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ABSTRACT

The development of control strategies for the Smart Grid, the future electricity grid, relies heavily on
modeling and simulation for being able to evaluate and optimize these strategies in a cost efficient, secure
and timely way. To generate sound simulation results, validated and established simulation models have to
be used. If these models are not implemented using the same technology, the composition of simulation
models is an interesting approach. We developed a composition framework called mosaik, which allows to
specify, compose and simulate Smart Grid scenarios based on the reuse of such heterogeneous simulation
models. In its current version, it is suitable for the analysis of Smart Grid issues that can be observed using
discrete-time or discrete-event based models. In this paper we focus on the presentation of a scalable (in
terms of simulated objects) scenario definition concept based on a formal simulator description presented
in earlier publications.

1 INTRODUCTION

To create a sustainable power grid, Germany and many other countries have started efforts to increase the
share of electricity generated by renewable sources, such as wind turbines and photovoltaics (PV), i.e.
electrical power from sun light. To keep the power system stable and reliable, these fluctuating resources
need to be accompanied by a number of measures to keep electricity supply and demand at equilibrium.
These measures include the usage of storages as well as the exploitation of consumer flexibility (Demand-
Side-Management, DSM). As a consequence, the future power grid needs to be able to collect information
about the ever growing number of distributed energy resources, storages and controllable consumers and
has to manage these resources in a smart way, hence the name Smart Grid. Control strategies for this
complex and new task still need to be developed and in particular evaluated and tested, for example with
respect to grid stability or other objectives. To ensure that this testing can be done as economically as
possible and especially without jeopardizing the reliability of today’s grid, these control strategies need to
be tested in simulated Smart Grid scenarios first.
In order to yield sound and scientifically reliable results, simulations have to rely on valid and (ideally)
established models. As a consequence, a lot of effort is put into the modeling and validation of both single
system components such as PV or wind energy converters and composite sub-systems, e.g. entire low
or medium voltage power grids. Therefore, it is desirable to reuse existing models in new projects and
simulation studies as much as possible. If the existing models are implemented on different technological
platforms, for example because each model uses a platform that is ideal for the specific problem (e.g. load
flow estimation) or because models are provided by different project partners, simulation composition is
an interesting approach. Composition is the “capability to select and assemble simulation components in
various combinations into simulation systems” (Petty and Weisel 2003). The challenges for composing
Smart Grid scenarios lie in the large number of objects (in the following called entities) that a scenario can
be comprised of. Existing composition approaches (see Section 2) usually require a manual specification
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of the connections between different models or simulators. This is not feasible for large-scale Smart Grid
scenarios. Therefore, we developed a domain specific framework called mosaik (Schütte, Scherfke, and
Tröschel 2011; Schütte, Scherfke, and Sonnenschein 2012) which allows the automatic composition of
(time-stepped) large-scale Smart Grid simulation models as a test bed for control strategies based on the
reuse of existing simulators. This also includes the use of available commercial simulation packages.
Depending on the connected power grid simulator, mosaik can be used for the simulation across different
voltage levels. By now, mosaik is designed for the analysis of issues that can be observed using discrete-time
or discrete-event based models which have a resolution of 1 second or more. The concept is based on six
different layers shown in Figure 1, inspired by the M&S architecture (Zeigler, Kim, and Praehofer 2000,
p. 496).
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Figure 1: Layers of the mosaik concept.

The technical layer provides a mechanism to find, initialize and manage the available simulators at
runtime. The syntactical layer, as presented in Schütte, Scherfke, and Sonnenschein 2012, offers a generic
simulator API to integrate simulators into mosaik. On the semantic layer, parameter, models and entities
of each simulator are formally described such that the meaning of the data exchanged via the generic API
is unambiguous. These formal simulator descriptions can then be used on the scenario level to formally
describe Smart Grid scenarios. Finally, the composition layer performs the actual simulator composition
based on the formal scenario and simulator descriptions and the control layer allows to interact with the
simulated entities at runtime. The applicability of mosaik for the analysis of issues on sub-second level is
subject to future work. This paper focuses on scenario and composition layer. The semantic and syntactic
layers have been presented in Schütte, Scherfke, and Sonnenschein 2012 and the technical level is described
in Scherfke and Schütte 2012. The rest of the paper is organized as follows. In Section 2 we discuss
related work with particular focus on the Smart Grid domain. After domain specific requirements for the
scenario definition have been presented in Section 3, Section 4 introduces our approach for a formal, domain
specific scenario description. Subsequent, Section 5 shows how we use the formal scenario definition to
automatically compose the Smart Grid simulation. Finally, in Section 6 we conclude by discussing the
current results and future enhancements.

