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ABSTRACT

This paper introduces a new approach to Monte Carlo estimation of the velocity of charge carriers drift-
diffusing in a random medium. The random medium is modeled by a 1-dimensional lattice and the position
of the charge carrier is modeled by a Markov jump process, whose state space is the set of lattice points.
The transition rates of the Markov jump process are determined by the underlying energy landscape of
the random medium. This energy landscape is modeled by a Gaussian process and contains regions of
relatively low energy, in which charge carriers quickly become stuck. As a result, the state space is not
adequately explored by the standard algorithms and the velocity of the charge carrier is poorly estimated. In
addition, the conventional Monte Carlo estimators have very high variances. Our approach aims to reduce
the number of simulation steps that are spent in the low energy problem regions. We do this by identifying
the problem regions via a stochastic watershed algorithm. We then use a coarsened state space model,
where the problem regions are treated as single states. In this way, we are able to simulate a semi-Markov
process on the coarsened state space. This results in estimators that are unbiased and have considerably
lower variance than the crude Monte Carlo alternatives.

1 INTRODUCTION

Electron transport in disordered organic semiconductors can be modeled by means of Markov jump processes
on graphs, where the graph represents the random medium and the state of the jump process represents
the position of the charge carrier. The transition (or hopping) rates of the jump process between adjacent
vertices of the graph can be determined from the electrochemical and quantum mechanical properties of the
semiconductor (Rühle et al. 2011). One of the main characteristics to be measured is the charge carrier
mobilityµ = v/F , which is a function of the average velocity or drift velocity v of the charge carrier as it passes
through the random medium under the bias of an external electric field F . The drift velocity can be estimated
via Monte Carlo simulation of the Markov jump process — called Kinetic Monte Carlo in the physics literature
(Pasveer et al. 2005). Since the charge mobility influences the performance of a material in technological
applications, e.g., the efficiency of organic solar cells, such a model for electron transport is a key ingredient
of intensive efforts in in-silico design of high-efficiency organic semiconductors (Baumeier et al. 2012).
The approach introduced by (Schönherr et al. 1981) and (Bässler 1993), which we call Crude Monte Carlo
(CMC), has become a well-established method (Tessler et al. 2009; van der Holst et al. 2011). A major
problem, however, is that for a large variety of materials the energy landscape associated with the random
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medium contains regions of low energy in which the charge carrier quickly becomes stuck. A consequence
of this is that the estimation of drift velocity via crude simulation is not only very time-consuming, (often
to the extent of being practically infeasible), but also leads to estimators that consistently overestimate
the mobility. In addition, processes in organic electronics take place on multiple time and spatial scales.
Therefore, it is essential to have computationally fast methods that analyze large system sizes over a long
physical time without losing too much information about finer scale behavior.

The purpose of this paper is to provide a fast alternative to the standard CMC algorithm that can be
easily extended to 3-dimensional models that are of practical interest. We introduce a novel approach to the
problem of deep energy traps, where we identify the problem areas using a stochastic watershed algorithm.
We then construct a coarsened state space model, under which the problem regions can be traversed in a
single step of the simulation. In the literature, this type of problems has been discussed in the context of e.g.,
nearly decomposable Markov processes (Courtois 1977; Simon and Ando 1961) and multiple time-scale
Markov processes (Evans 1996; Tse et al. 1995). A similar strategy of coarsening the state space is used
in (Somoza and Ortuño 2005) to study the relaxation of Coulomb glasses at low temperature. However,
the latter approach only considers pairs of problem states, and does not segment the state space prior to
the simulation. In the present paper, we focus on a 1-dimensional system, which already describes the
main physical processes quite well (van der Holst et al. 2011). However, the basic method presented in
this paper can be extended to 3-dimensional models. In particular, the stochastic watershed segmentation
can be directly applied in 2D and 3D.

