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Abstract. The aim of 3D-shape segmentation is to divide the surface
of an object into meaningful parts. We present a novel version of seed-
point-based segmentation including an evolutionary optimization to ob-
tain better segments. At first, some initial seeds are defined. Each of them
generates several so-called satellite seeds which enable a more detailed
control of the segment boundaries. The locations and weights of the seeds
are optimized with an Evolution Strategy. The objective function takes
the object’s curvature at the segments’ boundaries into account as well
as the length of these boundaries. An extensive evaluation and compari-
son with important existing segmentation approaches demonstrates the
great potential of our approach.
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1 Introduction

3D-shape segmentation has become an important research topic in the field of
three-dimensional computer graphics. It is used in several domains like e.g. 3D
modeling, texture mapping, and collision detection [1]. The aim of 3D-shape
segmentation is to create a decomposition of a 3D-model like the bunny in Fig. 1
into disjoint segments according to some criteria. We focus on models where the
surface is approximated by a triangle mesh as shown in Fig. 2. In this context,
shape segmentation is also known as mesh segmentation.

Fig. 1. Overview of our approach: normal seeds, satellite seeds, the resulting segmen-
tation, and an optimized segmentation. The seeds are indicated by yellow circles.
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This paper is concerned with part-type segmentation [10], i.e. the desired
segments correspond to meaningful parts of the original mesh. A horse model,
for example, should be divided into head, body, legs, and so on. For the purpose
of part-type segmentation, human perception has to be transferred into criteria
which can be treated algorithmically. Important and often used criteria are that
patch boundaries are typically located in concave surface regions and that the
patch boundaries generally have locally minimal length. These are also the major
criteria which will be considered within the optimization process introduced in
this paper.

Several mesh segmentation approaches use seed points. The basic idea is to
determine a region around each of a finite number of properly chosen points on
the surface. The regions together induce the decomposition of the surface into
patches. The seed points may serve as control points for automatic optimization
using an Evolutionary Algorithm. The novel concept of satellite seeds introduced
in this paper extends the potential of optimizing the borders between patches
without increasing the dimension of the parameter space too much.

This paper is organized as follows. It starts with a short survey on related work
in Section 2. In Section 3, an overview of our approach is given. The approach
is described in detail in Sections 4 and 5, where the evolutionary optimization is
explained in Section 5. In Section 6, we present results including a comparison
with the results of eight state-of-the-art techniques. Section 7 concludes the
paper and discusses future work.

2 Related Work

Over the last decade, a large number of automatic mesh segmentation approaches
has been proposed. Most of them code the objective of segmentation implicitly
in an algorithm. However, some other approaches explicitly define an objective
function over a set of possible partitions, which may be optimized by an adequate
general-purpose solver, cf. e.g. [11]. Extensive surveys on mesh segmentation ap-
proaches can be found in [1,10,3].

Most of the solutions up to now are based on fixed heuristics with the aim
of an as complete as possible characterization of segmentations. In contrast,
Kalogerakis et al. [6] present a data-driven approach which learns an objective
function over a feature space from a collection of labeled training meshes, in-
dependent from a concrete mesh. It offers a flexible way of learning different
types of segmentations for different tasks, without requiring manual parameter
tuning. A still existing disadvantage is that always adequate training models are
required.

There are several possibilities of deriving a partition into segments from seed
points. The potential of satellite seeding will be demonstrated on partitions
induced in a way known from weighted Voronoi diagrams on the surface of the
mesh. Simari et al. [11,12] have used weighted Voronoi diagrams, too, but in 3D-
space using an embedding of the original mesh obtained by multi-dimensional
scaling (MDS).
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To our knowledge, there is only one mesh segmentation approach containing
an evolutionary optimization: Simari and Singh optimize the center initializa-
tion, i.e. the positions of weighted partition centers [11]. After the initialization,
they use a generalized pattern search for segmentation optimization. In contrast
to their approach, we apply an Evolution Strategy for the whole process of op-
timization. In addition, while Simari and Singh have taken the desired forms
of the parts into account by labeling the partition centers, our intention is to
obtain good segments without explicit labels.

