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Abstract. This paper considers a real-world optimization problem involving the
discovery of cost-effective equipment sizing strategies for the chromatography
technique employed to purify biopharmaceuticals. Tackling this problem requires
solving a combinatorial optimization problem subject to multiple constraints, un-
certain parameters (and thus noise), and time-consuming fitness evaluations. After
introducing this problem, an industrially-relevant case study is used to demon-
strate that evolutionary algorithms perform best when infeasible solutions are
repaired intelligently, the population size is set appropriately, and elitism is com-
bined with a low number of Monte Carlo trials (needed to account for uncer-
tainty). Adopting this setup turns out to be more important for scenarios where
less time is available for the purification process.

1 Introduction

Monoclonal antibodies (mAbs) represent the fastest growing category of therapeutic
biopharmaceutical drugs due to their unique binding specificity to targets. The manu-
facturing process for mAbs is costly and time-consuming, and can be divided into two
phases (see Fig. 1): upstream processing (USP) and downstream processing (DSP). In
USP, mammalian cells expressing the mAb of interest are cultured in bioreactors. Then
the broth moves to DSP, where the mAb is recovered, purified and cleared from viruses
using a variety of operations including a number of chromatography steps. Chromatog-
raphy operations are identified as critical steps in a mAb purification process and can
represent a significant proportion of the purification material costs (associated e.g. with
the use of expensive affinity resins and large amounts of buffer reagents). Whilst alter-
natives to traditional column chromatography platforms are emerging, industry prac-
titioners are still reluctant to perform major process changes [1]. At the same time, it
is important to determine how best to use existing production facilities for mAbs [2].
This is particularly challenging given the significant improvements in USP productivi-
ties that have been accomplished over the past decade with higher mAb concentrations
(titres) being achieved in cell culture. These improvements have not been matched in
purification capacities, leading to concerns over purification bottlenecks and the desire
to continuously optimize the design and operation of existing chromatography steps.
Hence, to efficiently exploit these cell culture improvements, and account for the in-
creasing demand for therapeutic mAbs, it has become critical to identify cost-effective
purification processes [1].

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part II, LNCS 7492, pp. 468–477, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Efficient Discovery of Chromatography Equipment Sizing Strategies 469

Bulk fill
Virus
filtration

Chromatogra-
phy step i = 1

Chromatogra-
phy step i = 2

Ultra filtration/
Dia filtration

Chromatogra-
phy step i = 3

Virus in-
activationHarvestCell culture

Downstream processUpstream process

Fig. 1. Typical flowsheet for an antibody manufacturing process

An approach to realize this identification step, which is also adopted here, is to
develop simulation models of mAb manufacturing processes and identify promising
chromatography setups using computational methods. For example, in [3] the authors
present a simulation model to identify windows of operation for the column diameter,
bed height and loading flowrate of a chromatography step using productivity and cost
of goods (COGs) as performance criteria. A model to find combinations of protein load
and loading flowrate that meet yield and throughput constraints has been developed
in [4]. The discrete-event simulation framework proposed in [5] allows the selection
of optimal chromatography column diameters over a range of titres. The methodology
used in [3–5] consists of selecting and evaluating specific values within the full range of
variation of the critical parameters. However, such an approach may not be feasible for
very large decision spaces as considered here, which drives the need for more efficient
optimization methods in this domain.

This study addresses this issue by investigating the application of evolutionary op-
timization methods for the discovery of chromatography column sizing strategies —
defined here by the diameter and bed height of a column, the number of columns used
in parallel, and the number of cycles a column is run for — that are cost-effective in
terms of COGs per gram (COG/g) of product manufactured. This discovery task can be
formulated as a combinatorial (single-objective) optimization problem subject to mul-
tiple constraints and interacting decision variables, uncertain parameters and expensive
fitness evaluations (represented by time-consuming computer simulations). Over the
years, evolutionary algorithms (EAs) have proven to be efficient, flexible and robust
optimizers for challenging optimization problems of this type — which are commonly
referred to as closed-loop optimization problems [6, 7].

An industrially-relevant case study is used to investigate how to tune some of the
simple EA configuration parameters: population size, degree of elitism, number of
Monte Carlo trials (needed to cope with uncertain parameters), and constraint-handling
method. The fitness landscape of different scenarios of the case study are analyzed
also to observe which landscape features pose a particular challenge when optimizing
equipment sizing strategies.

