has been shown that GPX has a high probability of producing
locally optimal offspring if the parents are local optima [9]. We inspect local
optima produced by LKH-2 on clustered instances and find they have a large
number of common edges. As GPX relies on the common edges between two
solutions to perform crossover, this indicates that the local optima produced by
LKH-2 are especially well-suited for GPX.

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part II, LNCS 7492, pp. 388–397, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Improving LKH with Crossover 389

LKH-2 can also be used in a form of iterated local search (ILS), which Hels-
gaun calls multi-trial LKH-2. Multi-trail LKH-2 incorporates a form of crossover
known as Iterative Partial Transcription (IPT) based on the work of Möbius et
al. [6]. Instead of using a population, multi-trial LKH-2 keeps the best-so-far
solution; when it converges to a new local optimum, it applies crossover to the
current candidate solution and the previous best-so-far solution. If crossover
yields an improved solution, this becomes the new candidate solution. In this
way, LKH-2 does not require a population, or other tuning parameters associated
with population-based heuristics.

To the best of our knowledge, there are no published studies on the effective-
ness of using crossover in this way. We present empirical evidence that shows
incorporating a crossover operator into LKH-2 greatly improves the evaluation of
solutions found by LKH-2 alone. A theoretical analysis of the differences between
the GPX and IPT crossover operators proves that GPX is superior and empirical
studies show that GPX produces better solutions than IPT when crossing over
local optima produced by LKH-2.

Finally, there is also an advantage to doing multiple (parallel) runs of multi-
trial LKH-2. This creates additional opportunities to utilize crossover. This is not
like a genetic algorithm, because the runs remain independent. We present two
methods of using crossover that have not previously been utilized in combination
with LKH-2. Our results show that both methods improve solution quality over
that of multi-trial LKH-2 with no significant increase to runtime.

2 Lin-Kernighan-Helsgaun 2

Lin-Kernighan-Helsgaun 2 (LKH-2) is a variable depth search that is based on
the well known Lin-Kernighan algorithm (LK-search) [4]. LKH-2 has found the
majority of best known solutions on the TSP benchmarks at the Georgia Tech
TSP repository that were not solved by complete solvers1. At each step of the
search, LKH-2 removes and replaces k edges of a given solution. This is known
as a k-opt move. LKH-2 chains together a variable number of k-opt moves to
find a new solution with a better evaluation than the initial solution [2].

As we are not concerned with the inner workings of LKH-2, it is sufficient
to think of LKH-2 as a ‘black-box’ that produces a locally optimal solution
when given an arbitrary initial solution. LKH-2 has a number of parameters
that influence its performance; for all our experiments, we use the same settings
reported by Helsgaun to produce the best results on clustered instances [2].

2.1 LKH-2 and Clustered Instances

Papadimitriou proved that LK-search solves a Polynomial Local Search (PLS)
complete problem [8,3] by constructing graphs that force LK-Search to take an
exponential number of steps. Papadimitriou constructed a graph containing ‘bait
edges’ that lead LK-search into an extensive search for an improved solution.
1 http://www.tsp.gatech.edu/data/index.html

http://www.tsp.gatech.edu/data/index.html

390 D. Hains, D. Whitley, and A. Howe

It is thought that the edges between clusters of a clustered TSP instance act
in a similar manner as the bait edges of Papadimitriou’s proof [7]. Empirical
experiments show that LKH-2 performs significantly worse on random clustered
instances than uniform random instances [2]. We conjecture that its performance
on clustered instances could be improved by exploiting crossover.

3 Generalized Partition Crossover

Generalized Partition Crossover (GPX) is a crossover operator for the TSP with
a number of interesting properties. When given local optima as parents, GPX
is highly likely to produce locally optimal children [10,9]. GPX is “respectful”,
meaning that any common edges in the parents are inherited by the offspring;
and it “transmits alleles”, meaning that all edges found in the offspring are
directly inherited from the parents. When used in a hybrid genetic algorithm
with Chained Lin-Kernighan (Chained LK) [1], GPX is able to produce higher
quality solutions than Chained LK alone [10].

a

b

c

d
e f g

h

i

j

kl

m

n

A B
(a)

a

b

c

d
e f g

h

i

j

kl

m

n

(b)

Fig. 1. An example of (a) the graph constructed by GPX from the union of two solu-
tions, Sa (dashed edges) and Sb (solid edges), and (b) how the removal of shared edges
creates subgraphs. The heavy dark lines show two partitions of cost 2, A and B. Once
GPX partitions the graph, solutions are constructed from the shared edges in (a) and
the dashed or solid edges from each subgraph in (b).