The contributions are as follows. First, we extend the seed-point-based mesh
segmentation approach by the concept of satellite seeds. Second, we introduce
an evolutionary optimization to obtain more natural patches. Third, we present
an extensive evaluation including an automatic seeding as well as a simulated
manual seeding based on ground truth segmentations by Chen et al. [3].

3 Problem Statement and Overview of Our Approach

Given a triangle mesh defining the surface of a geometric object, a decomposition
into patches is desired where the boundaries are smooth and optimally located in
concave regions. The first aspect is based on the assumption that the boundaries
between parts of an object are generally not jagged. The latter one is based on
the minima rule [5]. Our solution adopts the seed point approach and includes
the following main components:

1. Seed definition: The seeds are defined in two steps. The first step chooses a
finite set of adequate initial seeds. In the second step these seeds automati-
cally spawn satellite seeds to get a better control of the segment boundaries
(see Fig. 1(a) and (b)).

2. Patch calculation: Given a finite set of seeds, a decomposition of the object
surface into patches is calculated (see Fig. 1(c)).

3. Optimization: Since patches usually do not match with meaningful parts, we
perform a patch optimization using an Evolution Strategy. The optimized
patches are often identical with meaningful parts (see Fig. 1(d)). In this ar-
ticle, we denote meaningful parts of an object as components and calculated
parts, which can be regarded as being meaningful, as segments.

Seed definition and patch calculation are described in Section 4, the optimization
process is introduced in Section 5.

4 Seed Definition and Patch Calculation

At first, some initial seeds are placed on the object’s surface in either a manual
or an automatic way. Useful heuristics of manual seeding are to locate one initial
seed in every expected component, and to place it as central as possible within
the component. One possible heuristic of automatic seeding also used in this
paper is to arrange the first seed far away from the object’s centroid and all
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following seeds one after another in such a way that their geodesic distance from
each other is as large as possible. In contrast to other approaches, the seeds are
presented by mesh triangles, which we call seed triangles.

Every initial seed defines a patch, which, roughly speaking, consists of all mesh
triangles that are closer to it than to all other initial seeds according to an adequate
distance function.The distance is calculated on the dual graph of the trianglemesh.
As shown in Fig. 2, each mesh triangle corresponds to a node in the dual graph.
Nodes belonging to neighbor triangles are connected with an edge.

Fig. 2. Triangle mesh with a seed triangle (a), satellite seeds (b), and the dual graph (c)

The segments’ boundaries should usually be surrounded by concave object
areas. This condition is taken into account by using a feature based distance
function which is defined by

dζ,η,νfeature(t1, t2) := dgeo(t1, t2) + ζ · dang(t1, t2) + ν · η · dshape(t1, t2), (1)

where t1 and t2 are adjacent triangles. It combines the geodesic distance, an an-
gular distance and a special distance which takes into account the object’s shape
in a local region. The influence of the different partial distances is controlled by
ζ, η ∈ R+

0 , while ν ∈ {0, 1} decides whether or not there is a need to use dshape
at all. dgeo denotes the usual geodesic distance between the centers of t1 and t2.
The distance between two neighbor nodes of the dual graph is defined as the
feature based distance of the corresponding mesh triangles.

By assigning weights to the seeds, the influence of a seed on the boundary
of its patch becomes adaptable. Having γseed as the weight of the seed triangle
tseed, the weighted-feature-based distance of a triangle t′ to tseed is defined by

dwfeature(t
′, tseed) :=

1

γseed
· ddual(t′, tseed), (2)

where ddual is the length of a shortest path in the dual graph between the nodes
corresponding to t′ and tseed. For a given seed, the weighted-feature-based dis-
tance between adjacent triangles can be estimated canonically on the dual graph
by dividing the feature based distance of the dual graph edge by the seed weight.
The assignment of mesh triangles to a patch is realized using a modified form
of Dijkstra’s shortest path algorithm on the dual graph: the seeds are processed
in increasing weight order. If a dual graph node is reached which has already
a lower weighted-feature-based distance to another seed, this node will not be
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taken into account anymore in the current run of Dijkstra’s algorithm. This mod-
ification of Dijkstra’s algorithm is necessary, because without the modification
non-connected patches may occur when different seed weights are chosen.

