
Block Diagonal

Natural Evolution Strategies

Giuseppe Cuccu and Faustino Gomez

IDSIA
USI-SUPSI

6928 Manno-Lugano, Switzerland
{giuse,tino}@idsia.ch

http://www.idsia.ch/~giuse,~tino

Abstract. The Natural Evolution Strategies (NES) family of search al-
gorithms have been shown to be efficient black-box optimizers, but the
most powerful version xNES does not scale to problems with more than
a few hundred dimensions. And the scalable variant, SNES, potentially
ignores important correlations between parameters. This paper intro-
duces Block Diagonal NES (BD-NES), a variant of NES which uses a
block diagonal covariance matrix. The resulting update equations are
computationally effective on problems with much higher dimensional-
ity than their full-covariance counterparts, while retaining faster conver-
gence speed than methods that ignore covariance information altogether.
The algorithm has been tested on the Octopus-arm benchmark, and the
experiments section presents performance statistics showing that BD-
NES achieves better performance than SNES on networks that are too
large to be optimized by xNES.

1 Introduction

Natural Evolution Strategies (NES; [11]) have been shown to efficiently optimize
neural network controllers for reinforcement learning tasks [2; 7; 10]. This family
of algorithms searches the space of network weights by adapting a parameterized
distribution (usually Gaussian) in order to optimize expected fitness by means
of the natural gradient. The two main variants of NES, xNES [3] and SNES [7],
make a trade-off between generality and efficiency: xNES (like CMA-ES [5]) uses
a full covariance matrix, capturing all possible correlations between the weights
but at a cost of O(w3), where w is the number of weights. Unfortunately, xNES
does not scale to the space of even modest size neural networks, with hundreds
of weights. At the other extreme, SNES ignores weight correlations altogether
in exchange for O(w) complexity, by using a diagonal covariance matrix. Even
though it cannot solve non-separable problems, it seems to work well for neu-
roevolution, arguably because of the high number of possible solutions for any
given network structure.

SNES updates its search distribution two orders of magnitude faster than
xNES, but, by not taking into account epistatic linkages between network weights

C.A. Coello Coello et al. (Eds.): PPSN 2012, Part II, LNCS 7492, pp. 488–497, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.idsia.ch/~giuse,~tino

Block Diagonal Natural Evolution Strategies 489

(e.g. arising from correlated inputs), does not make full use of strong regularity
inherent in many control problems. For example, sensors positioned near each
other on a robot body will likely generate correlated readings, and therefore the
corresponding weights processing sensory information will probably be correlated
as well.

In this paper, we introduce a new NES variant that is intermediate between
SNES and xNES in that it allows for correlations between subsets of search
dimensions (e.g. weights), by using a search distribution with a block-diagonal
covariance matrix. By allowing correlations only between some weights, the com-
putational complexity can be reduced significantly vis-a-vis xNES, but this re-
quires first identifying which weights should be grouped together. In a general,
unconstrained optimization setting such properties of the objective (fitness) func-
tion are not known a priori. However, in neuroevolution, the phenotypic struc-
ture provides a natural way to decompose the search space by grouping together
those weights which belong to the same neuron (i.e. network sub-function).

This Block Diagonal NES (BD-NES) uses one full covariance matrix for each
neuron, allowing correlations between all weights of a given neuron, but ignoring
correlation between weights of different neurons. This approach is similar to
cooperative coevolution [4; 6], where each neuron is represented by a separate
sub-genotype, and the complete individual is constructed by concatenating the
sub-genotypes.

The next section derives the new algorithm from the NES family. Section 3,
presents comparative results against SNES. Section 4, discusses the results and
provides some ideas on how to further improve this approach.

2 Block Diagonal Natural Evolution Strategies

BD-NES can be viewed as multiple xNES [3] algorithms running in parallel, one
for each block in the covariance matrix of the search distribution. Of course, the
blocks can be of different size if the relationship between problem dimensions
is known in advance (i.e. whether any two dimension are separable). Here, in
the context of neuroevolution and in the absence of this kind of knowledge,
the division of the network weights into blocks is determined by the number of
neurons in the network architecture, Ψ .