2 RELATED WORK

Different tools and approaches for simulating Smart Grid scenarios exist. Examples are Smart Cities
(Karnouskos and Holanda 2009), a purely agent based simulator, GridLAB-D (Chassin and Widergren
2009), a powerful simulation tool for power systems developed by the Pacific Northwest National Laboratory
(PNNL), or HOMER (LLC 2012), an easy to use simulator for designing and analyzing hybrid power
systems, which contain a mix of conventional generators and renewable power sources. Although being partly
extensible, these tools were designed to be used as single, monolithic simulator, i.e. they are not designed
for composing other simulators. In other domains different composition approaches exist. In the military
domain these are usually built around the High-Level-Architecture (HLA), such as Hemingway, Neema,
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Nine, Sztipanovits, and Karsai 2011; Moradi 2008; Benali and Ben Saoud 2011. In the environmental
domain OpenMI (Gijsbers and Gregersen 2005) is a widely used standard for simulation model exchange and
composition. However, all these approaches are not ideal for Smart Grid simulation where a large number
of entities has to be placed in a power grid in a scenario specific way. The reason for this is that usually
the existing composition approaches are made for composing a relatively small number of model/simulator
instances. In OpenMI, for example, every single model relation has to be specified manually. Also, in
HLA based scenario management the interplay between the entities of the simulators usually requires to
include scenario specific logic in the participating simulators (federates) (Löfstrand, Ericsson, Johansson,
Strand, and Lepp 2004). Mosaik follows a different approach, aiming to provide a compact and scalable
scenario description on entity level and requiring no scenario logic within the simulators.

3 SCENARIO REQUIREMENTS

As “new approaches [for simulation interoperability] are unlikely to be accepted by the M&S industry if
they are connected with tremendous migration costs due to reprogramming efforts” (Tolk and Muguira
2004) mosaik aims to be as lightweight as possible by focusing only on domain specific requirements for
composing Smart Grid scenarios. Figure 2 shows how such a scenario may look like.
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Figure 2: Example of a simple Smart Grid scenario.

The electricity grid, as the critical part of the Smart Grid, plays a central role in each scenario. Other
entities are arranged within this grid in a (mostly) static topological fashion. In this example, renewable
sources as well as two low voltage (LV) grids (2) are connected to a medium voltage (MV) grid (1). The
low voltage grids are comprised of different types of loads, storages and energy sources. For power flow
analysis, the grid is usually simplified into a Bus-Branch model, i.e. other elements such as breakers or
protection equipment are not modeled explicitly. Different requirements can be derived from this scenario.

Besides the power grid, entities of consumers, producers and renewable energy sources are the building
blocks of the scenario, which need to be connected to different nodes of the grid topology. EVs are the
only entities that move from one point of the grid to another. This means that the connection point of these
entities depends on their state (e.g. their location). It also has to be considered that some entities may
depend on other entities. For example, in a residential scenario, PV systems may only be installed on top
of a house and not stand-alone. Therefore, PV systems may only be connected to those busses of the grid
that have a house connected to it, as well. The major requirement, however, is related to the size of the
scenarios which may well involve several thousand entities. To handle such large scenarios, the mosaik
scenario definition must allow to distribute a large number of entities within a grid topology in a random
fashion so that no manual specification of the connections is required. To obtain realistic scenarios for
this procedure, the scenario definition must allow to define constraints for the distribution as well as the
dependencies between entities. For example, to specify the aforementioned constraint that the PV modules
must only be connected to those busses that have a connection to a house (no stand-alone PV systems) and
that there must not be more than one PV module per bus. Finally, certain patterns occur often in larger
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scenarios (e.g. use LV-grids to build a MV-grid scenario). For such cases it shall be possible to capture
these patterns as scenarios and (re)use them hierarchically, for example to use compositions of low voltage
grids as building blocks on the higher voltage levels, as shown in Figure 2.