The rest of the paper is organized as follows. The next section describes the chro-
matography sizing problem considered in this work in more detail. Section 3 outlines
the case study, choice of algorithms and the parameter settings considered for tackling
the case study. The experimental results are presented and analyzed in Section 4, and
Section 5 concludes the paper.
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Fig. 2. A candidate solution (sizing strategy) with k = 3 chromatography steps. Each step i =
1, ..., k is defined by the bed height hi and diameter di of columns, number of cycles nCYC,i each
column is used, and the number of columns nCOL,i operating in parallel.

2 Problem Domain: Chromatography Equipment Sizing

The chromatography equipment sizing problem can be represented as a combinatorial
optimization problem with the task of finding the most cost-effective chromatography
sizing setup for a sequence of chromatography steps used in the purification process
of mAbs. In the following the decision variables, objective function, constraints, and
uncertain parameters to which this problem is subject to are described.

Decision Variables: Fig. 2 shows the encoding used to represent a solution x to the
chromatography sizing problem. For each chromatography step 1 ≤ i ≤ k (k is the total
number of steps) (e.g. affinity or ion-exchange chromatography) four discrete decision
variables were defined related to the sizing and operation of chromatography columns:
bed height hi and diameter di of columns, number of cycles nCYC,i each column is used,
and the number of columns nCOL,i operating in parallel. That is, the problem is subject
to l = k · 4 discrete variables in total. For each step i, the variables define the (i) total
volume of resin Vi available for the purification of a product at that chromatography
step, and the (ii) processing time Ti that the chromatography step takes; both parameters
are calculated according to standard mass balance equations as follows [8]:

Vi = π · d2
i /4 · hi · nCYC,i · nCOL,i (1)

Ti = nCYC,i · hi · (CV BUFF,i + CV LOAD,i/nCOL,i) · ui, (2)

where CV BUFF,i and CV LOAD,i are the number of column volumes of buffer and prod-
uct load per cycle, and ui is the linear flowrate of the resin used at step i.

Objective Function: Our objective f is to find a chromatography sizing setup that
yields minimal cost of goods per gram (COG/g) of product manufactured. The COGs
include both direct (resource) costs (e.g. resin, buffer and labor costs) and indirect costs
(e.g. facility-dependent overheads, such as maintenance costs and depreciation), and is
divided by the total annual product output P to yield the metric COG/g. The COG/g
values are obtained by running a detailed process economics model, which simulates
the different purification steps based on mass balance and cost equations as defined
in [8].

Constraints: The problem is subject to two types of constraints:

1. Each chromatography step i = 1, ..., k needs to satisfy a resin requirement con-
straint to ensure that the resin volume Vi available for purification at step i is
sufficient to process the mass of product Mi entering that step, given the resin’s
dynamic binding capacity DBC i and the maximum utilization factor κ. Formally,
this constraint can be defined as
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Vi ≥ Mi · κ
DBC i

. (3)

Solutions violating this constraint are considered infeasible and handled using one
of the constraint-handling strategies introduced in Section 3.

2. There is also a demand constraint to ensure that the amount of product manufac-
tured P is sufficient to satisfy the annual demand D, or P ≥ D. This constraint
may be violated for column sizing strategies with long chromatography processing
times Ti. The use of COG/g as the objective function (recall that the product out-
put P is in the denominator of this metric) was found to be sufficient to cope with
this constraint. Hence, if a solution violates the demand constraint, then it is not
considered infeasible.

Uncertainties: Uncertainty related to the product titre can have a significant impact on
the annual product output P . As the equipment sizing is a function of an expected titre
value for bioreactors through to chromatography columns, titre fluctuations can cause
(i) failure to meet demand (if titre is lower than expected) or (ii) product waste (if titre
is higher than expected and equipment capacity is insufficient to process the excess).
Other sources of uncertainty (e.g. yield) may be present and are realistic but are not
considered in this paper.

3 Experimental Setup

This section describes the case study, search algorithms and their parameter settings as
used in the subsequent experimental analysis.