Figure 1 describes the block-diagonal covariance matrix used by the search
distribution. Each neuron, i has its own block, Σi, that captures all of the co-
variances between its incoming connections. Algorithm 1 presents the code for
BD-NES. First, the mean vectors, µi ∈ R

c, and c × c covariance matrices, Σi,
i = 1..n, are initialized, where n is the number of neurons, and c is the number of
incoming connections per neuron. Each generation (the while loop), λ networks
are constructed by sampling from each Gaussian sub-distribution to obtain ψ
neuron chromosomes, zi, i = 1..ψ, (line 5) which are then concatenated into a
complete genome, z, (line 7). The genomes are then transformed into networks,
and evaluated. The fitness achieved by a networks is passed to its constituent

490 G. Cuccu and F. Gomez

∑
1

∑
2

∑
n

Fig. 1. Block Diagonal covariance matrix: The search distribution has a separate
block in its covariance matrix for the each neuron (i.e. the covariance between neurons
is zero) in the network architecture being evolved. The block size for a given neuron
is the number of connections entering that neuron. To evaluate the gradient from the
distribution, samples are drawn from the blocks, and then concatenated to construct
the full genotype.

neuron chromosomes (line 10) and used to update the corresponding mean, and
dedicated covariance block using xNES (line 14), described next.

Let p(z | θ) denote the density of the Gaussian with parameters θ = (µ,Σ).
Then, the expected fitness under the search distribution is

J(θ) = Eθ[f(z)] =

∫

f(z) p(z | θ) dz .

The gradient w.r.t. the parameters can be rewritten as

∇θJ(θ) = ∇θ

∫

f(z) p(z | θ) dz
= Eθ [f(z) ∇θ log (p(z | θ))] ,

(see [11] for the full derivation) from which we obtain the Monte Carlo estimate

Block Diagonal Natural Evolution Strategies 491

∇θJ(θ) ≈ 1

λ

λ∑

k=1

f(zk) ∇θ log (p(zk | θ)) (1)

of the search gradient. The key step then consists of replacing this gradient,
pointing into the direction of (locally) steepest descent w.r.t. the given parame-
terization, by the natural gradient

∇̃θJ = F−1∇θJ(θ) ,

where F = E

[
∇θ log (p (z|θ))∇θ log (p (z|θ))�

]
is the Fisher information matrix;

leading to a straightforward scheme of natural gradient descent for iteratively
updating the search distribution

θ ← θ − η∇̃θJ = θ − ηF−1∇θJ(θ) ,

with learning rate parameter η. The sequence of (1) sampling an offspring pop-
ulation, (2) computing the corresponding Monte Carlo estimate of the fitness
gradient, (3) transforming it into the natural gradient, and (4) updating the
search distribution, constitutes one generation of NES.

In order to render the algorithm invariant under monotonic (rank preserving)
transformations of the fitness values, fitness shaping [11] is used to normalize
the fitness into rank-based utilities uk ∈ R, k ∈ {1, . . . , λ}. The individuals are
ordered by fitness, with z1:λ and zλ:λ denoting the most and least fit offspring,
respectively. The distribution parameters are then updated using the “fitness-
shaped” gradient:

∇θJ =
λ∑

k=1

uk · ∇(θ) log (p(zk:λ | θ)) . (2)

Typically, the utility values are either non-negative numbers that sum to one,
or a shifted variant with zero mean.

Using the same exponential local coordinates as in [3], the update equations
for the sub-distributions are:

µi
new ← µi + ημ ·

λ∑

k=1

uk · zik

Ai
new ← Ai · exp

(
ηA
2
·

λ∑

k=1

uk ·
(
zikz

i�
k − I

)
)

where Ai is the upper triangular matrix resulting from the Cholesky decompo-
sition of covariance block Σi, Σi = Ai�Ai.

This approach assumes weights of different neurons not to be correlated, but
given the high number of feasible solutions in continuous control problems such
constraint does not usually limit the search.

