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Abstract. Evolutionary algorithms need measures of how appropriate
a solution is in order to make decisions. This is always a problem for
evolving art as codifying aesthetics is a complex task. In this paper we
consider the problem of evaluating melodies. The evaluation of melodies
in evolutionary music is an open problem that has been tackled by many
authors with interactive evaluation, fitness-free genetic algorithms and
even neural networks. However, all approaches based on formal analysis
of databases or formal music theory have been partial, which is some-
thing to be expected for such a complex problem. Thus, we present many
metrics that can be used for evaluating melodies and their practical re-
sults when applied to a Bossa Nova database of melodies coded by the
authors. Although the paper is meant to extend the cycle of possible
ideas for evolutionary composers, we argue that there is still much to be
developed in this field and each genre of music will always need specific
measures of quality.

Keywords: Evolutionary Music, Genetic Algorithms, Evaluation of
Melodies.

1 Introduction

Evolutionary Algorithms and Algorithmic Composition methods need to mea-
sure how appropriate a solution is in order to make decisions. Easy ways to
evaluate melodies would be comparing tunes, using only music theory or having
a mentor to guide the process.

Evaluating music and art faces many challenges that we discuss in Section 2.
Given the open problems for music evaluation and the methods recently pro-
posed, we focus this paper on the definition of metrics more formally based on
music theory or data extraction, as we develop the idea in Section 3.
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In this context, we describe a list of metrics divided in many categories from
Section 4. In parallel to those metrics from a musicology research, we also show
the results of those metrics on a database of Bossa Nova melodies the authors
have created. We discuss each of those metrics as Information Retrieval or Com-
putational Musicology processes.

In our discussion of the results, in Section 5, we argue that this work should
be useful for scientists intending to create algorithms for generating melodies but
there will always be metrics which will be more useful for genre-specific music
generation.

2 Forms of Music Evaluation

Codifying aesthetics is a complex task and the biggest problem in evolutionary
composition [1]. Approaches to circumvent codifying aesthetics such as inter-
active evolution [2,3,4], fitness-free GAs [5] and neural networks [6,7], all still
present many drawbacks.

Using a human mentor usually leads to fitness bottlenecks [3,4]. Fitness-free
algorithms [5,8] are bolder proposals but they also avoid studying the problem
and oblige the genetic operators to be conservative. Most works based on Neural
Networks do not have the ability to generalize beyond training sets [6,8,7].

Thus, an open problem is to create automatic evaluation functions [1] machine
representable, capable of measuring human aesthetic properties and practically
computable. They should not only define what is more likely to occur on melodies
but they should also allow creativity when considering all the different aesthetic
objectives to generate ideas not imagined before [9]. Computational aesthetic
evaluation is a distinctly non-trivial unsolved problem [1].

3 Automatic Objective Functions

Many different metrics based on perceptions of the composer or music theory
can be employed to analyze melodies in a process of algorithmic composition
[10]. In this paper we present many automatic metrics and their results on a
database of Bossa Nova melodies manually created by the authors.

There have been partial attempts to automate measures of fitness [1,11] and
studies on which features are most important [11]. Those include four part har-
monization [12] and jazz melodies [13], for instance. The influence of the genetic
operators on musical features has also been partially studied [14,5]. Target values
have also been used to measure fitness [15,16,17].

From an analysis over the literature, most algorithms do not examine the
possible relation between all categories of metrics possible [10]. Thus, we define
metrics that should be applicable to most classical, baroque or popular twentieth-
century melodies and the results of their employment on a database of melodies.

With many analyses of those melodies from different points of view, we can
compare the results to a potential solution from our generative algorithm. Some
results indicate parameters with normal distribution, such as in the distribution
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of pitches, which can be tested in the candidate solution with a Jarque-Bera test
[18]. Some results may show that parameters come from another distribution,
such as in the distribution of rhythmic proportion, which can be compared to
a candidate solution with a Two-sample Kolmogorov-Smirnov test [19]. Some
parameters may only represent categorical values, which can be compared with
a nominal statistical test [20]. Finally, other results indicate potential individual
target values for the melodies, such as the tempo of each melody, which can be
directly included in objective function values as the distance from the target.

4 Metrics and Results

In order to give a good representation of the mentioned metrics, we have created
a database with 26 Bossa Nova melodies from Tom Jobim’s songbook [21] and
manually coded by the authors. All the data is available from the authors1.