GPX works by first constructing a graph G = (V, E) from two solutions, Sa

and Sb, where V is the set of cities in the TSP instance and E is the union
of edges in the two solutions (see Figure 1(a)). To partition G, the edges in
G that are shared by both solutions are removed to create graph Gu as in
Figure 1(b). Breadth first search is then applied to Gu to identify the connected
components. Note that any connected component in Gu can be disconnected
from G by removing shared edges. We refer to the connected components in
Gu as partition components. We define the cost of a partition of graph G as
the minimal number of shared edges that must be removed to disconnect a
component from G. Whitley et al. prove that if G contains at least one partition
of cost 2, it is always possible to create at least two Hamiltonian circuits distinct
from the parents in O(n) time [9].

Improving LKH with Crossover 391

After one or more partitions of cost 2 is found, GPX will recombine the parent
solutions Sa and Sb to one or more offspring. First, the common edges between
Sa and Sb are inherited. Then, the best possible offspring is obtained by greed-
ily selecting the lowest cost path through each partition component of graph G.
Additional offspring can be obtained by making non-greedy choices.

GPX is an ideal candidate for clustered instances of the TSP. As local optima
tend to have a large number of edges in common, it is likely that some of these
edges will be between clusters. This would allow GPX to partition across edges
between clusters and recombine the lowest cost paths through the clusters on
either side of the partition. If a partition component captures several clusters,
GPX will also recombine the lowest cost edges between clusters.

To determine if this is the case, we produced one hundred different local
optima with LKH-2 on a randomly generated clustered instance with 3162 cities.
On average, there were 2.10±0.04 partitions of cost 2 when pairing together these
solutions. Thus, GPX will likely be able to find multiple partition components
of cost 2 when using two local optima produced by LKH-2 as parents.

3.1 Iterative Partial Transcription and GPX

Iterative Partial Transcription [6] (IPT) is a form of crossover used by LKH-
2. When LKH-2 reaches a local optimum, it executes a random restart while
retaining the best-so-far-solution. LKH-2 uses IPT to recombine the best-so-far
solution with the new local optimum [2]. If IPT finds a solution better than the
best-so-far, the best-so-far solution is replaced. Note that this does not require
a population of solutions.

IPT constructs a graph G = (V, E) from two solutions, S1 and S2, in the same
way as GPX. IPT will attempt to partition V into two disjoint sets A and B
such that the number of edges between sets is exactly 2. Let E(A) be the set of
edges incident only to vertices in A and E(B) the set of edges incident only to
vertices in B. Offspring are formed by removing the edges in S1 that are also in
E(A) and replacing them with the edges found in both S2 and E(A). The same
process is repeated with E(B). This is identical to using Partition Crossover
utilizing only a single partition of cost 2 [9].

Given G with k partition components of cost 2, GPX will return the best
solution out of a possible 2k − 2 unique solutions [10]. As IPT uses only a single
partition, it can reach only 2k− 2 of the 2k − 2 solutions processed by GPX. We
subtract 2 as we count only solutions different from the two parent solutions.
Note that k ≥ 2 since 1 partition break the graph into 2 partition components.

For k > 2, the solutions reachable by IPT are a subset of the solutions reach-
able by GPX. Therefore, it follows that the offspring generated by GPX is guar-
anteed to be equal or better than the solution generated by IPT. When k is
larger, GPX will find a better solution with greater probability.

392 D. Hains, D. Whitley, and A. Howe

3.2 Effect of Crossover on LKH-2

To the best of our knowledge, there have been no published experiments to
determine the effect of using LKH-2 with and without IPT. We therefore conduct
an experiment to validate two hypotheses: 1. The addition of a crossover operator
such as IPT can improve solutions over that of LKH-2, and 2. GPX can further
improve solutions over IPT without a significant increase in run time.