4 SCENARIO DEFINITION

In Schütte, Scherfke, and Sonnenschein 2012 we presented a generic Smart Grid simulator API, called
SimAPI, for the syntactic level and a domain specific language (DSL) called MOSL (MOsaik Specification
Language) that allowed to formally capture the semantics and structure of the simulators implementing the
SimAPI on the semantic level. We implemented MOSL with the powerful Xtext framework (Xtext 2012).
Heart of the semantic level is a reference data model that defines dynamic and static data items for the
entities that are part of the simulation models. Figure 3 depicts this structure.
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Figure 3: Reference data model and simulator structure as presented in (Schütte, Scherfke, and Sonnenschein
2012).

For the entities, the dynamic input and output data defined in the reference model are grouped into
ports and two entities can be connected when all incoming and outgoing flows can be mutually satisfied.
To compose a Smart Grid scenario, the scenario level must allow to specify which entities to connect. In
this paper we therefore extend MOSL by several concepts that allows to describe these connections in such
a way that the requirements found in the last section are met. One of these concepts is a composition. It
can be split into three sections. First, parameter sets are defined. A parameter set defines parameters for a
simulator, its models or for other compositions, in case of hierarchical compositions (see 4.4). Second, so
called “entity sets” are created by specifying the number of model instances that are to be created and used
within the scenario. Finally, rules for establishing the connections between the entities of two entity sets
are defined. The following sections describe these three steps in detail. It is important to understand that
these steps are performed during scenario design-time, i.e. before any simulator is actually instantiated
and used. This is possible, because the formal simulator description provides sufficient semantics about
the models and the entities it can provide.

4.1 Parameter Sets

As depicted in Figure 3, the simulator as well as its models may offer one or more configuration parameters.
For being able to use a simulator and initialize its models, values for these parameters have to be provided.
The scenario definition allows to specify these parameter values. As we cannot preclude that the choice of
parameter values for a simulator does not influence the behavior of a model, the model parameter values
are defined subordinate to the simulator parameter values.
Definition 1 A simulator parameter set contains a number of (non redundant) simulator parameter values
and a number of subordinate model parameter sets.
Definition 2 A model parameter set contains a number of (non redundant) model parameters and specific
values for these.
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Definition 3 A composite parameter set contains a number of (non redundant) composition parameter
values.

For both, simulator and model parameter sets, values have to be assigned to all parameters of the
corresponding semantic description (simulator or model), except for those having default values defined.
Listing 1 shows how the definition of a parameter set for an EV simulation model may look like. Due
to space limitations the examples in this paper only show snippets of the scenario definitions. The com-
plete code for all examples as well as the simulator definitions from the semantic level are available at
http://mosaik.offis.de/downloads/mosaik_wintersim2012.zip. The keyword sim starts the simulator param-
eter set followed by a name for the parameter set and the simulator name (from the simulator description).
The model parameter set has a similar structure. The composite parameter set is shown in Section 4.4.
The DSL editor provides consistency checks such that the user can neither specify wrong parameter names
nor values with a wrong data type.

Listing 1: Parameter sets for an EV simulation.
composition example_scenario
ev_battery_capacity:float in Wh //A composition variable of type float
//Simulator parameter set
sim evSim_params:EVSim with stepsize 1 //unit as in simulator description

start_date = 2010-01-01 00:00:00
end_date = 2010-01-31 23:59:59
//Model parameter set
model config ewe_e3:EVModel

init_soc = 0.6 //Overwrite default value
c_bat = ev_battery_capacity //optional: * <offset> + <scale>
chargingPower = 11.0

end
//More model parameter sets, e.g. for other EV types

end
end composition

Listing 1 also shows how parameters for a composition (here: ev_battery_capacity) can be defined
which can be used instead of constant values within the composition. When using such a parameter, an
optional scale and offset can be specified. Using scale and offset to transform a value is an accepted concept
in automotive bus system, as well as in other simulation standards, for example to convert between units
(e.g. from Celsius to Fahrenheit (MODELISAR 2011, p.33)). Section 4.4 shows an example where this
feature is used.

4.2 Entity Sets

Now being able to parametrize the building blocks of our composition, we need to specify how many
instances of a model (or composition) are required for the scenario. However, we are not interested in the
models themselves but rather in the entities the models contain. We therefore introduce the notion of an
entity set.
Definition 4 An entity set is a named container for all entities that result from the instantiation of a number
of models or compositions with the same parameter set.

