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Abstract. The present study investigates the effect of heuristic sets on
the performance of several selection hyper-heuristics. The performance
of selection hyper-heuristics is strongly dependant on low-level heuristic
sets employed for solving target problems. Therefore, the generality of
hyper-heuristics should be examined across various heuristic sets. Unlike
the majority of hyper-heuristics research, where the low-level heuristic
set is considered given, the present study investigates the influence of
the low-level heuristics on the hyper-heuristic’s performance. To achieve
this, a number of heuristic sets was generated for the patient admis-
sion scheduling problem by setting the parameters of a set of paramet-
ric heuristics with specific values. These values were set such that nine
heuristic sets with different improvement capabilities, speed character-
istics and size were generated. A group of hyper-heuristics with certain
selection mechanisms and acceptance criteria having dissimilar intensi-
fication/diversification abilities were taken from the literature enabling
a comprehensive analysis. The experimental results indicated that dif-
ferent hyper-heuristics perform superiorly on distinct heuristic sets. The
results can be explained and hence result in hyper-heuristic design rec-
ommendations.
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1 Introduction

Selection hyper-heuristics have been studied to effectively manage multiple algo-
rithms, with the motivation behind their employment being to use the heuristics’
strengths and eliminating their weaknesses, resulting in a better performance [1].
They take the search process to the heuristic level and perform without prob-
lem domain knowledge. Thus, hyper-heuristics are considered general algorithms
capable of solving a diverse range of problems. Therefore, most of the hyper-
heuristic studies in the literature deal with problem solving [2]. However, selec-
tion hyper-heuristics are not concerned with solving some problem instances, but
with managing low-level heuristic sets for solving these instances as efficiently

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part II, LNCS 7492, pp. 408–417, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



The Effect of the Set of Low-Level Heuristics 409

as possible. There are a limited number of studies concentrating on the heuristic
set part with heuristic set reduction or heuristic elimination strategies forming
the basis of these studies. In [3], heuristics were made tabu for certain iterations
based on their performance. A similar tabu idea was employed for a genetic
algorithm based hyper-heuristic in [4]. A heuristic subset selection mechanism
after a certain number of iterations and a heuristic set reduction strategy that
excludes heuristics in time to determine a good heuristic subset from a large
heuristic set were studied in [5]. Another heuristic subset selection approach
which temporarily eliminates poor performing heuristics was introduced in [6].
Contrastingly, in [7], different heuristic sets using multiple heuristics from the
low-level heuristics for solving the DNA sequencing problem were tested with a
suite of hyper-heuristics.

Due to the search level and problem-independent nature of selection hyper-
heuristics, generality is considered their most important trait. To show their
generality level, work on different heuristic sets, with differing features, is re-
quired. To the best of our knowledge, there is no study focusing on the effect of
different heuristic sets on the performance of hyper-heuristics. The present con-
tribution aims at filling the void mentioned by trying to determine what features
should be considered in the design phase of a hyper-heuristic from a generality
perspective. For this purpose, 11 low-level heuristics designed to solve the patient
admission scheduling problem were used to generate nine heuristic sets. These
heuristic sets exhibit differences regarding their improvement capabilities and
the speed of the residing heuristics as well as the number of utilised heuristics.
Two heuristic selection mechanisms together with seven move acceptance criteria
were adopted in building 14 hyper-heuristics with distinct characteristics rely-
ing on their selection strategies and intensification/diversification capabilities.
The computational results clearly indicated that the nature of the heuristics,
distribution of different heuristic types, size of the heuristic sets and runtime
limitations have a remarkable impact on the performance of hyper-heuristics.

In the remainder of the paper, the low-level heuristics for the patient admission
scheduling problem and heuristics sets generated based on these heuristics are
argued in Section 2. Followingly, Section 3 elaborates the tested hyper-heuristics.
Next, the computational results are presented and discussed in Section 4. In the
last section, the paper is concluded and the requirements for generality and the
future research opportunities are presented.

2 Patient Admission Scheduling Problem and Heuristics

The present study focuses on patient admission scheduling (PAS) due to its
combinatorial complexity as well as the existence of a set of heuristics. The PAS
problem concerns assigning patients to hospital rooms or beds based on the
patients’ requirements [8]. The basic components of the problem are: patients,
rooms, wards and time slots. Each patient is characterised by his/her gender,
age, pathology, room preference, admission date, and duration of the treatment.
It is assumed that every pathology can be linked to one of the hospital’s spe-
cialisms. Multiple wards of the hospital can have the same specialism, but some
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wards are more specialized than others. We distinguish between major and minor
specialisms. Every room is located on a ward of the hospital. The specialisms of
the ward are inherited to a certain degree by the rooms of the ward. A room is
characterized by its properties and its bed capacity. Depending on the patient’s
pathology, some of the room properties are mandatory or preferable.