For this experiment, we used six instances from the 8th DIMACS TSP Chal-
lenge2: C3k.0, C3k.1, C10k.0, C10k.1, C31k.0 and C31k.1 with sizes 3162, 3162,
10000, 10000, 31623 and 31623, respectively. For each instance, we ran three
versions of LKH-2 with 10 random restarts: LKH-2 without crossover, LKH-2
with IPT and LKH-2 with GPX. When running LKH-2 with either crossover
operator, the crossover operator is applied to the best-so-far solution and the
local optimum produced after each restart.

As the optimal solutions are not known for all instances, we normalize the re-
sults in Table 1 by reporting the percentage above the Held-Karp bound (HKB).
The HKB is guaranteed to be within 2/3 of the optimal evaluation on Euclidean
instances, but in practice is often within 0.01% of optimal [3]. The HKB for each
instance can be found at the DIMACS TSP Challenge homepage. We find that
crossover significantly improves the solutions found by LKH-2 and that GPX
can further improve over the solutions found by IPT.

Table 2 reports the average CPU time of a single call to IPT and a single
call to GPX. We also report the percentage of the total CPU time per run of
LKH-2 accounted for by the crossover operators. For instances of 10,000 cities
and lower, IPT is slightly faster than GPX but both account for less than 0.1% of
the overall running time. GPX is faster than IPT on larger problems. Therefore
GPX can be used in place of IPT with no significant increase to the overall run
time while increasing the potential to find improved solutions.

Table 1. The minimum percentage above the Held-Karp Bound for several clustered
instances of the TSP of solutions found by ten random restarts of LKH-2 without
crossover, with IPT and with GPX. Best values for each instance are in boldface. The
p-value of a one-way ANOVA test are shown in the final row for each instance. A
significant value is denoted with (*).

Instance C3k.0 C3k.1 C10k.0 C10k.1 C31k.0 C31k.1

LKH-2
Min 0.660 0.863 1.143 1.009 1.489 1.538
Avg 0.772 1.584 1.671 1.597 1.760 1.907
Max 1.387 2.051 2.339 2.658 2.169 2.397

LKH-2 w/ IPT
Min 0.622 0.656 1.040 0.873 1.280 1.274
Avg 0.665 1.329 1.160 1.022 1.433 1.595
Max 0.786 2.051 1.396 1.419 1.663 2.397

LKH-2 w/ GPX
Min 0.622 0.651 1.031 0.872 1.270 1.267
Avg 0.660 1.326 1.159 1.021 1.426 1.591
Max 0.786 2.051 1.396 1.419 1.663 2.397

p-value 0.112 0.484 <0.001(*) <0.001(*) <0.001(*) <0.001(*)

2 http://www2.research.att.com/~dsj/chtsp/

http://www2.research.att.com/~dsj/chtsp/

Improving LKH with Crossover 393

Table 2. Average run time in seconds of IPT and GPX over the 10 runs used to
produce Table 1. The numbers in parentheses represent the percentage of the total run
time of LKH-2 accounted for by the crossover operators. P-values for a standard t-test
are shown with significant values denoted by (*).

Instance C3k.0 C3k.1 C10k.0 C10k.1 C31k.0 C31k.1

IPT 0.001(0.04%) 0.001(0.04%) 0.005(0.06%) 0.005(0.06%) 0.047(0.17%) 0.052(0.18%)

GPX 0.002(0.08%) 0.001(0.04%) 0.007(0.08%) 0.006(0.07%) 0.026(0.09%) 0.029(0.1%)

p-value 0.016 0.005(*) 0.036 0.014 <0.001(*) <0.001(*)

4 Crossover and Iterated Local Search

In Iterated Local Search (ILS) [5] a perturbation operator is applied to escape
local optima. The local search is restarted on the perturbed solution, and the
process is repeated for a fixed number of iterations. Using ILS with LK-search
based heuristics has proven to be more effective than random restarts [3,1].
Helsgaun refers to the ILS version of LKH-2 as multi-trial LKH-2 [2].