Listing 2 shows how entity sets are created by referencing a specific model parameter set. In the
example an entity set called evs is created which represents all entities of 4 model instances of the EVModel
with the configuration values of the referenced parameter set. The specific simulator and model do not
need to be specified as this information can be derived from the referenced parameter set. In case of the EV
model the entity set simply contains 4 Vehicle entities. However, the example also shows the definition of an
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entity set called grid representing the entities of a power grid model. This entity set may contain a number
of entities of different types, e.g., Bus, Branch and Transformer entities. It is important to understand that
at this point in time (design-time) there are no entities in the entity sets that are actually simulated. Rather
the possible entity types within the set can be derived from the semantics of the simulator description. At
run-time (see Section 5) we use the term entity set instance to avoid any confusions.

Listing 2: Creation of entity sets.
//<entity set name> = <cardinality> new <parameter set name>
evs = 4 new ewe_e3 //4 instances of the EV model
grid = 1 new grid_parameter_set_name //e.g. 1 a low voltage grid model

4.3 Connection Rules

Connection rules are the heart of the mosaik scenario concept. As mentioned in the introduction, the
mosaik scenario definition shall allow the definition of large-scale scenarios. Besides the possibility of
hierarchically reusing composition descriptions (4.4), this scalability is achieved by connection rules which
can operate on a potentially large number of entities. They allow the user to specify rules that are followed
by the simulation composition engine for establishing n:1 connections between the entities. Each rule
operates on two entity sets. For each entity set a type selector has to be specified such that only a single
type of entities is used from each set. Further, the multiplicity for the first entity set has to be specified.
For example, 1..3 entities of entity set A shall be related to each entity of entity set B.
Definition 5 A connection rule is a 8-tuple < es1,et1,es2,et2,min,max,condstat ,conddyn > with es1,es2 ∈
EntitySets;et1 ∈ types(es1);et2 ∈ types(es2); lower,upper ∈ N; lower ≤ upper) where EntitySets are the
defined entity sets and type is a function that returns the entity types occurring in each set (based on the
semantic simulator description).

For describing complex scenarios, a connection rule allows to specify different conditions
(condstat ,conddyn) that will be introduced in the next sections. Listing 3 shows a basic connection rule
connecting up to 3 EV entities of the evs entity set to Bus entities of the grid entity set defined in the last
section. The DSL editor supports the user by allowing to choose only those entity types on the right hand
side of the rule that have compatible data flows to the left hand entity type. This can be done based on the
information provided by the simulator description and the reference data model.

Listing 3: A basic entity connection rule.
//connect <multiplicity> <set 1>.<type 1> to <set 2>.<type 2>
connect 0..3 evs.Vehicle to grid.Bus //0..3 EVs to 1 Bus

To achieve scalability (the code in Listing 3 would be the same for 1.000 vehicles in a larger grid, for
example) a random selection of entities from the entity sets in the connection rules is performed. However,
it is also possible to select specific entities based on their IDs, to allow the modeling of very specific
scenarios. How the connection rules are interpreted at composition-time will be shown in Section 5.

4.3.1 Topological Conditions

In many cases, whether two entities shall be connected or not depends on other connections that have
already been established. For example, in a scenario where PV modules are connected to certain busses
of the grid (e.g. at EV charging poles) one wants to limit the connection of EVs to only those busses
that have PV modules connected as well. For such cases, the mosaik scenario concept offers a function to
count the number of entities of a specific type that are connected to an entity occurring in an entity set of
the connection rule. Listing 4 shows how such a condition can be described using the DSL. Heart of this
count function is a concept called EntityPath. An entity path allows the user to specify a path in the entity
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topology via entities of specific types and (optionally) from a specific entity set. At composition time, when
evaluating the connection rule, such a path definition results in a set of all entities that are reachable via this
path. In this example we count the entities of type PVModule related to (--) the potential Bus to which the
Vehicle can be connected. The count function syntax uses vertical bars known from set theory. Again, the
DSL editor supports the user by only allowing to specify those relations that have been established before by
other connection rules. While this is a simple example for illustration purposes, the DSL allows to specify
deeper entity paths with multiple relations, e.g. where |typeUsedInRelation--set1.type1--set2.type2--...| >
intValue. Also, multiple count functions can be combined arbitrarily using AND and OR operators.