2 MODEL

In this section, the random medium is modeled by a 1-dimensional lattice and the position of the charge
carrier is modeled by a Markov jump process, whose state space is the set of lattice points. The transition
rates of the Markov jump process are determined by the underlying energy landscape of the random medium.
Such a model is related to both 1-dimensional Gaussian Disorder Models (GDM) and Correlated Disorder
Models (CDM) (van der Holst et al. 2011). In this paper, we consider a correlated energy landscape, as it
is more accurate for small molecule systems.

2.1 Electron Transfer Rates

Electron transfer rates between neighboring molecules i and j in disordered organic semiconductors can
be obtained from the high-temperature limit of classical charge-transfer theory (Marcus 1993) according to

qij =
2π

~

J2
ij√

4πλijkBT
exp

[
−(∆Eij − λij)

2

4λijkBT

]
, (1)

where ~ = 6.58 · 10−16 eV · s is the reduced Planck constant, kB = 8.62 · 10−5 eV · K−1 is Boltzmann’s
constant, and T the temperature. In realistic morphologies, the quantities Jij (transfer integral), λij

(reorganization energy) and ∆Eij (driving force) are evaluated explicitly using a combination of quantum-
mechanical electronic structure techniques and classical simulation methods, see (Rühle et al. 2011). The
driving force ∆Eij = Ei −Ej + e(xj − xi)F comprises static site energy differences Ei −Ej and a drift
term e(xi − xj)F due to an externally applied electric field F acting on the elementary charge e, where
xi is the Cartesian coordinate of the center of mass of molecule i.

2.2 Energy Landscape

In the approaches described in (Coropceanu et al. 2007; Rühle et al. 2011) and references therein, the
motion of the charge carrier is modeled as a time-homogeneous Markov jump process {Xt}t>0

where
the state space is the vertex set of a 3-dimensional graph. In the following, we consider a 1-dimensional
abstraction of such 3-dimensional models. We use a finite state space {1, . . . , n}, imposing cyclic boundary
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conditions to approximate an infinite random medium. One of the main factors determining the dynamics
of the jump process via eq. 1 is the underlying energy landscape which determines the transition rates qij .
We consider jumps to nearest neighboring states only, i.e., we put qij = 0 if |i − j| 6= 1. In amorphous
tris-(8-hydroxyquinoline)aluminum, a typical organic semiconductor, a microscopic evaluation based on a
simulated morphology yield energies Ei which are positively correlated across neighboring molecules (see
(Rühle et al. 2011)), i.e., the energy landscape, E1, E2, . . . , En, behaves like a moving average process.
More precisely, Ei satisfies

Ei =
K∑

k=−K

√
ω

2K + 1
εi−k +

√
1− ω ε̃i , i = 1, . . . , 100 mod n,

where the {εi} and {ε̃i} are sequences of independent and identically distributedN(m,σ2) random variables.
Note that K controls the broadness of the spatial correlation of Ei, and ω controls the local roughness of
the energy landscape; in particular, for ω = 0 all {Ei} are independent and the energy landscape becomes
very rough. A typical realization with a parametrization of the microscopic data from (Rühle et al. 2011),
i.e., n = 100,K = 1,m = −0.182 eV, σ2 = 0.034 eV2, and ω = 0.9, is given in Figure 1.
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Figure 1: Moving average energy landscape.

All remaining parameters to determine the transition rates qij in eq. 1 except ∆Eij are chosen constant.
More precisely, J2

ij = 1.7 · 10−4 eV2 (an average value of the microscopic data, assuming that neighboring
sites are separated by 1 nm), λij = 0.23 eV, and T is set to room temperature so that kBT = 0.025 eV.
The energy difference is given by ∆Eij = Ei − Ej + (j − i)δ, where δ = 0.01 eV is the drift term,
corresponding to an external electric field F = 107 V/m. In general, the charge carrier is more likely to
move from a higher energy region to a lower energy region than it is to move from a lower energy region
to a higher energy region. Thus, it tends to spend a large amount of time in deep energy valleys.

2.3 Drift Velocity

The drift velocity v is defined mathematically as the long-run average velocity with which a charge carrier
travels through the random medium:

v = lim
t→∞

Xt −X0

t
.