492 G. Cuccu and F. Gomez

Algorithm 1. BD-NES(Ψ)

1 Initialize (μ1, Σ1) . . . (μn, Σn)
2 while not solved do
3 for k ← 1 to λ do
4 for i ← 1 to ψ do
5 zik ∼ N (μi, Σi)
6 end

7 zk ← Concatenate(z1k . . . z
ψ
k)

8 fitk ← Evaluate(zk)
9 for j ← 1 to ψ do

10 fitik ← fitk
11 end

12 end
13 for i ← 1 to ψ do
14 (μi, Σi) ← UpdateXNES(μi, Σi, (z

i
1 . . . z

i
λ))

15 end

16 end

Computational Complexity

SNES and xNES can be thought of as special cases of BD-NES. Let P be a
partition of the weights consisting of b blocks of the same size s, and w be the
total number of weights. SNES considers all weights to be uncorrelated, so s = 1,
and b = w, whereas in xNES all of the weights are considered to be correlated:
b = 1 and s = w, producing the full covariance matrix.

The dominant operation in the NES update step in terms of computational
complexity is the covariance matrix inversion. The computational cost under this
framework is proportional to the cost of inverting each matrix block, times the
number of blocks being inverted, O(bs3). For BD-NES, with neurons defining
the covariance blocks, b = ψ and s = c, where ψ is the number of neurons in the
network, and c is the number of connections per neuron (i.e. the node degree).

For single layer feed-forward networks, c depends only on the number of in-
put/output units specified by the problem domain, and not on the number of
neurons, so the complexity becomes O(ψ); the same as SNES, with an hidden
constant depending on the number of input units in the network.

For fully-connected recurrent neural networks, c grows with the number of
neurons c ∼ ψ (each additional neuron adds a connection to every other neuron),
thus the complexity becomes O(ψ × ψ3) = O(ψ4), which is between SNES and
xNES, as in such networks w ∼ ψ2, making the complexity of SNES O(ψ2) and
that of xNES O(ψ6). The complexity improves further if we assume that for large
networks the connectivity is sparse, with neurons having a fixed average number
of recurrent connections, k, as is the case in real-world complex networks, which
exhibit the small world property [1]. In this case, BD-NES reduces to O(ψ), since
c = k is constant.

Block Diagonal Natural Evolution Strategies 493

Fig. 2. Octopus-Arm Acrobot Task. A flexible arm consisting of n compartments,
each with 3 controllable muscles, must be lifted from its initial downward-pointing
position (left), against gravity, to touch a goal location (black dot) with its tip. The
behavior shown was evolved through BD-NES.

3 Experiments

BD-NES was tested on a version of the octopus arm control benchmark. This
environment was chosen because it requires networks with thousands of weights
and therefore cannot be solved using modern evolutionary strategies like xNES
and CMA-ES that use a full covariance matrix for the search distribution.

3.1 Octopus-Arm Acrobot Task

The Octopus Arm [12; 13] (see figure 2) consists of p compartments floating in
a 2D water environment. Each compartment has a constant volume and con-
tains three controllable muscles (dorsal, transverse and ventral). The state of a
compartment is described by the x, y-coordinates of two of its corners plus their
corresponding x and y velocities. Together with the arm base rotation, the arm
has 8p+ 2 state variables and 3p+ 2 control variables.

In the standard setup, the goal of the task is to reach a target position with
the tip of the arm, starting from three different initial positions, by contracting
the appropriate muscles at each 1sec step of simulated time. It turns out that it
is very easy to get close to the target from two of the initial positions. Therefore,
we devised a version, shown in figure 2, where the arm initially hangs down
(in stable equilibrium due to gravity), and must be lifted to touch the target
above, on the opposite side of the environment, with its tip. The task is termed
the octopus arm acrobot due to its similarity with the classic acrobot swing-up
task [9].

Also, instead of the standard 8 “meta”–actions that simplify control by con-
tracting groups of muscles simultaneously (e.g. all dorsal, all ventral, etc.), the
controllers must instead contract each individual muscle independently.

3.2 Network Architecture

Networks were evolved to control a n=10 compartment arm using fully-connected
recurrent neural networks having 32 neurons, one for each muscle (see figure 3).

494 G. Cuccu and F. Gomez

32 outputs32 nodes
(11x3 grid, 1 not used)

8 sta
te va

ria
bles p

er c
ompartm

ent

base rotation + 10 compartments

32x32 recurrent connections

32 bias weights
82 inputs

output

nodes

inputs

Fig. 3. Network architecture. The octopus arm is controlled by a single layer re-
current neural network with 82 inputs and 32 neurons (outputs), one for each muscle
in the arm.