Multi-trial LKH-2 uses a pseudo-random restart influenced by the best-so-
far solution when a local optimum is reached. The next iteration of LKH-2 is
then biased by ignoring any k-opt moves beginning with edges in the best-so-
far solution. Given the benefits of incorporating crossover in LKH-2 shown in
Section 3.2, we construct two methods for incorporating crossover with multi-
trial LKH-2: GPX across runs and GPX across restarts.

4.1 GPX across Runs

GPX across runs applies crossover to improve the local optima found by inde-
pendent runs of multi-trial LKH-2. At each iteration i of multi-trial LKH-2 (i.e.,
when it reaches a local optimum), we form a population of the local optima found
at iteration i of each independent run. We then apply GPX, crossing over the
best solution in the population with each other solution. The best solution found
will be stored, but not returned to the multi-trial LKH-2 runs. This preserves
diversity between the runs. Figure 2 depicts 10 independent runs of multi-trial
LKH-2; GPX across runs will crossover the solutions with the same letters.

4.2 GPX across Restarts

Another option is to crossover solutions from the same run. We could crossover the
best-so-far solution with the local optimum found at each iteration of multi-trial
LKH-2 like IPT. However, the local optimum is discarded if it is not better than
the best-so-far solution. It is possible that by doing so, low cost edges that could
potentially be used to improve the best-so-far solution are discarded. To remedy
this, we designed Subroutine 1 to maintain a population of local optima and to
crossover the population at each iteration of multi-trial LKH-2. The best solution
from the crossover becomes the starting solution for the next iteration ofmulti-trial
LKH-2.

394 D. Hains, D. Whitley, and A. Howe

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9

B1 B2 B3 B4 B5 B6 B7 B8 B9B0

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

D0 D1 D2 D3 D4 D5 D6 D7 D8

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9

D9

GPX Across Runs

G
PX

 A
cr

os
s

R
es

ta
rt

s

Fig. 2. A diagram depicting 10 runs of multi-trial LKH-2 run for 5 iterations per run.
The circles represent local optima produced by LKH-2. GPX across runs crosses over
solutions with the same letters. GPX across restarts crosses over solutions with the
same numbers.

Subroutine 1. Given s∗, a local optimum passed from LKH-2; c, a cost function
that sums the edge costs of a given solution, and P , a set of solutions. When the
subroutine returns, control passes back to LKH-2.
1. If P = ∅, Let P = {s∗} and return s∗.
2. Apply GPX with s∗ and each solution in P .
3. Let s′ be the offspring with best evaluation. If c(s′) < c(s∗), let s∗ = s′.
4. If |P | �= popsize, let P = P ∪ {s∗}.
5. Otherwise, let s be the solution with the poorest evaluation in P . If c(s∗) < c(s),

replace s in P with s∗.
6. Return s∗.

4.3 Effect of Crossover on Multi-trial LKH-2

We hypothesize that incorporating crossover with multi-trial LKH-2 should fur-
ther improve solution quality, especially when GPX is the crossover operator. To
test this, we ran 10 independent runs of multi-trial LKH-2 with three different
methods of crossover for 50 iterations per run on the same clustered instances as
before. Method one was multi-trial LKH-2 with IPT. IPT was applied at each
iteration to the most recent local optimum and the best-so-far solution. If IPT
produced a better solution than the best-so-far solution, it is replaced. Method
two was GPX across runs. At each iteration, GPX was applied to the 10 local
optima found by each run. Method three was GPX across restarts. Subroutine
1 with popsize = 10 was called at each iteration. When applying GPX across
restarts, the population was set to empty at the beginning of each run.

Table 3 reports the minimum, maximum and average evaluation above the
HKB after the final iteration. The data in Table 3 shows that Multi-trial LKH-2
with IPT is better than LKH-2 with IPT (see Table 1) in every problem. The

Improving LKH with Crossover 395

Table 3. Minimum, average, and maximum percentage of evaluation above the Held-
Karp bound for solutions after 50 iterations of 10 runs of multi-trial LKH-2 using
different crossovers. ‘*’ signifies the known global optimum was found. Best solutions
are in boldface. The p-value of a one-way ANOVA test are shown in the final row for
each instance. All values were significant.