This quantity is usually estimated via Monte Carlo methods. For convenience, in the 1-dimensional case
we can treat the Markov jump process (MJP) as a birth-death process, with birth rates αj = qj,j+1 and
death rates βj = qj,j−1. We then simulate a MJP, tracking d, the distance traveled to the right by the jump
process. In the presented algorithms, we focus on N rather than t in order to highlight how the accuracy
of the estimator changes as a function of step size. The CMC approach to the estimation of drift velocity
is given in the following algorithm:
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Algorithm 2.1 (Crude Monte Carlo estimation of drift velocity) For a given number of steps N

1. Set d = 0, j = 0 and t = 0.
2. Draw X0 uniformly from {1, . . . , n}.
3. With probability

αXj

αXj
+βXj

, set Xj+1 = Xj +1 and d = d+1. Otherwise, set Xj+1 = Xj − 1 and

d = d− 1.
4. Draw τj ∼ Exp(αXj

+ βXj
) and set t = t+ τj .

5. Set j = j + 1. If j < N , repeat from Step 3.
6. Return v̂ = d/t.

Using the CMC approach, the drift velocity is significantly overestimated for smaller values of N . The
addition of a burn-in period reduces, but does not remove, the bias. Figure 2 shows average point estimates
of v̂ for the CMC estimator and the CMC estimator with a burn-in period that is 10% of the sample size
N .
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Figure 2: Estimates of drift velocity vs. sample size.

In order to assess the performance of the estimators, we estimated their mean and standard deviation
via a bootstrap. The results are summarized in Table 1. Note that the variance of the estimator v̂ is very
large. In particular, for smaller values of N the estimated standard deviation is of the same order as the
estimated mean of v̂.

Table 1: Mean and standard deviation of v̂
(in nm/s) using CMC with a burn-in period

N Mean Standard deviation

104 5.15× 108 6.85× 108

105 3.74× 107 6.47× 107

106 2.76× 106 5.19× 106

107 7.62× 105 1.13× 106

108 7.80× 105 3.65× 105

109 7.68× 105 9.87× 104

1010 7.70× 105 1.35× 104
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The primary obstacle to efficient estimation is the existence of problem regions, where the MJP becomes
trapped for very long periods of time, commonly up to 106 steps. As a result, the state space is not adequately
explored by the standard algorithm (for a finite state space, with cyclic boundary conditions, the MJP does
not come close to the stationary distribution), and the time spent in problem regions is often underestimated.

3 FAST SIMULATION OF CHARGE TRANSPORT

The idea behind our approach to improving the estimation of the drift velocity is to coarsen the state space,
so that the problem regions can be traversed in a single step. This is done by

1. identifying the problem regions via a stochastic watershed algorithm,
2. reducing these problem regions to single states,
3. replacing the MJP with a semi-Markov process,
4. carrying out the simulation with the new coarsened state space model.

3.1 Stochastic Watershed Algorithm

In order to increase the efficiency of the simulations, we need to coarsen the state-space in such a way
that charge carrier moves between each pair of neighboring states with sufficiently high transition rates.
This is done by collapsing the ‘valleys’ in the energy landscape into single (super-) states. In order to do
this, it is necessary to identify the relatively low energy regions of the energy landscape. The approach
we use is a modification of the standard watershed transformation considered in image segmentation, see
e.g., (Beucher and Meyer 1993). The stochastic watershed is chosen since it directly extends to 2D and 3D
models and can handle large system sizes. Firstly, for segmentation purposes, we create an adjusted energy
landscape which takes into account the drift of the MJP. This is because the MJP with drift corresponds
to a MJP with zero-drift when the energy landscape is tilted appropriately; see Figure 3. More precisely,
the energy landscape E1, E2, . . . , En is transformed to Ẽ1, Ẽ2, . . . , Ẽn with

Ẽi = Ei − iδ , i = 1, . . . , n.