The reason for combining the geodesic, the angular and our special shape-
based distance is that geodesic distances are insensitive to curvature and the
part boundaries. Angular distances are insensitive to part boundaries over flat
regions. If the edge between two mesh triangles is concave, the angular distance
is high. Thus, concave edges should be crossed less often inside a patch than
edges in convex regions. The shape-based distance can be seen as an additional
quality factor, which for example penalizes the transition from a cylindric region
to a concave one.

The shapes of the patches can be influenced by moving seeds or changing
their weights initially set on 1.0. Such a variation usually has an effect on the
whole patch boundary, so that good boundary parts could be changed to the
worse while worse parts are optimized. To avoid such a deterioration of good
boundaries, we have developed satellite seeding as an extension of initial seeding.
The motivation is to divide each boundary into several smaller parts. This is
automatically done by substituting each patch by several smaller ones, which we
call subpatches. To obtain subpatches of a single patch, new seeds are arranged
around the initial seed like satellites, close to the initial one (see Fig. 2).

5 Optimization

In this section, we present our patch optimization approach using an enhanced
Evolution Strategy (ES) that can also handle integer parameters and nominal-
discrete ones (cf. [4]). The object variable vector consists of the seed positions in
form of triangle indices (assuming that each mesh triangle can be addressed by
an index), the weights of the initial and satellite seeds, the influences ζ and η,
and the flag ν. All individuals of the initial population are directly derived from
the given segmentation. In the majority of cases the optimization produces more
natural boundaries. After optimization, every patch is regarded as a segment.

5.1 Reproduction and Selection

Recombination: An extensive survey on well-known recombination strategies is
given in [2]. For our optimization problem, we have chosen different recombina-
tion strategies for the object variables. The recombination of ζ and η is realized
by an intermediate recombination operator, while for the binary valued ν a dis-
crete recombination operator is chosen. Since the seed positions are saved as
indices, they cannot be recombined with an intermediate operator, so a discrete
operator is used. However, a patch must not become decomposed after apply-
ing the recombination. Therefore, for each patch all seeds are randomly chosen
completely from one of the individuals selected for recombination.
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Mutation: All real-value parameters are mutated by adding a normally dis-
tributed random number χ ∈ R with mean 0 and standard deviation σ. Nega-
tive values are set to a small positive value. χ is recalculated for each parameter.
We have used Rechenberg’s 1/5-Rule [8] to adapt the standard deviations. The
mutation of seed positions has to be carried out in another way. The seeds are
moved over the triangle mesh in such a way that small movements occur more
often than larger ones, by using additional information stored in the mesh data
structure for mutating the seed indices. The mutation operator has to ensure
that each triangle contains at most one seed.

Selection: There are different kinds of Evolution Strategies like the (μ + λ)-ES
and the (μ, λ)-ES [2]. They differ from each other in the selection mechanism.
We have chosen a (μ, κ, λ)-ES [9] which contains the (μ + λ)-ES as well as the
(μ, λ)-ES as special cases. The (μ, κ, λ)-ES can consider all individuals with an
age smaller than the life-span κ.

5.2 Fitness Evaluation

We formulate the optimization as a minimization problem, where the fitness
value corresponds to the segmentation quality. According to the knowledge about
human perception presented in [5], we want to obtain segments which are mostly
surrounded by concave areas. On the other hand, the component boundaries
perceived by humans are usually not “jagged”. Thus, a segmentation Γ with
short segment boundaries is desired. In our fitness function

f(Γ ) :=

{
(1− Λ) · fconcave(Γ ) + Λ · flength(Γ );Λ ∈ [0, 1] if Γ is valid,

∞ otherwise,
(3)

which is to be minimized, the first assumption is taken into account by fconcave,
the latter one by flength. A segmentation is called valid iff each patch is con-
nected, i.e. if no patch is decomposed into several parts. Segment boundaries
are polylines, all of which have edges of the triangle mesh as line segments. The
function fconcave is defined in such a way that long line segments have more
influence than shorter ones:

fconcave(Γ ) :=
1∑|E|

i=1
1

l(ei)

·
∑|E|

j=1
(

1

1 + max(αj , 0)
· 1

l(ej)
). (4)

E is a list of all edges belonging to the segment boundaries of Γ . The ith bound-
ary edge is denoted by ei and its length by l(ei). αi denotes the signed angle
between the normal vectors of the two mesh triangles adjacent to ei. This angle
is positive, if the object is concave at ei. The first factor in equation (4) is used
for scaling; it ensures that fconcave(Γ ) ∈ [0, 1]. The more concave the segment
boundaries of Γ are, the lower is the function value of fconcave.