Instance C3k.0 C3k.1 C10k.0 C10k.1 C31k.0 C31k.1

M. LKH-2 w/ IPT
Min 0.6218 0.6153 0.7184 0.7061 0.6922 0.8824
Avg 0.6336 1.0822 0.9514 0.8890 0.9639 1.0237
Max 0.6432 1.5692 1.3341 1.2489 1.2077 1.1417

GPX Across Runs
Min 0.6180* 0.6153 0.7037 0.7036 0.6879 0.8660
Avg 0.6183 0.6156 0.7144 0.7048 0.7012 0.8843
Max 0.6190 0.6183 0.7223 0.7064 0.8053 0.9409

GPX Across Restarts
Min 0.6180* 0.6150* 0.7151 0.7912 0.9725 0.8131
Avg 0.6188 0.7117 0.7529 0.8615 1.0199 0.8525
Max 0.6254 1.5350 0.7691 1.1518 1.1430 0.9376

p-values < 0.001 0.001 0.002 0.008 < 0.001 < 0.001

0 10 20 30 40 50

0.
62

0.
63

0.
64

0.
65

Iteration

M
in

im
um

 P
er

ce
nt

 A
bo

ve
 H

K
−

bo
un

d

M. LKH−2 w/ IPT
GPX across Runs
GPX across Restarts

(a) C3k.0

0 10 20 30 40 50

0.
70

0.
80

0.
90

1.
00

Iteration

M
in

im
um

 P
er

ce
nt

 A
bo

ve
 H

K
−

bo
un

d

M. LKH−2 w/ IPT
GPX across Runs
GPX across Restarts

(b) C10k.0

0 10 20 30 40 50

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

Iteration

M
in

im
um

 P
er

ce
nt

 A
bo

ve
 H

K
−

bo
un

d

M. LKH−2 w/ IPT
GPX across Runs
GPX across Restarts

(c) C31k.1

0 10 20 30 40 50

0.
62

0.
66

0.
70

0.
74

Iteration

A
ve

ra
ge

 P
er

ce
nt

 A
bo

ve
 H

K
−

bo
un

d

M. LKH−2 w/ IPT
GPX across Runs
GPX across Restarts

(d) C3k.0

0 10 20 30 40 50

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

Iteration

A
ve

ra
ge

 P
er

ce
nt

 A
bo

ve
 H

K
−

bo
un

d

M. LKH−2 w/ IPT
GPX across Runs
GPX across Restarts

(e) C10k.0

0 10 20 30 40 50

1.
0

1.
2

1.
4

1.
6

1.
8

Iteration

A
ve

ra
ge

 P
er

ce
nt

 A
bo

ve
 H

K
−

bo
un

d

M. LKH−2 w/ IPT
GPX across Runs
GPX across Restarts

(f) C31k.1

Fig. 3. Minimum (top row) and average (bottom row) evaluation above the Held-Karp
bound at each iteration across 10 runs of multi-trial LKH-2 using various crossover
methods on three instances.

same is true for the two methods using GPX. Thus, multi-trial LKH-2 with
crossover does provide a significant benefit. Comparing the results for IPT to
that of the two GPX based methods shows that GPX generally improves over
IPT. GPX Across Restarts finds the global optimum in two cases where IPT did
not. GPX Across Runs consistently improves upon IPT.

396 D. Hains, D. Whitley, and A. Howe

To further assess the differences between the three methods, Figure 3 shows
the minimum and average evaluation at each iteration for several instances.
Interestingly, GPX across restarts yields the largest gain in evaluation initially.
After the second iteration, the local optima from the first iteration will be crossed
over with the local optimum produced at the second iteration. As the search was
biased away from investigating moves beginning with edges in the best-so-far
solution, the local optimum it produces and the best-so-far solution may present
ideal parents for GPX. In some cases, it finds the best solution in the second
iteration and does not improve further. This may be a result of an interaction
with the way multi-trial LKH-2 biases the search with edges in the best-so-far
solution [2].

GPX across runs is capable of consistently improving the quality of solutions
over that of IPT. The average evaluation across iterations shows larger differences
of GPX over IPT. Note that the solutions produced by GPX across runs are not
in any way used by LKH-2. Therefore, GPX across runs does not influence the
local search. On the other hand, GPX across restarts does influence the search
behavior of LKH-2. The results suggest some trade-offs in how crossover can be
exploited that might offer further opportunity for improvement.