Case Study Setup: The case study considered in this work is industrially-relevant and
focuses on a single-product mAb manufacturing facility that employs a process se-
quence as shown in Fig. 1 (with k = 3 chromatography steps) to satisfy a total product
demand of D = 500kg/year with an expected titre of 3g/L. Titre variabilities were
modeled using the triangular probability distribution, Tr(2.6,3.0,3.4). Three scenarios
of this case study with different ratios of USP:DSP trains were investigated: 1:1, 2:1
and 4:1. The USP train refers to the number of bioreactors operating (in a staggered
mode), and an increase in the USP:DSP ratio corresponds to a decrease in the DSP
window, the time available to perform chromatography. The range of possible decision
variable values is 15 cm ≤ hi ≤ 25 cm (11 values), 50 cm ≤ di ≤ 200 cm (16 values),
1 ≤ nCYC,i ≤ 10 (10 values), 1 ≤ nCOL,i ≤ 4 (4 values), i = 1, 2, 3; i.e. there are
(11 · 16 · 10 · 4)3 ≈ 3.5 · 1011 sizing strategies in total. The sizing strategy employed
in industry is obtained based on empirical rules: a single column nCOL,i = 1 with a
fixed bed height of hi = 20 cm is run for a fixed number of cycles nCYC,i = 5 with the
diameter size di being calculated such that the resulting total resin volume Vi (Equation
(1)) satisfies the resin requirement constraint (Equation (3)).

Search Algorithms: To gain insight into the behavior of evolutionary search algo-
rithms on the chromatography sizing problem, four types of search algorithms were
considered: a standard generational genetic algorithm (SGA), a genetic algorithm with
generation gap (GA-GG), a genetic algorithm with a (μ + λ)-ES reproduction scheme
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(GA-ES), and a population of stochastic hill-climbers (PHC). All four algorithms began
the search with the same initial population containing μ randomly generated solutions.
The algorithms used also the same mutation operator, which selected a decision vari-
able value at random from the set of possible values. SGA used uniform crossover and
random flip mutation as the variation operators, and binary tournament selection (with
replacement) for parental selection; for environmental selection, it replaced the entire
current population with the offspring population. GA-GG and GA-ES differ from SGA
in the environmental selection step only. With GA-GG, the new population was formed
by selecting the fittest μ solutions from the combined pool of the offspring population
and the two fittest solutions of the current population. With GA-ES, a greater degree of
elitism was employed and the fittest μ solutions from the combined pool of the current
population and the offspring population were selected. PHC maintained a population of
stochastic hill-climbers, which, at each generation g, independently underwent muta-
tion and replaced their parent if it was at least as fit.

Accounting of Uncertainty: To account for titre variabilities, m Monte Carlo trials
(based on the probability distribution Tr(2.6,3.0,3.4)) were performed for each candi-
date solution. The fitness of a solution was then the average of the COG/g values across
the m trials, and this average was updated if a solution happened to be evaluated multi-
ple times during an optimization procedure.

Handling of Infeasible Solutions: Five constraint-handling strategies were analyzed
to cope with infeasible solutions (violating Equation(3)). Four of them (RS1, RS2, RS3
and RS4) repaired infeasible solutions, i.e. modified the genotype of a solution, while
strategy RS5 avoided repairing.

The four repairing strategies iteratively increased the values of the decision variables
(associated with a particular chromatography step i), one variable at a time, until Equation
(3) was satisfied or until the maximum value of a variable was reached, in which case the
value of another variable was increased. The sequence in which the variables were mod-
ified affected the search. To investigate this effect, different sequences, represented by
the strategies RS1 to RS4, were analyzed. The strategy RS1 applied repairing according
to the decision variable sequence di → nCYC,i → hi → nCOL,i (where i is the chro-
matography step violating Equation (3)); this sequence represents typical rules applied
in equipment sizing scale-up models. The strategy RS2 employed the inverse sequence of
RS1. The strategies RS3 and RS4 switch between different repairing sequences during
an optimization procedure. While RS3 chooses at random between the two sequences
employed by RS1 and RS2, the strategy RS4 chooses at random among all possible re-
pairing sequences (note, there are 4! sequences in total) whenever it needs to be repaired.
The approach employed by RS4 is plausible e.g. if no prior knowledge about promising
repairing sequences would be available. The strategy RS5 does not apply repairing but
penalizes infeasible solutions by degrading their fitness by a large penalty value c.