2.1 Low-Level Heuristics

The following 11 simple low-level heuristics were used in the experiments. For
this comparison study, it does not actually matter how this set of low-level
heuristics is composed.

– LLH1: Swap all the bed assignments of a randomly selected patient with
the beds of randomly selected patients

– LLH2: Transfer all the bed assignments of a randomly selected patient to
randomly selected empty beds

– LLH3: Swap all the bed assignments between two randomly selected pa-
tients

– LLH4: Swap all the bed assignments of a randomly selected patient with
randomly selected occupied beds. Transfer the remaining assignments to the
randomly selected beds

– LLH5: Transfer all the bed assignments of a randomly selected patient to
a randomly selected empty bed

– LLH6: Swap a randomly selected bed assignment with another bed while
respecting room properties

– LLH7: Swap a randomly selected bed assignment with another bed while
respecting room preferences of the corresponding patient

– LLH8: Swap a randomly selected bed assignment with another bed while
respecting the room specialism

– LLH9: Swap a randomly selected bed assignment of a randomly selected
patient with another bed while respecting room properties

– LLH10: Swap two randomly selected beds
– LLH11: Transfer all the patients in a randomly selected room to another

randomly selected room

2.2 Differentiating Heuristic Sets

The motivation here is to generate a group of heuristic sets using the aforemen-
tioned parametric low-level heuristics for PAS. Nine heuristic sets in different
sizes, with different speed and improvement capabilities were generated by set-
ting their parameters. There exist studies concerning heuristics requiring their
parameters be set when applying a number of atomic steps [8]. Similarly, in the
present research, each heuristic has a parameter called sampling factor. This pa-
rameter constitutes the number of steps to apply the same operator for different
neighbouring solutions. For instance, LLH3 with sampling factor 4 means that
it should perform the corresponding swap operation 4 times at each iteration.
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Heuristic Sets. Nine heuristic sets under three group headings were derived
based on the 11 parametric heuristics depicted in Table 1. The first group of
heuristic sets was composed of 11 heuristics with a sampling factor of four. The
aim of using this first group is to measure the performance of various hyper-
heuristics in a default setting. The second set involves 22 heuristics with two
versions of each heuristic with sampling factors 4 and 1000. The heuristics with
sampling factor 1000 is 250 times slower than the ones with sampling factor 4.
It enables investigating how a hyper-heuristic behaves when the speed difference
among heuristics is extremely large. The last group employs 44 heuristic with
four versions of each heuristic using sampling factor values 1,4,8,16. The rea-
soning behind this setting is to evaluate hyper-heuristics on larger heuristic sets
with relatively small speed differences.

Table 1. Heuristic sets used for the experiments

Set size Sampling factors Selection type

HS1 11 4 BEST
HS2 11 4 FIRST IMPROVING
HS3 11 4 HILL CLIMBER

HS4 22 4, 1000 BEST
HS5 22 4, 1000 FIRST IMPROVING
HS6 22 4, 1000 HILL CLIMBER

HS7 44 1,4,8,16 BEST
HS8 44 1,4,8,16 FIRST IMPROVING
HS9 44 1,4,8,16 HILL CLIMBER

Each of these heuristic set groups was tested under three different conditions.
The first method, BEST , returns the best neighbouring solution after all the
sample solutions were visited at each iteration. The second approach,
FIRST IMPROV ING, uses the first improving solution found after the sam-
pling operations. The last technique, HILL CLIMBER, generates hill climbers
based on the sampling factor value. Whenever a better or equal quality neigh-
bouring solution is found during the sampling period, it is accepted.