The function

flength(Γ ) :=
1∑|Emesh|

i=1 l(e′i)
·
∑|E|

j=1
l(ej) (5)
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evaluates how “jagged” the segment boundaries are, which is related with the
length of the boundary. The smoother they are, the smaller is the function value.
Once again, the list of all boundary edges is denoted by E; the list of all edges
belonging to the triangle mesh is denoted by Emesh. While ej is the jth element
of E, e′i denotes the ith edge of Emesh. Since composition of fconcave and flength
in (3) is realized as a convex combination, the range of f is a subset of [0, 1].

6 Experiments and Evaluation

6.1 Behavior of the Optimization

A drawback of state-of-the-art techniques based on seeds is that a subopti-
mal seeding can cause wrong segments. The optimization of seed positions and
weights included in our approach compensates for this drawback. In Fig. 3, an
example for the positive effects of the evolutionary optimization can be seen. The
initial segmentation on the left side is taken as the source for two optimizations:
one using a (μ, κ, λ)-ES and one using a (μ+ λ)-ES. Both have been applied for
150 generations. Figure 3 also shows the corresponding curves of the best fit-
ness values per generation. In both cases, the resulting segmentations are much
better. In contrast, before starting the optimization, the green and the yellow
segment are not quite good; the yellow one describing the middle finger was
running down the other side of the hand up to the little finger. Please also note
that even optimal segmentations yield fitness values considerably larger than 0.

Other segmentations calculated by our prototype are shown in Fig. 4. The
results essentially correspond to human expectations. In particular, technical
models like the bearing object are almost perfectly segmented. But also the
segmentations of natural models are quite good in most cases. If still necessary
at all, jagged boundaries may be fixed by postprocessing [7].

6.2 Evaluation

Since we have demonstrated some results of our approach so far, we now measure
the quality of our segmentation method by taking segmentations manually cre-
ated by human test persons into account, that can be seen as being “optimal”.
Such segmentations are known as ground truth segmentations. We have used the
Rand Index (RI) to evaluate the discrepancy between a calculated segmentation
and a ground truth segmentation [3]. It is the relative number of all pairs of
mesh triangles which either belong to the same segment in both segmentations
or which belong to two different segments in both segmentations. With this in-
formation, the similarity of the segmentations is calculated. Originally, the Rand
Index RIorig is defined to be 1 if both segmentations are identical, and it’s range
is [0, 1]. According to [3], we use RI = 1 − RIorig as Rand Index in order to
compare our results to those of established approaches. Thus, this Rand Index
grows with increasing discrepancy. A more detailed description can be found
in [3]. Since the Rand Index can also be evaluated for segmentations of other
approaches, an objective comparison of our results with other ones is feasible.



Evolutionary 3D-Shape Segmentation Using Satellite Seeds 445

 0.565

 0.57

 0.575

 0.58

 0.585

 0.59

 0  20  40  60  80  100  120  140

 

Best Fitness ((20,5,100)-ES)
Best Fitness ((20+100)-ES)

Fig. 3. The initial segmentation (a) was optimized by a (μ, κ, λ)-ES (b) and a (μ+λ)-
ES (c). The best individuals’ fitness values are shown for 150 generations.

Fig. 4. Segmentations achieved by our prototype

An extensive benchmark containing 380 models as well as eleven different
ground truth segmentations in the average for each model was published by
Chen et al. [3]. The models are divided into 19 categories. We have used this
benchmark to evaluate our segmentation approach.