The networks have a 32 × 82 input weight matrix, a 32 × 32 recurrent weight
matrix and bias vector of length 32, for a total of 3, 680 weights.

The size of a full covariance matrix to search in 3, 680 dimensions is 3, 6802 =
13, 542, 400 entries. Yet each of the 32 neurons has only 82+32+1 = 115 incoming
connections, so the covariance blocks in BD-NES that have to be inverted have
only 1152 = 13, 225 entries, three orders of magnitude fewer than for the full
covariance matrix.

3.3 Setup

BD-NES was compared with SNES. To provide a baseline, random weight guess-
ing (RWG; [8]) was also used, where the network weights are chosen at random
(i.d.d.) from a uniform distribution. This approach gives us an idea of how dif-
ficult the task is to solve by simply guessing a good set of weights.

The population size λ is proportional to the number of weights, w, being

evolved; set here to λ = 50. The learning rates are ημ = log(w)+3
5
√
w

and ησ =
ηµ

2 .

Each run was limited to 10, 000 fitness evaluations. The fitness was computed
as: [

1− t

T

d

D
, 0

]

, (3)

where t is the number of time steps before the arm touches the goal, T (set
to 100) is the maximum number of time steps in a trial, d is the final distance
of the arm tip to the goal, and D is the initial distance of the arm tip to the
goal. This fitness measure is different to the one used in [12], because minimizing
the integrated distance of the arm tip to the goal causes greedy behaviors. In
the viscous fluid environment of the octopus arm, a greedy strategy using the
shortest length trajectory does not lead to the fastest movement: the arm needs
to be contracted first, then rotated, and finally stretched upwards towards the

Block Diagonal Natural Evolution Strategies 495

0 50 100 150 200
0.5

0.6

0.7

0.8

0.9

1.0

Evaluations x 50

Fi
tn

es
s

BD-NES
SNES

RWG

Fig. 4. Performance on octopus-arm acrobot. BD-NES (top, blue) and SNES
(bottom, red) performance on the octopus arm benchmark. Curves are averages over
20 runs, with error bars showing the corresponding variance.

goal. The fitness function favors behaviors that reach the goal within a small
number of time steps.

3.4 Results

Figure 4 shows the fitness of the best network found so far for the three methods,
averaged over 20 runs (bars indicate variance). BD-NES reaches a fitness equal
to the final fitness of SNES at around 7000 evaluations (30% fewer evaluations),
and does so in 15% less cpu-time1 (55.4min for BD-NES, 65.4min for SNES).

Figure 5 shows the neuron chromosomes at the end of a typical run of (a)
SNES and (b) BD-NES, projected into 3D via principal component analysis.
Each point denotes a neuron sampled from one of final sub-distributions. In all
SNES runs the neuron distributions overlap (note scale), suggesting that the
neurons are functionally more similar than the neurons comprising a network
BD-NES, where neuron clusters are more distinct. While similarity between
neurons is to be expected given the similar function that muscles in adjacent
compartments must perform, different parts of the arm must perform slightly
different tasks (e.g. the muscles controlling the rotation at the base), so that the
specialization occurring in BD-NES could explain the better performance.

1 Reference machine: intel i7 640M at 3.33GHz and 4GB of ram DDR3 at
1066MHz. Mathematica implementation of search algorithm using the Java imple-
mentation of the octopus arm available at: http://www.cs.mcgill.ca/~idprecup/
workshops/ICML06/octopus.html.

http://www.cs.mcgill.ca/~idprecup/workshops/ICML06/octopus.html
http://www.cs.mcgill.ca/~idprecup/workshops/ICML06/octopus.html

496 G. Cuccu and F. Gomez

� 5

0

5

� 5

0

5

� 10

� 5

0

5

(a)

0

100

200

� 100

0

100

0

100

(b)

Fig. 5. Neuron specialization. The plots show the 115-dimensional neuron chro-
mosomes in the final population of a typical run, projected into 3D by PCA, for (a)
SNES and (b) BD-NES. For SNES, The neuron clusters overlap and are concentrated
in a small region of the search space. For BD-NES, neuron distributions form distinct
clusters, that are more spread out.