Figure 1 depicts the average speed of performing one move on a PAS instance
by each heuristic set. According to this metric, the heuristic sets with 22 heuris-
tics, i.e. HS4, HS5, HS6, are slower than the all others. This slowness is caused
by utilising heuristics with a sampling factor of 1000. Of these, HS4 and HS6 are
the slowest, as shown in the second graph. This severe speed difference occurs
when a heuristic with the sampling factor of 1000 always checks 1000 neigh-
bouring solutions, however, HS5 stops looking for better neighbouring solutions
whenever it finds an improving one.
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Fig. 1. Number of iterations spent over time when heuristics are randomly selected

3 Tested Hyper-heuristics

Fourteen selection hyper-heuristics (2 heuristic selection × 7 move acceptance)
involving mechanisms from the literature were used for the experiments. Two
selection criteria were employed for the heuristic selection process. The first ap-
proach is the simple random (SR) heuristic selection mechanism that chooses
heuristics in a uniformly random manner. The second approach is the adaptive
dynamic heuristic set (ADHS) strategy, determining effective heuristic subsets
at runtime [9]. This strategy was also used in the winning hyper-heuristic [10] of
the first international Cross-domain Heuristic Search Challenge (CHeSC 2011)1.
The heuristic subset selection process is carried out using a performance met-
ric involving the most relevant elements to evaluate the online behaviour of
the heuristics. The details of the performance metric for heuristic i are shown
in Equation 1. Cp,best(i) represents the number of new best solutions discov-
ered during a phase. fp,imp(i) shows the total amount of improvement provided
during a phase. fp,wrs(i) indicates the total worsening caused during a phase.
fimp(i) and fwrs(i) both refer to the same measurements as the last two, but
during the whole search rather than a single phase. The remaining elements were
used to combine the improvement capabilities of the heuristics with their speed
enabling better judgement. tremain denotes the remaining execution time to fi-
nalise the whole search process. tp,spent(i) and tspent(i), the former represents
the spent execution time during a phase and the latter, from the start. The
wj values are set as weights to differentiate the importance of each individual
performance element. It is more important to have a higher value for an earlier
element.

1 http://www.asap.cs.nott.ac.uk/external/chesc2011/
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pi = w1

[(
Cp,best(i) + 1

)2(
tremain/tp,spent(i)

)]
× b +

w2

(
fp,imp(i)/tp,spent(i)

)
− w3

(
fp,wrs(i)/tp,spent(i)

)
+

w4

(
fimp(i)/tspent(i)

)
− w5

(
fwrs(i)/tspent(i)

)
(1)

b =

{
1,

∑n
i=0 Cp,best(i) > 0

0, otw.

After a number of iterations, all the active heuristics are evaluated based on this
performance metric. The length of these iterations is denoted as phase length,
pl. The heuristics with comparatively poorer performance are excluded from the
heuristic set for a number of phases. The duration of exclusion is referred to
as tabu duration (d) and is set to d =

√
2n, where n refers to the number of

heuristics in the heuristic set. The tabu duration of the consecutively excluded
heuristics is increased by one, until 2

√
2n. If such a heuristic survives after a

phase, its tabu duration is set to its initial value. In addition, the phase length is
adapted during runtime with respect to the speed of the heuristics in the current
heuristic set.

The heuristic selection operation from these subsets is handled using a learning
automaton [9,11]. This method accommodates a vector of heuristic selection prob-
abilities. These values are reset at the end of each phase given the synchronously
performed update operation in determining which heuristics will be excluded.

The employed move acceptance strategies are as follows: adaptive iteration
limited list-based threshold accepting (AILLA) [9], great deluge (GD) [8], late
acceptance (LATE) [12], simulated annealing (SA) [8], improving or equal (IE),
only improving (OI) and all moves (AM). All of these acceptance mechanisms
immediately accept improving solutions. The first four acceptance methods,
AILLA, GD, LATE and SA, provide diversification mechanisms by accepting
worsening solutions with respect to certain dynamic threshold values. IE ac-
cepts equal quality solutions to diversify the search process. OI accepts only
better quality solutions, hence it has no diversification strategy. The last accep-
tance criterion, AM, accepts all visited solutions.

The resulting hyper-heuristics using all these sub-mechanisms, ADHS-AILLA,
ADHS-GD, ADHS-SA, ADHS-LATE, ADHS-IE, ADHS-OI, ADHS-AM, SR-
AILLA, SR-GD, SR-SA, SR-LATE, SR-IE, SR-OI, SR-AM, have distinct char-
acteristics for selecting heuristics and diversifying the search process such that
a comprehensive performance analysis can be performed.

4 Computational Results

14 hyper-heuristics were run 10 times on 7 PAS instances, dataset0 → dataset6,
attainable at http://allserv.kahosl.be/∼peter/pas/ using Pentium Core 2
Duo 3 GHz PCs with 3.23 GB memory. Each hyper-heuristic was tested on 9
different heuristic sets. The time limits were taken as 10 and 50 minutes.
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In Figure 2, the significantly best hyper-heuristics for each heuristic set are
listed for the 10 minutes and 50 minutes experiments respectively. The signifi-
cance of the performance difference is evaluated using the Wilcoxon test with a
95% confidence interval.