5 Conclusion

Clustered instances of the TSP are problematic for LKH-2 [2]. Examining the
structure of clustered instances, it seems likely that crossover operators such
as GPX and IPT will perform well on clustered instances. We examine both
operators and show that they are able to significantly improve solution quality
on clustered instances when combined with LKH-2.

Furthermore, GPX is a compelling replacement for IPT in LKH-2. GPX is
able to find all partitions that IPT can find, but can utilize more of them when
constructing offspring. This allows GPX to find higher quality solutions than
IPT. GPX also has a computation cost comparable to IPT. Although IPT is
slightly faster on smaller instances, both operators require less than than 0.2%
of the overall run time of LKH-2. As the instance size grows, GPX scales better
than IPT and GPX becomes faster than IPT on larger instances.

We introduce two methods of incorporating crossover with multi-trial LKH-2.
GPX across restarts uses a subroutine to maintain a population of solutions as an
alternative to applying crossover to the best-so-far solution and a local optimum
produced by LKH-2. GPX across restarts produces better average solutions and
finds better minimum solutions on the majority of instances tested. GPX across
runs consistently improves the minimum solution quality over that of multi-trial
LKH-2 w/ IPT. This method also finds the globally optimal solution for the two
benchmark instances for which the global optimum is known.

Our results show that crossover offers significant benefits when incorporated
with a state-of-the-art local search heuristic for the TSP. We conjecture that the
benefits we observed in TSP can also be obtained in other applications using
local search; crossover leverages information about good partial solutions which
can be exploited in search after restarts.

Improving LKH with Crossover 397

Acknowledgments. This research was sponsored by the Air Force Office of
Scientific Research, Air Force Materiel Command, USAF, under grant num-
ber FA9550-11-1-0088. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright
notation thereon.

References

1. Applegate, D., Cook, W., Rohe, A.: Chained Lin-Kernighan for large traveling
salesman problems. INFORMS Journal on Computing 15(1), 82–92 (2003)

2. Helsgaun, K.: General k-opt submoves for the Lin-Kernighan TSP heuristic. Math-
ematical Programming Computation 1(2), 119–163 (2009)

3. Johnson, D.S., Mcgeoch, L.A.: The traveling salesman problem: A case study in
local optimization. In: Local Search in Combinatorial Optimization, pp. 215–310.
John Wiley and Sons (1997)

4. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-
salesman problem. Operations Research 21(2), 498–516 (1973),
http://dx.doi.org/10.2307/169020

5. Lourenço, H., Martin, O., Stützle, T.: Iterated local search. In: Handbook of Meta-
heuristics, pp. 320–353 (2003)

6. Möbius, A., Freisleben, B., Merz, P., Schreiber, M.: Combinatorial optimization by
iterative partial transcription. Physical Review E 59(4), 4667 (1999)

7. Neto, D.: Efficient cluster compensation for Lin-Kernighan heuristics. Ph.D. thesis,
University of Toronto (1999)

8. Papadimitriou, C.: The complexity of the Lin-Kernighan heuristic for the traveling
salesman problem. SIAM Journal on Computing 21, 450 (1992)

9. Whitley, D., Hains, D., Howe, A.: Tunneling between optima: partition crossover
for the traveling salesman problem. In: Proceedings of the 11th Annual Conference
on Genetic and Evolutionary Computation, pp. 915–922. ACM (2009)

10. Whitley, D., Hains, D., Howe, A.: A Hybrid Genetic Algorithm for the Traveling
Salesman Problem Using Generalized Partition Crossover. In: Schaefer, R., Cotta,
C., Ko�lodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 566–575.
Springer, Heidelberg (2010)

http://dx.doi.org/10.2307/169020

	Improving Lin-Kernighan-Helsgaun
with Crossover on Clustered Instances of the TSP
	Introduction
	Lin-Kernighan-Helsgaun 2
	LKH-2 and Clustered Instances

	Generalized Partition Crossover
	Iterative Partial Transcription and GPX
	Effect of Crossover on LKH-2

	Crossover and Iterated Local Search
	GPX across Runs
	GPX across Restarts
	Effect of Crossover on Multi-trial LKH-2

	Conclusion
	References