Listing 4: Connection rule with topological condition.
//Connect PVs to busses first
connect 0..1 pvs.PVModule to grid.Bus
//Now connect EVs to busses having a PV connection
connect 0..3 evs.Vehicle to grid.Bus where |Bus--pvs.PVModule| > 0

4.3.2 Static Data & User Defined Functions

For providing even more flexibility, the conditions of a connection rule can be extended by comparisons of
the entities static data. Figure 4 shows a scenario where such functionality can be used to keep the scenario
specification short. It includes three different models, a power grid model, a PV model (both known from the
former examples) and a weather model that models the solar irradiation in a cell based fashion for different
geographical regions. The cells have to be connected as input to the PV modules to refine the overall scenario.

Geotag 

(point) 

Geotag 

(area) 

Weather  
Simulation 

 
 
 

PV Simulation 
 
 

Grid Simulation 

Figure 4: Creating relations based on derived static data.

We assume that our grid model offers static data about the geolocation of each bus. The weather model
has WeatherCell entities representing the sun irradiation in a certain area. Each of these entities provides
its covered area as static data, as well. For large scale scenarios it would be cumbersome and error prone
to connect weather cells and PV modules manually.

Listing 5: Connection rule with user defined function for comparing static entity data.
//Connect PVs to busses first
connect 0..1 pvs.PVModule to grid.Bus
//Now connect WeatherCells to PVModules having a Bus inside the cells area
//PVModules are on left side of the statement due to n..m:1 constraint
connect 0..* pvs.PVModule to weather.WeatherCell

where contains(PVModule--grid.Bus.positionPoint, WeatherCell.area) == True

Listing 5 shows how these connections can be specified easily by applying a user defined function
called contains that checks if a point is within a given area. It has to be defined in the reference data model
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and an implementation has to be provided to the mosaik engine as a plug-in. In this case it is checked if
the position of the Bus connected to (--) the PVModule is within the area of a WeatherCell. At composition
time, this will result in a connection of zero or more PV modules to 1 weather cell which matches the
PV modules location. The latter is derived from the static location attribute of the Bus it is connected to.
Again, the concept of entity paths (see 4.3.1) is used.

4.3.3 Dynamic Connections

EVs are a very special type of entity in Smart Grid scenarios, as these are the only type of equipment
that can move between different nodes (charging locations) of the power grid. So far, to support this
functionality, mosaik allows to specify dynamic relation conditions. In contrast to the count and user
function conditions presented above, which are evaluated once at composition time and may only use static
data items, the dynamic conditions are reevaluated every simulation step and operate on the dynamic data
flows of the entities. Listing 6 shows how the EV connection rule of the scenario shown in Listing 4 can
be extended in such a way that the vehicles are only connected to the PV nodes when having a certain
location (assuming location is a dynamic data flow of type string defined in the EV entity definition of the
simulator description).

Listing 6: Dynamic connection conditions.
//EV.location can be one of {"charge_pole", "other", ...}
connect 0..3 evs.Vehicle to grid.Bus where |Bus--pvs.PVModule| > 0

when Vehicle.location == "charge_pole"

4.4 Hierarchical Modeling

The descriptions of the compositions can be nested hierarchically, i.e. used in other composition descriptions.
This can be useful to keep the overall scenario definition small. As seen in Figure 2, for example, one may
define a certain number of low voltage distribution grids (e.g. for the different agglomeration types city,
rural, commercial) and then reuse these multiple times in a larger scaled medium voltage grid scenario
(maybe with different parameters influencing the number of entities deployed in each LV-grid). In such a
case the hierarchy of the compositions is directly related to the topology of the desired simulation scenario.
Another use case for using hierarchical compositions is presented in this section: The grouping of entities
that have dependent parameters. Figure 5 shows such a scenario.

composition A composition B 
(Instance 1) 

kWpeak = random([2, 6]) 

3 

scaling 

composition B 
(Instance 2) 

scaling 

5 

Figure 5: Example for hierarchical scenario modeling.