Note that cyclic boundary conditions are applied to the tilted energy landscape, i.e., the energy difference
between states n and 1 is shifted by nδ.
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Figure 3: Tilted energy landscape.

The problem regions are determined by the tilted energy landscape, since the transition rates qij only
depend on the energy differences for the tilted energy landscape. Interpreting the tilted energy landscape
as a 1D image, the coarsening of the state space can be viewed as the problem of image segmentation
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in image analysis. A widely applied tool in image segmentation is the watershed transformation. Its
key idea was introduced by (Beucher and Lantuéjoul 1979). Initially developed for gray-scale images,
the watershed transformation was extended for continuous values, see (Najman and Schmitt 1994). The
algorithm normally used today was developed by (Beucher and Meyer 1993). The basic idea of the
watershed algorithm is to consider the image as a topographic relief. This topographic relief is then flooded
with water starting at all local minima. If water from different sources (local minima) merge at a certain
point, a watershed marker is set. The set of watershed markers segment the image into disjoint regions,
so-called basins; see Figure 4 for a schematic example.

Figure 4: Watershed transformation.

A limitation of the standard watershed transformation is that it often yields over-segmentation. That
is, the segmentation into basins (here: super-states of the jump process to be constructed) is too fine. We
therefore use the stochastic watershed transformation introduced by (Angulo and Jeulin 2007). The idea
is to replace the local minima as starting points of flooding by random starting points generated by a
homogeneous Poisson process with some intensity λ, here discretized on the discrete 1D lattice that forms
the state space. The outcome is a random set of watershed markers separating the (random) basins. The
procedure is repeated an appropriate number of times (here: 6000 times, in the case of a energy landscape
with length n = 100) and the relative frequencies of markers on the discrete lattice are computed. Finally, a
global thresholding is performed and markers are only accepted if their relative frequencies exceed a certain
threshold T . In our case, a homogeneous 1D Poisson process with intensity λ = 0.1 is chosen, together
with T = 0.1. The choices of λ and T influence the segmentation of the energy landscape. In general,
λ is chosen so that the expected number of starting points is less than the total number of local minima.
The threshold T determines the size of the super-states. A higher threshold yields larger super-states. The
threshold T is chosen such that the size of the super-states is numerically feasible. For small system sizes,
it is also possible to collapse all states into a single super-state. The result of the stochastic watershed
segmentation with the above mentioned parameters is displayed in Figure 5.



Brereton, Kroese, Stenzel, Schmidt, and Baumeier

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

n

E
n
er

g
y

(e
V

)

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

n

E
n
er

g
y

(e
V

)

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

E
n
er

g
y

(e
V

)

n
0 10 20 30 40 50 60 70 80 90 100

−1.5

−1

−0.5

0

0.5

1

n

E
n
er

g
y

(e
V

)

Figure 5: Top. Left: standard watershed segmentation of the tilted energy landscape. Right: relative
frequencies of watershed markers computed from the stochastic watershed (red) together with the threshold
T = 0.225 (blue line). Bottom. Left: watershed segmentation by the stochastic watershed. Right: watershed
segmentation by the stochastic watershed together with samples of the MJP for different starting points.

3.2 Coarsened State Space Model

The stochastic watershed segmentation allows us to decompose the state space {1, . . . , n} into a random
number of subsets. They are separated from each other by the points S1, . . . , Sk ∈ {1, . . . , n} at which
the relative frequencies of watershed markers exceed the threshold T . Each of these segmentation points
consists of a single state of the original MJP. We amalgamate the collection of states between any two
consecutive segmentation points into a single super-state. Thus, we construct the coarsened state space{
1̃, . . . , ñ

}
, where each state is either a segmentation point or a problem region. A schematic example of

this is shown in Figure 6.

1 2 3 4 5 6 7 8 9
S1 S2

1 2 3 4
~~ ~ ~

Figure 6: Coarsened state space.

Given the coarsened state space, we can describe the movement of the charge carrier by a semi-Markov
process {X̃t}t>0; see e.g., (Limnios and Oprisan 2001). The jump chain is still Markovian and, while the
sojourn times are no longer exponentially distributed, they remain conditionally independent.