Regarding the 10 minutes experiments, different acceptance strategies deliver
similar performances after 10 minutes of execution in most of the cases. For
specific heuristic sets, even very simple acceptance mechanisms like OI and AM
can find similar results to those in HS3 and HS6. The explanation behind this
is as follows: the diversification characteristics of the selection mechanisms are
no longer useful due to the heuristics’ hill climbing behaviour. In addition, there
is no heuristic set for which one hyper-heuristic outperforms the others except
SR-LATE on HS9. Moreover, the hyper-heuristics involving an acceptance mech-
anism with diversification and ADHS perform poorly on HS9. For the majority
of the test cases, AILLA and LATE perform better, yet there is no general
statistically significant performance difference. For 50 minute experiments, the
hyper-heuristics with GD perform best together with different hyper-heuristics
on different heuristic sets. This can be considered as an effect of the execution
time limit increase, from 10 minutes to 50 minutes. The hyper-heuristics using
AILLA and LATE also show effective performance after running them for 50
minutes.

The hyper-heuristics generated the best results on HS1, HS2, HS7 and HS8.
The heuristic sets involve heuristics using low sampling factors with a selec-
tion type of either BEST or FIRST IMPROV ING. This means that the fast
heuristics with well balanced intensification-diversification behaviour resulted in
better performance on the tested problem instances.
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Fig. 2. The significantly best hyper-heuristics on each heuristic set after 10 minutes
(left) and 50 minutes (right) (Circles refer to the hyper-heuristics with ADHS and
squares refer to the hyper-heuristics with SR)
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Fig. 3. Average ranking of the hyper-heuristics after 10 minutes (Each graph represents
the results obtained on a heuristic set. They are ordered from left to right, top to
bottom: HS1 → HS9).
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Fig. 4. Average ranking of the hyper-heuristics after 50 minutes (Each graph represents
the results obtained on a heuristic set. They are ordered from left to right, top to
bottom: HS1 → HS9).
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In Figure 3 and 4, the average ranking of the hyper-heuristics on each heuris-
tic set with 10 and 50 minutes execution time limits are presented. For the 10
minute experiments, ADHS performs better than SR in the majority of the cases.
However, SR provides better performance than ADHS for HS9 that accommo-
dates hill climbers, since ADHS mostly excludes the heuristics with a sampling
factor of 1 that help to diversify the search. Consequently, the remaining heuris-
tics may not be able to escape from certain local optima. For the 50 minute
experiments, the performance difference between ADHS and SR degraded when
compared to the 10 minute case. The two main reasons behind this empirical
result are the low evolvability characteristic of the solution space and the longer
running time. In this case, choosing wrong heuristics is not as influential when
compared with the 10 minute execution time experiments.

5 Conclusion

The present study examined the performance changes of 14 selection hyper-
heuristics due to different heuristic sets for the patient admission scheduling
problem. The nature of the heuristic sets, size of the heuristic sets and other
related limitations are all potential reasons why one hyper-heuristic delivers
superior results. We reviewed these conditions in various experiments to iden-
tify the hyper-heuristics’ generality levels. Nine heuristic sets were utilised in
demonstrating the effect of the heuristic sets on the performance of selection
hyper-heuristics. Each of these sets exhibits differences depending on the afore-
mentioned experimental conditions. We tested, using these heuristics sets, 14
hyper-heuristics composed of an adaptive and a random selection mechanism
combined with 7 move acceptance methods from the literature. The computa-
tional results on the tested heuristic sets showed that the best hyper-heuristic
can change based on the heuristic set used and execution time limits employed.
Particularly fast heuristic sets involving certain degree of intensification and di-
versification features showed better performance. These results also indicated
that some of the hyper-heuristic components are more valuable than others un-
der certain conditions. If the gap between speed and improvement capabilities
of the low-level heuristics is large and the allowed execution time is short, then
the heuristic selection is more important. However, if the heuristics are highly
perturbative and destructive then a move acceptance strategy with effective di-
versification capabilities is a vital requirement. Also, a very naive acceptance
mechanism like AM can deliver comparable results if the low-level heuristics
have effective improvement capabilities. We have then demonstrated how by
addressing different generality requirements.

In future work, the diversity of the application domains will be extended to
show the performance changes with respect to the relation between heuristic
search space and solution space. Additional mechanisms will be investigated to
enable more general hyper-heuristics compared to traditional approaches com-
posed of selection-acceptance pairs. Finally, a method will be devised to predict
or measure the generality level of a hyper-heuristic.
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