4 Discussion

BD-NES is a novel algorithm of the NES family allowing for partial correlation
information to be retained while limiting the computational overhead. The ex-
periments show that block diagonal covariance matrix adaptation can scale up
to over 3000 dimensions, and search more efficiently than its diagonal-covariance
counterpart, SNES.

For problems where the number of inputs is very large (e.g. video input),
decomposing the network at the level of neurons will not work. In this case,
neurons can use receptive fields that receive only part of the full input, as is
done in convolutional networks. Or, blocks can be built based on inputs rather
than neurons, each block representing the covariance matrix for the weights of
all connections from a particular input to all neurons. Future work will start by
applying the method to a vision version of the task used here, where the network
does not receive the state of the arm, but instead sees the arm configuration from
a 3rd-person perspective, and must solve the task using high-dimensional images
as input.

Acknowledgments. This research was supported by Swiss National Science
Foundation grant #137736: “Advanced Cooperative NeuroEvolution for Au-
tonomous Control”. Thanks to Jan Koutńık for inspiration and support.

Block Diagonal Natural Evolution Strategies 497

References

[1] Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Reviews
of Modern Physics 74 (January 2002)

[2] Cuccu, G., Luciw, M., Schmidhuber, J., Gomez, F.: Intrinsically motivated evo-
lutionary search for vision-based reinforcement learning. In: Proceedings of the
2011 IEEE Conference on Development and Learning and Epigenetic Robotics
IEEE-ICDL-EPIROB. IEEE (2011)

[3] Glasmachers, T., Schaul, T., Sun, Y., Wierstra, D., Schmidhuber, J.: Exponential
natural evolution strategies. In: Genetic and Evolutionary Computation Confer-
ence, GECCO, Portland, OR (2010)

[4] Gomez, F., Miikkulainen, R.: Incremental evolution of complex general behavior.
Adaptive Behavior 5(3-4), 317 (1997)

[5] Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation 9(2), 159–195 (2001)

[6] Potter, M.A., De Jong, K.A.: Evolving neural networks with collaborative species.
In: Proceedings of the 1995 Summer Computer Simulation Conference (1995)

[7] Schaul, T., Glasmachers, T., Schmidhuber, J.: High dimensions and heavy tails
for natural evolution strategies. In: Genetic and Evolutionary Computation Con-
ference, GECCO (2011)

[8] Schmidhuber, J., Hochreiter, S., Bengio, Y.: Evaluating benchmark problems by
random guessing. In: Kremer, S.C., Kolen, J.F. (eds.) A Field Guide to Dynamical
Recurrent Neural Networks. IEEE Press (2001)

[9] Spong, M.W.: Swing up control of the acrobot. In: Proceedings of the 1994 IEEE
Conference on Robotics and Automation, San Diego, CA, vol. 46, pp. 2356–2361
(1994)

[10] Sun, Y., Wierstra, D., Schaul, T., Schmidhuber, J.: Stochastic search using the
natural gradient. In: International Conference on Machine Learning, ICML (2009)

[11] Wierstra, D., Schaul, T., Peters, J., Schmidhuber, J.: Natural evolution strate-
gies. In: Proceedings of the Congress on Evolutionary Computation, CEC 2008,
Hongkong. IEEE Press (2008)

[12] Woolley, B.G., Stanley, K.O.: Evolving a Single Scalable Controller for an Octopus
Arm with a Variable Number of Segments. In: Schaefer, R., Cotta, C., Ko�lodziej,
J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 270–279. Springer,
Heidelberg (2010)

[13] Yekutieli, Y., Sagiv-Zohar, R., Aharonov, R., Engel, Y., Hochner, B., Flash, T.:
A dynamic model of the octopus arm. I. Biomechanics of the octopus reaching
movement. Journal of Neurophysiology 94(2), 1443–1458 (2005)

	Block Diagonal
Natural Evolution Strategies
	Introduction
	Block Diagonal Natural Evolution Strategies
	Experiments
	Octopus-Arm Acrobot Task
	Network Architecture
	Setup
	Results

	Discussion
	References