The experimental study investigated different settings of the parameters involved in
the search algorithms. The default settings used are given in Table 1. Any results shown
are average results across 20 independent algorithm runs. A different seed was used for
the random number generator for each EA run but the same seeds for all strategies. This
allows for the application of a repeated-measures statistical test, the Friedman test, to
investigate performance differences between algorithmic setups.
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Table 1. Default parameter settings of search algorithms

Parameter Setting

Parent population size μ 80
Offspring population size λ 80

Per-variable mutation probability 1/l
Crossover probability 0.6

Constraint-handling strategy RS1
Number of generations G 25

Penalty value c 5000
Monte Carlo trials m 25

4 Experimental Results

Before analyzing the behavior of evolutionary search algorithms on the chromatogra-
phy equipment sizing problem, an indication of the properties of the fitness landscapes
spanned by three case study scenarios is given. For this, the adaptive walks method al-
ready used in [7] was adopted. This involved performing 1000 adaptive walks (using a
fixed titre of 3g/L) on the landscape of each scenario, and recording the length and final
fitness of each walk. Figure 3 shows the distribution of both measurements in the form of
boxplots. From Figure 3(a)it can be observed that increasing the USP:DSP ratio decreases
the average length of an adaptive walk. That is, the landscape becomes more rugged, or,
equivalently, the number of local optima increases. This pattern is due to tighter DSP win-
dows, which cause more solutions to violate the demand constraint and thus makes the
problem harder to solve. This also causes an increase in the COG/g values as indicated
in Figure 3(b). The next section presents an analysis of how the search algorithms fared,
for both the deterministic (using a fixed titre of 3g/L) and stochastic scenario.

Deterministic Product Titre: Figure 4(a) analyzes the performance of the search
algorithms as a function of the population size μ. The aim of this experiment was
to understand whether a large population should be evolved for few generations, or
a small population for many generations. This understanding is important when op-
timizing subject to limited resources, such as limited computational power and time
constraints. The figure illustrates that: (i) a population size of around 40 ≤ μ ≤ 80
yielded the best performance for the GA-based algorithms, (ii) GA-ES found the most
cost-effective strategies, and (iii) random search outperforms PHC. Small population
sizes, or search algorithms employing no elitism, such as SGA, did not perform well
due to the high probability of getting trapped in one of the many local optima of the
fitness landscape. Large population sizes converged slowly due to the low number of
generations available for optimization. PHC was inferior to random search because the
hill-climbers could get trapped in local optima, in which case further improvements
were unlikely, while random search kept on generating (at random) new and poten-
tially fitter solutions. (The performance of random search is constant for varying μ as it
depends only on the number of function evaluations performed.)
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Fig. 3. Boxplots showing the distribution of the (a) length and (b) final fitness (COG/g) of 1000
adaptive walks for different USP:DSP ratios. The box represents the 25th and 75th percentile with
the median indicated by the dark horizontal lines. The whiskers represent the observations with
the lowest and highest value still within 1.5 · IQR of the 25th and 75th percentile, respectively;
solutions outside this range are indicated as dots.

Figure 4(b) investigates the performance impact of the constraint-handling strategies
RS1 to RS5 when augmented on GA-ES (a similar performance impact was present
for the other search algorithms). It demonstrated that the constraint-handling strategy
employed had an effect on the convergence speed and the final solution quality. It also
indicated that a repairing strategy (RS1, RS2, RS3 and RS4) should be preferred over
a non-repairing one (RS5). The superior performance of RS1 is due to the fact that the
variable di is modified (increased) first to repair a solution. Unlike to the other vari-
ables, an increase in di is often sufficient to just satisfy the resin requirement constraint
without increasing the processing time. From the performance obtained with RS2, RS3
and RS4 it can be concluded that if di cannot be changed, then either the variable nCYC,i

or hi should be modified to meet the resin requirement constraint.

Stochastic Product Titre: The performance of the algorithms was then investigated
in the presence of uncertain product titres. Figure 5 indicates that uncertainty impacts
negatively the convergence speed and under certain circumstances also the final solu-
tion quality. This impact tends to be less severe as the degree of elitism employed by
an algorithm increases (i.e. the performance of GA-ES is less affected than the one of
SGA). Elitism can help circumventing this issue as it causes a population to converge
(quickly) to a (local) optimal region and then exploit this region. However, on the other
hand, too much elitism (Figure 5(a)) may disturb and prevent the discovery of inno-
vative solutions; here, optimization in a stochastic environment using relatively small
values of m can yield better performance than optimization in a deterministic environ-
ment due to the greater randomness in the search. When the optimizer does not employ
elitism (Figure 5(b)), however, any additional randomness in the search may be a bur-
den (as it can cause a population to oscillate between different search space regions,
preventing or slowing down convergence towards promising regions).