It consists of a power grid simulation with n nodes (only 2 are shown), each representing a connection
point of a house with a PV system. To be realistic, the different PV systems have different sizes. Let us
assume the goal of the scenario is the evaluation of a concept for local, battery based storages placed in each
house. More precisely: For saving costs, the battery buffer shall be kept as small as possible by scaling it
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dependent on the peak power of PV system of each house. Further, we assume that we have independent
simulation models (grid, house, PV system, battery buffer) which we want to use as building blocks for the
scenario. As it is inconvenient to specifying the exact size of the PV systems for a large number of houses,
we use a mosaik feature that has not been introduced, yet. Instead of using constants as parameter values
it is possible to specify random distribution functions. These can be parametrized to operate on a range of
values (using square brackets) or to select from discrete values (using curly brackets) and are evaluated for
each time a specific value is required (e.g. when passing the parameters for instantiating a model to the
simulator). In this case we can parametrize it to achieve an equal distribution of PV system peak power
configurations ranging from 2 to 6 kWpeak. As the battery buffer shall be scaled accordingly, we need to use
this randomly generated value for configuring it as well. Therefore we place both, battery and PV model in
a composition B defining the PV peak power as parameter for this composition. This parameter can then
be used directly for parameterizing the PV model and, using the scale/factor feature (see 4.1), we can scale
it for parameterizing the battery buffer as well. Now one can use this composition B in the composition A
where its peak power parameter is assigned to the desired random distribution function. By placing 1 PV
and 1 battery buffer in a separate composition we achieve different random based values for the PV peak
power (and thus the battery size) which would not be possible when placing all in the same composition,
as the parameter of PV and battery model are not dependent on each other. Another example for such
dependent entity parameters would be the deployment of differently sized combined heat and power (CHP)
plants and an appropriate thermal storage for these. Furthermore, please note that the hierarchy vanishes at
run-time, i.e. after the composition has been accomplished. So for the control strategies integrated on the
top layer of the mosaik framework, only the resulting entity topology is visible/relevant. Listing 7 shows
how compositions can be used in connection rules, using the -> operator.

Listing 7: Hierarchical composition.
composition bufferAndPv_parameter:compositionB
p_peak = random([2.0, 6.0])

end
grid = 1 new grid_parameter_set_name
houses = 80 new house_parameter_set_name
bufferAndPVs = 80 new bufferAndPv_parameter
connect 1 houses.H0 to bufferAndPVs->buffers.Battery
connect 1 bufferAndPVs->buffers.Battery to grid.Bus

4.5 Simulation Study

Finally, for being able to actually simulate a scenario, the root composition has to be specified and potential
parameters have to be provided with specific values. Therefore we introduced the concept of a simulation
study, implying that a study may include several simulation runs with different parameters. For example, to
simulate different seasons of the year. MOSL therefore allows to specify a list of values for each parameter
of the root composition and can automatically combine these in a linear or Cartesian fashion.

5 COMPOSITION

The concepts presented so far are used to formally describe a Smart Grid scenario and do not involve the
execution of a simulator. For actually simulating the scenario, a Simulation Study is given to the mosaik
simulation engine. As the engine is implemented in Python, we developed a code generator (available at
https://bitbucket.org/sschuette/xtextdsl2python) for Xtext that serializes the DSL files to the Python readable
YAML format. First, the engine collects information about all entity sets (new statements) so that the
overall number of simulation model instances is known. This is required as mosaik tries to minimize the
number of simulator instances by executing as many model instances as possible on a single simulator,
depending on the specified simulator capabilities. Next, the simulator processes are started and the different
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models are initialized with the parameters referenced in the entity sets. If this was successful, the actual
entity instances (grouped into entity set instances) and their static data are available and the connection
rules can be applied. Finally, based on the connections and the resulting data flows, the simulators need to
be scheduled such that they are stepped in the correct order. However, in the following we like to elaborate
on the application of the connection rules, as this is specific to our approach (as compared to the scheduling
problem).

Basis for applying a connection rule are two entity set instances. As shown in Section 4.3, the connection
rule provides a type selector that is applied to the entity set instances first such that two new, homogeneous
sets result. Figure 6 (A) shows the resulting two sets (in the following called le f t and right) for the entity
sets defined in Listing 2, which consist of EV and Bus entities.
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Figure 6: Applying connection rules to entity sets.

Mosaik now relates these entities in a random fashion (if no specific IDs are given for the connection
rule) such that lower and upper bound of the multiplicity given in the connection rule definition are satisfied.
Currently we have implemented uniform distribution. However, we plan to add other distribution functions
which is required to model certain scenarios in a realistic way. For example the number of vehicles per
household is not distributed equally (most have 2, few have 3, ...). Although this approach sounds trivial,
there are a number of problems that arise which we like to show in the remainder of this section.