4.1 Tonality, Pitches, and Intervals

We first detect the key of each melody with the K-S key-finding algorithm [22],
based on key profiles. As the melodies may even have key changes, it may be a
simplistic approach, but all the keys detected matched the key signature in the
scores and the results can give us an idea of the keys as we can see in Table 1.
Thus, we transpose all songs to C (or its minor relative, Am) to make key de-
pendent analyzes possible, such as the detection of dissonances. The correlation
of the algorithm’s key profiles to the pitch distribution of the pieces leads to a
representation of the strength of each key, as in Figure 1(a). The correlation val-
ues are significantly higher for the C major and A minor key profiles, indicating
some relevance of the method applied. The results can also be projected on a
self-organizing map trained with key profiles [23], as in Figure 1(b).

Table 1. Key Profiles

C C# D D# E F F# G G# A A# B Total

12% 0% 15% 0% 4% 4% 0% 4% 0% 4% 0% 4% 46%

c c# d d# e f f# g g# a a# b Total

0% 0% 15% 0% 12% 4% 12% 4% 4% 4% 0% 0% 54%

The pitches used in all melodies are in Figure 2(a), showing that the distribu-
tion of the notes is very normal. However, by shifting all melodies to the same
key, we have a large difference of occurrence between consecutive notes, as in
Figure 2(b). This is due to dissonant notes, which are strange to the main scale.

Given the 12 note classes, the modulo of a pitch number by 12 is the class of this
note. The occurrence of those pitch classes gives a better idea of the scales used in
themelody, as inFigure 2(c).We can see a higher occurrence of notes of the diatonic
1 http://www.alandefreitas.com/downloads/problem-instances.php

http://www.alandefreitas.com/downloads/problem-instances.php
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(a) Correlation (b) Results projected on a SOM

Fig. 1. Melody keys

scale ofC. Thenote variety is also different for eachmelody. Amethod ofmeasuring
pitch variety [11] is by dividing the number of distinct notes in a melody by 12,
as in Figure 2(d), which shows that the variety of pitches is very different among
the melodies but all melodies use more than 70% of the possible notes. Another
aspect of pitch variety is pitch range [11], or the difference between the highest and
lowest pitches. As we can see in Figure 2(e), the pitch range has a more normal
distribution, centered on a range of 16 pitches.

Other useful metrics are the beginning and ending pitches, and the note dis-
tribution weighted by duration. For our database, this measure did not represent
much difference, as we can see in Figure 2(f).

Perhaps, more important than the pitches themselves are the intervals be-
tween them. Figure 3(a) shows the intervals present in our melodies. In accor-
dance with theoretical models [24], intervals of small size are more common than
large ones. Figure gives a good representation of the interval sizes used in the
melodies. In fact, it is a common practice to penalize very large intervals in the
evaluation of the solutions [13]. However, this can be only applicable to some
genres of music and an approach based on a better analysis is recommended. If
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(a) Intervals (b) Notes & Intervals
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Fig. 3. Intervals

we combine the information of the notes to the intervals, we are going to find
out that the probability of the next note depends on the current note, as shown
in Figure 3(b). Also similarly to the notes, we can analyze the interval variety
for each song, as in Figure 3(c).

Contour refers to the movements being performed by the melodies. There are
many sorts of contour [25] and the direction of those movements may be easier to
remember than the movements themselves [26]. An easy way to analyze contour
is to measure how many intervals are ascenders or descenders, and the stability
in relation to direction. Table 2 shows the values of ascenders and descenders
in general or in relation to the last interval. The values in bold represent the
contour stability, which is a criterion that has also been used in evolutionary
algorithms [11], and represented for each song in Figure 4(a). Another simple
form of controlling contour is through the average contour direction [13,11].

Table 2. Contour

Ascendent Unison Descendent

After an ascendent 30.17% 18.78% 51.03%
After an unison 19.92% 55.24% 24.82%

After a descendent 45.36% 14.57% 40.06%

In general 33.52% 26.95% 39.52%

By analyzing pitches and tonality together, we can have an idea of the disso-
nances used in the songs. From Figure 2(c) we can see that it would be more than
reasonable to analyze dissonance in terms of the proportion of notes that do not
belong to the diatonic scale. Thus, the probability of a dissonant note is 30.53%,
but Figure 4(b), which represents the occurrence of dissonance divided by the
number of possible dissonant notes, shows how this value can vary considerably.

Attraction of dissonant notes to tonally stable notes happens to 55.25% of
the dissonances. However, this measure may overlap with the measure of second
order notes, as shown in Figure 3(b).