In order to calculate the charge carrier mobility, we need to track the distance traveled by the charge
carrier and the time taken to traverse this distance. Because we are considering a long-run quantity, we
can replace the random time spent in a super-state with its expected value. Thus, for each super-state
or segmentation point, i = 1̃, . . . , ñ, we calculate 9 values. The first value, di, represents the distance
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traveled if the entire state is traversed. If the state is entered from the left, the charge carrier moves left
with probability P LL

i and moves right with probability P LR

i . The mean time taken to move left is denoted
by τLLi , and the mean time taken to move right by τLRi . If the state is entered from the right, the analagous
quantities are denoted by PRL

i , PRR

i , τRLi , and τRRi . These quantities are determined by considering a
Markov jump process on the states within the super-state, with the two adjoining segmentation points acting
as absorbing barriers. To calculate the probabilities P LL

i , P LR

i , PRL

i , PRR

i , we partition the state space of
this MJP such that the transition matrix Q and jump matrix J take the following forms

Q =

(
0 0
S0 S

)
and J =

(
I 0
R T

)
,

respectively. The matrix P = (pjk) of absorption probabilities from transient state j into absorbing state k

is given by P = (I − T )−1R. We set P LL

i = p1,1, P
LR

i = p1,2, P
RL

i = pr−l−1,1 and P LL

i = pr−l−1,2. To
find the expected times until absorption, we note that the matrix of the densities of the absorption times,
(fj,k(t)), from transient state j into absorbing state k is given by etSS0, where etS is a matrix exponential.
If we set f τ

j,k(t) = fjk(t)/pj,k, we obtain the densities of the conditional absorption times. The matrix

of expected absorption times, (Etj,k), is given by
(
S2

)
−1

S0. Thus, the expected conditional absorption
times are given by τj,k = Etij/pj,k. Hence, we can calculate τLLi = τ1,1, τ

LR

i = τ1,2, τ
RL

i = τr−l−1,1 and
τRRi = τr−l−1,2.

3.3 Aggregate Simulation Algorithm

The procedure described above, which is based on the aggregation of critical regions of states into single
super-states, can be summarized as follows.

Algorithm 3.1 (Aggregate Monte Carlo Estimation of Drift Velocity)
Let N be the number of steps

1. Given an initial energy landscape E1, . . . , En, identify an appropriate coarsened state space
1̃, . . . , ñ, via the stochastic watershed algorithm.

2. As described above, calculate the absorption probabilities and expected sojourn times corresponding
to the new (aggregate) state space.

3. Set d = 0, j = 0 and t = 0.
4. Draw X0 uniformly from

{
1̃, . . . , ñ

}
and the state variable LEFT uniformly from {true, false}.

5. If LEFT = true, then with probability pLLXj
set Xj+1 = Xj − 1, d = d − 1, LEFT = false and

t = t+ τLLXj
; otherwise, set Xj+1 = Xj + 1, d = d+ dXj

and t = t+ τLRXj
.

6. If LEFT = false, then with probability pRLXj
set Xj+1 = Xj − 1, d = d − dXj

and t = t + τRLXj
;

otherwise, set Xi+1 = Xj + 1, d = d+ 1, LEFT = true and t = t+ τRRXj
.

7. Set j = j + 1. If j < N , repeat from Step 5.
8. Return v̂ = d/t.

Figure 7 shows the performance of the aggregate Monte Carlo estimator relative to the CMC and CMC
with burn-in estimators.
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Figure 7: Estimates of drift velocity vs. sample size.