Figure 6 shows the sizing strategies for the most expensive chromatography step
(i = 1) found by GA-ES for the USP:DSP ratios 1:1 (Figure 6(a)) and 4:1 (Figure 6(b))
at the end of the search across 20 independent algorithmic runs. For both scenarios,
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Fig. 4. (a) Average best COG/g (and its standard error) obtained by different search algorithms
as a function of the population size µ; the total number of fitness evaluations was fixed to 2000,
i.e. the number of generations is G = �2000/µ�. (b) Average best COG/g, as a function of the
generation counter g, obtained by GA-ES using different repairing strategies. Both experiments
were conducted on a chromatography equipment sizing problem featuring a ratio of USP:DSP
trains of 4:1. For each setting shown on the abscissa, a Friedman test (significance level of 5%)
has been carried out: In (a), GA-ES performs best for µ > 40, and in (b), RS1 performs best in
the range 1 < g < 15.
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Fig. 5. Average best COG/g (and its standard error) obtained by (a) GA-ES and (b) SGA in a
deterministic and stochastic environment (using different values for the number of Monte Carlo
trials m) as a function of the generation counter g. For each setting shown on the abscissa, a
Friedman test (significance level of 5%) has been carried out: In (a), GA-ES with m = 10
performs best for g > 15, and in (b), SGA, deterministic, performs best in the range 1 < g < 6.

the solutions shown have COG/g values that do not differ by more than 3% of each
other. Comparing the most cost-effective sizing strategy found by GA-ES (filled bub-
ble) with the strategy used in industry (filled diamond), GA-ES is able to reduce the
COG/g for 1USP:1DSP and 4USP:1DSP by up to 5% (mainly through sizing strate-
gies featuring smaller h1 and/or d1 in combination with more cycles nCYC,1) and 20%
(through sizing strategies exhibiting fewer cycles nCYC,1 and larger d1), respectively.
Another advantage of EAs is that the result of an optimization procedure is a set of
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Fig. 6. Column sizing strategies for the most expensive chromatography step (i = 1) found by
GA-ES at the end of the search across 20 independent algorithm runs (within an uncertain opti-
mization environment) (bubbles) for the scenarios (a) 1USP:1DSP and (b) 4USP:1DSP. The size
of a bubble is proportional to the variable d1; all solutions feature the setup nCOL,1 = 1. The fit-
ness values of all solutions found by the EA for a particular scenario are within 3% of each other.
For each scenario, the filled bubble represents the optimal setup found by the EA. The setup used
by industry is indicated with a filled diamond and was not part of the solution set found by the
EA.

cost-efficient sizing strategies (rather than a single strategy), providing flexibility and
freedom to account for facility space restrictions and user preferences when it comes
to selecting a final sizing strategy. Note, the EA finds more similar solutions for the
scenario 4USP:1DSP than for 1USP:1DSP because the problem is harder to solve, as
already indicated in the landscape analysis conducted previously.

5 Conclusion and Future Work

This paper has considered a real-world problem concerned with the discovery of cost-
effective equipment sizing strategies for purification processes (with focus on chro-
matography steps) of biopharmaceuticals. This application can be formulated as a
combinatorial closed-loop optimization problem subject to (i) expensive fitness eval-
uations, (ii) multiple dependent decision variables, (iii) constraints, and (iv) uncertain
parameters.

The study revealed that EAs can identify a diverse set of equipment sizing strategies
that are more cost-efficient than the strategies used in industry. In particular, the analysis
demonstrated that an EA performs best when elitism is used in combination with a small
number of Monte Carlo trials (to cope with uncertain parameters), infeasible solutions
are repaired using a non-trivial strategy, and (when resources are limited) a medium-
sized population (a size between 30 ≤ μ ≤ 80) is evolved for a relatively large number
of generations.
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Future research will look at extending the equipment sizing problem considered here
with decision variables related to the sequence of a purification process employed. This
will make the optimization tool developed more versatile, and also help gain more in-
sights into the working of EAs.
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