Narmour’s Implication-RealizationModel [27] is a study on melodic expectancy
based on many principles that consider expectation of the listener after a given
interval. With a quantification of the principles in model [28,29], we can either
penalize melodies that disrespect the principles or measure how much the melodies
follow the model.
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As the model can be context-specific or inefficient to consider tonally stable
intervals [30], we can also use the interval values in the melodies to infer our own
model of expectancy which would be specific for our goal. Figure 4(c) shows such
a model, where the rows represent implicative intervals and columns represent
realized intervals. The model confirms the expectation of small intervals. Melodic
attraction should also be considered by this model of expectation as we have
different responses for different pitches [31]. One way of doing that would be to
infer 12 different models according to the current note.

4.2 Rhythm, Patterns, and Phrases

The first feature that determines the rhythm is the duration of notes. Figure
5(a) shows a second order analysis of the proportion of note durations. From
36 possible values of duration present in the melodies, the histogram is based
on the durations shorter than 4 beats and longer than 1/4 of a beat [29]. The
patterns show a tendency of repetition in the duration of following notes. Another
interesting pattern is that the first notes in a melody, shown in Figure 5(b), tend
to have shorter duration than the last notes, shown in Figure 5(c). The rhythmic
proportion in each melody is the duration of the longest note divided by the
duration of the shortest note, as shown in Figure 5(d). Similarly to what we did
to the pitches, we can also calculate the duration variety in the melodies, as in
Figure 5(e). Part of the rhythmic analysis is not only the duration of the pitches
but also how much silence we have in the melodies. In Figure 5(f) we have the
amount of silence (as at most 2 beats without notes) per melody. In some cases,
even more than 10% of the melody may be silent.

We have mentioned the duration of the notes but another important informa-
tion is when the notes are played. A hierarchical grid of note locations may exist
in the expectation of Western melodies [32]. For instance, the note positions in
the musical measure are represented in Figure 5(g). Also the first notes (and last
notes) may use different positions, as the example in Figure 5(h). In fact, only
6 values of note position are used for the first notes while 16 values are used for
all notes. The note positions can also be weighted by the duration of those notes
as it alters how listeners perceive those notes [33]. Figure 5(i) shows the relation
between those two components.
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Once we have information related to pitches and rhythm we can find patterns
in the melodies. By autocorrelating a melody with a delayed copy of itself [34],
we can identify patterns in a melody. The correlation values go from 0 to 1, and
the correlation value is always 1 at point 0, when we compare a melody shape
with a copy of itself, as shown in Figure 6(a). The three areas represent the
maximum, mean, and minimum correlation. Similarly to the contour shape, we
can apply the same technique to only pitches or duration values.

Another way of looking at the patterns is to identify the number of patterns
of a specific size in a melody. We can analyze that in Figure 6(b), where each
row represents a melody, each column represents a pattern size and the colors
represent the amount of that pattern. Short patterns are naturally more common
as longer and rare patterns may represent the repetition of phases in the melody.
The same metric can be applied to notes or duration values.

We can divide melodies into musical phrases. Figure 6(c) shows the number
of phrases per melody according to a rule-based approach [35]. There are also
approaches based on probability [36]. The size of those phrases can also be
analyzed and with those values it is possible to also study the value of the
parameters for each musical phrase as well as the relation between neighbor
phrases in relation to pitch and rhythm.
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5 Discussion and Future Work

All the metrics presented here can lead to different models according to the spe-
cific genres of music. Those models, in some cases, can even lead to problems
which are simple to solve in polynomial time. In that case, evolutionary com-
putation could be even unsuitable for composing. On the other hand, with all
the information to be considered when generating compositions, it is unlikely to
exist a good model of composition which is too trivial.

Although there are many other metrics that could be considered in the eval-
uation of melodies, such as contour shapes or rhythmic variation, the authors
do not have the pretension to formulate all of them as it would not be feasible.
However, by studying at least some of the most important metrics in relation to
each category of analysis, this paper can surely give some background to scien-
tists with intention to be evolutionary composers. Natural extensions of the ideas
presented here would be to apply all the metrics on melody phrases separately
and to filtrate which metrics are most important. It would be also important
to perform second-order analysis on the melodies to look for potential relations
between the metrics.

Once we are able to generate melodies that follow patterns of a studied
database, another issue is also the diversity and originality of the solutions gen-
erated by the algorithm, as we do not want the algorithm to either return always
the same “best” melody [5] or to ignore the originality needed in masterpieces
[37]. Once we have considered those issues, we can focus on applying the statis-
tical methods mentioned in Section 3 to get more formal objective values.

In regard to evolutionary computation, an important issue in the future will
also be how to put all those metrics together into one or many objective functions
and which genetic operators will be appropriate for those functions. So far, the
formalized evaluation metrics for evolutionary music have only been partial and
this paper should expand the ideas considered by evolutionary composers on
their work. However, as music is a very contextual form art, specific metrics will
always need to be created for specific genres of music.
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