4 NUMERICAL RESULTS

In order to compare our approach of Aggregate Monte Carlo (AMC) simulation with the conventional
Monte Carlo approaches stated in Section 2.3, we fixed a number of energy landscapes and estimated
the drift velocity using both the CMC and AMC estimators. The means and standard deviations of the
estimators were calculated using a bootstrap. The obtained numerical results are summarized in Table 2–4,
where Figure 7 corresponds to Table 2. Note that in all cases the CMC estimator is considerably overbiased
for small sample sizes and that the standard deviation of the AMC estimator is several orders of magnitude
lower than that of the CMC estimator. In particular, these findings do not depend on the sizes n = 100,
1000, and 10 000 of the considered energy landscapes. Note however that the values of the means and
standard deviations of v̂ vary from case to case. The reason for this is the randomness of the energy
landscape, being modeled by a Gaussian process. In other words, the values presented in Tables 2, 3, and
4 correspond to estimates for conditional drift velocities, given three different samples drawn from the
Gaussian energy landscape.

Table 2: Means and standard deviations (sd) of v̂ (in nm/s) for
CMC with burn-in and AMC, for a landscape of size n = 100.

N CMC mean CMC sd AMC mean AMC sd

104 5.15× 108 6.85× 108 8.92× 105 5.20× 105

105 3.74× 107 6.47× 107 7.73× 105 1.62× 105

106 2.76× 106 5.19× 106 7.62× 105 5.16× 104

107 7.62× 105 1.13× 106 7.62× 105 1.62× 104

108 7.80× 105 3.65× 105 7.61× 105 5.36× 103

109 7.68× 105 9.87× 104 7.61× 105 1.63× 103

1010 7.70× 105 1.35× 104 7.61× 105 4.77× 102

5 CONCLUSIONS AND FURTHER RESEARCH

We introduced a new approach to Monte Carlo estimation of the velocity of charge carriers drift-diffusing
in a random medium, where the random medium is modeled by a 1-dimensional lattice and the position
of the charge carrier is modeled by a Markov jump process, whose state space is the set of lattice points.
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Table 3: Means and standard deviations (sd) of v̂ (in nm/s) for
CMC with burn-in and AMC, for a landscape of size n = 1000.

N CMC mean CMC sd AMC mean AMC sd

104 1.26× 109 1.58× 109 1.76× 108 2.82× 107

105 4.50× 108 3.96× 108 1.73× 108 8.60× 106

106 1.95× 108 1.02× 108 1.72× 108 2.70× 106

107 2.03× 108 3.32× 107 1.72× 108 8.46× 105

108 2.04× 108 9.66× 106 1.72× 108 2.65× 105

Table 4: Means and standard deviations (sd) of v̂ (in nm/s) for
CMC with burn-in and AMC, for a landscape of size n = 10000.

N CMC mean CMC sd AMC mean AMC sd

104 8.97× 109 1.12× 109 6.66× 107 5.36× 107

105 3.32× 108 3.85× 108 1.35× 107 7.86× 106

106 1.33× 108 1.02× 108 1.03× 107 1.76× 106

107 4.86× 107 2.92× 107 1.01× 107 5.60× 105

108 1.12× 107 1.31× 106 1.00× 107 1.68× 105

The transition rates of the Markov jump process are determined by the underlying energy landscape of
the random medium. This energy landscape is modeled by a Gaussian process and contains regions of
relatively low energy, in which charge carriers quickly become stuck. As a result, the state space is not
adequately explored by the standard algorithms and the velocity of the charge carrier is poorly estimated.
In addition, the conventional Monte Carlo estimators have very high variances. Our approach aims to
reduce the number of simulation steps that are spent in the low energy problem regions. We do this by
identifying the problem regions via a stochastic watershed algorithm. We then use a coarsened state space
model, where we aggregate the problem regions to a single (super-) state. We are then able to simulate a
semi-Markov process on the aggregate state space. This results in estimators that are unbiased and have
considerably lower variance than the crude Monte Carlo estimators.

This paper has focused on the improved estimation of drift velocity in a 1D random medium. As an
immediate extension of this work, we aim to extend the use of the AMC approach to 2 and 3-dimensional
models. The methods described in this paper, such as the stochastic watershed algorithm, can all be applied
in a higher dimensional setting. In addition, we aim to investigate whether the Markov Jump Process
modeling the charge carrier’s position can be profitably replaced by a diffusion approximation.
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