In order to perform a large number of experiments, we have chosen two vari-
ants of defining a reasonable number of seeds individually for every model in an
automatic way. Variant 1 is given by our automatic seeding, where the number
of initial seeds is determined by taking the average segment number of all ground
truth data belonging to the current model. Variant 2 is based on the ground
truth data. The initial seeds are placed near the centroids of randomly chosen
ground truth segments. This can be seen as a simulation of a manual seeding,
which enables to evaluate the possible advantage of an expected optimal man-
ual seeding against an automatic seeding. In this sense, variant 2 can also be
considered as a lower bound (with respect to the Rand Index) for all automatic
approaches.

We have calculated one segmentation per seeding variant for each of the 380
benchmark models mentioned above with μ = 3, λ = 15, κ = 5 and an exper-
imentally determined Λ = 0.3. The optimization was stopped already after 30
generations, which turned out to be sufficient. On the left side of Fig. 5, the
influence of the optimization is shown on the basis of the Rand Index. The Rand
Index values averaged over the 380 models are shown for the situations before
and after optimization. Sat1 and Sat2 stand for our segmentation approach
using seeding variant 1 and 2, respectively. Please remember that the fitness
function is defined completely independent from the Rand Index and that even
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the best possible RI value will be positive. The latter aspect is reasoned by dif-
ferent subjective perceptions of a model and its components, which results in
different ground truth data. For example, the wings of a high-wing plane can
be interpreted as one single component or as two independent components. Ac-
cording to this, in [3], a RI of 0.1 was observed for manual segmentations that
are regarded as being optimal. For Sat2, the optimization yields a similar value,
which confirms the capabilities associated with satellite seeding.

Fig. 5. Effect of the optimization (left) and averaged RI values (right)

In the right diagram of Fig. 5, the averaged RI values of our optimized seg-
mentations and of established techniques are shown (cf. [3,6]). The established
techniques are based on Labeling and Learning (LL) [6] regarding three training
meshes for every evaluated segmentation, Randomized Cuts (RC), Shape Di-
ameter Function (SD), Normalized Cuts (NC), Core Extraction (CE), Random
Walks (RW), Fitting Primitives (FP), and K-Means Clustering (KM). A survey,
except for the LL approach, is given in [3]. Variant 1 is superior to 5 of the 8
established techniques. A great theoretical potential of the proposed approach
is demonstrated by the RI values of variant 2 which are significantly better
than those of all other techniques. A trouble of our automatic seeding is that
seeds may be placed nearby boundaries of meaningful components. This may be
unfavorable even for satellite seeding in its current version. A further question
of future research is whether the existing techniques also have a potential of
improvement which can be quantitatively estimated analogously to variant 2.

We have also investigated the influence of satellite seeding on the optimization
by taking only the initial seeds of Sat2 without satellite seeds. In this case, the
RI after optimization is 0.146, which is clearly worse than the RI in the case
of satellite seeds. Furthermore, it is also worse than in the case of Sat2 without
optimization shown in Fig. 5. This behavior is caused by the fact, that the
optimization algorithm tends to move “lonely” initial seeds onto parts bounded
by concave areas, which often results in patches that are too small for the desired
segmentation granularity. Therefore, satellite seeding as an extension of normal
seeding is obviously effective for evolutionary optimization.



Evolutionary 3D-Shape Segmentation Using Satellite Seeds 447

7 Conclusion and Future Work

We have presented a novel approach to mesh segmentation suitable for generating
optimized segmentations using an Evolution Strategy. Inmany cases, it yields bet-
ter results than important well-known techniques. Furthermore, our approach is
especially well suited for semi-automatic segmentation, i.e. amanual seedingwhich
can be done with minimal effort followed by automatic patch calculation and op-
timization. A major challenge of future work is to improve the automatic seeding
to reduce the gap between the segmentation qualities of Sat1 and Sat2 shown in
Fig. 5.

Further, the reliability of Sat2 as a simulation of a manual seeding could
be investigated. First tests confirm that in most cases segmentations calculated
from seedings by humans are very similar to the ones presented in this paper.

Finally, alternative fitness functions could be studied. For example, the fitness
function might also force corresponding satellite seeds to stay close to each other.
This could reduce the occurrence of invalid individuals in the parent population.

Acknowledgements. Thebunnymodel is fromtheStanford3DScanningRepos-
itory [13], all others are from the mentioned benchmark and available at [14].
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