In general, three cases have to be distinguished. First, a connection statement may have no static
condition (see 4.3.1, 4.3.2) at all. In this case, shown in Figure 6 (A), any two entities can be randomly
chosen and connected if the lower and upper bound is not violated. Second, a condition is specified but
only involves operations on one of the two sets (6 B). In such cases, the entities that do not meet the
condition are removed from the set (here all but entity I/II/II) and again, any two of the remaining sets
(gray) can be related. For these variants (A and B) it can easily be checked if the lower and upper bound
can be met even before the entities are actually connected, just by taking a look at the number of entities
in the sets. The following constraints must be satisfied:

WithinLowerBound(le f t,right) : |le f t| ≥ lower· |right|
WithinU pperBound(le f t,right) : |le f t| ≤ upper· |right|

Finally, a condition may operate on entities from both entity sets, e.g. the user function shown in Listing 5.
In such a case, the condition has to be checked for all entity tuples of the Cartesian product of the entity
sets. As this can be very time intensive (O(n2)), mosaik analyzes the connection rule beforehand and selects
the required strategy. However, there are also methods to reduce this complexity by clustering entities of
one set into groups with identical attributes, thus reducing complexity to O(n· |cluster|). Other optimization
techniques known from the database domain, such as predicate migration (Chaudhuri and Shim 1999) or
function caching, are currently being investigated and beyond the scope of this paper. More interesting is
the fact that there can be situations where the lower and upper bound for connection rules with conditions
involving both entity sets cannot be guaranteed. If they can be met may vary from one run to another based
on the random seed. Figure 6 (C) shows such a situation with dashed lines showing possible combinations
that fulfill the connection rules condition and solid lines showing selected connections. Entities 1 and 2
were connected to II and III, respectively. However, entity 3 cannot be connected to any other (only III
is possible) without violating the 1:1 multiplicity constraint although another combination (i.e., 1-I, 2-II,
3-III) would be possible. Although this may only occur in rare cases it has to be accounted for.
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This situation can be formulated and solved as classical discrete, finite domain Constraint Satisfaction
Problem (CSP). Formally, a CSP is defined by a set of variables V = {X1, ...,Xn}, a non-empty domain
Di = {v1, ...vk} of possible values for each variable Xi and a set of constraints C = {C1,C2, ...,Cm} (Russel
and Norvig 2009). A possible solution for the CSP is any variable-value assignment A : V → ∪

i
Di that

does not violate any of the constraints. In our case we can treat the entities of the left set as variables.
For each variable, those entities of the right set that fulfill the conditions of the connection rule constitute
the domain of possible values. Furthermore we have a single global constraint (a constraint involving all
variables) CMult that is True, if the multiplicity lower and upper bound is met when considering all variable
assignments. A standard CSP solver can now be used to obtain valid connections.

V = {l1, ...ln|li ∈ le f t}
Di = {r1, ...rn|r j ∈ right;condstat(li,r j) = True}

Cmult : lower ≤ |{l|l ∈ A−1(r)}| ≤ upper ∀ r ∈ ∪
i
Di

6 CONCLUSION

In this paper we presented a scalable and flexible scenario definition approach for topological domains,
such as the Smart Grid domain. Scalability is achieved by allowing composition descriptions to be reused
in a hierarchical fashion and by defining connection rules operating on arbitrary large sets of entities
instead of having to connect single entities manually. The scenario definition is based on the formal
simulator description presented in Schütte, Scherfke, and Sonnenschein 2012. This will form the basis of
our simulation platform mosaik that allows to compose heterogeneous simulation models into large-scale
Smart Grid scenarios. The concepts presented in this paper have been implemented and are currently being
applied and evaluated in different research projects. Due to space limitations, not all details of the scenario
definition could be shown. The application of the connection rules during the composition process was
presented briefly. Its optimization is subject to current research. Future work includes the integration of
an energy standard compliant API to access the simulated entities as well as a synchronization mechanism
(e.g. such as described by Gehrke, Schuldt, and Werner 2008) for the integration of multi agent based
control strategies. Furthermore, the integration of simulators based on the FMI standard (MODELISAR
2011) is being planned.
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