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ABSTRACT

Mathematical programming has been proposed in the literature as an alternative technique to simulate a
special class of Discrete Event Systems. Several are the benefits of using a mathematical programming
model for simulating but the non–linear computational time (in the number of simulated entities) needed
for the solution of the models can be a huge barrier to its use in long simulations. This paper proposes
a time–based decomposition algorithm that splits the mathematical programming model into a number of
submodels to be solved sequentially so as to exploit the super–additivity of many non–linear functions
and make the mathematical programming approach viable also for long run simulations. The number of
needed submodels is the solution of an optimization problem that minimizes the expected time to solve
all the submodels. The main result is that in this way the solution time becomes a linear function of the
number of simulated entities.

1 INTRODUCTION

Mathematical programming has been proposed by Schruben (2000) as an alternative technique to simulate
Discrete Event Systems (DESs). Schruben represents the behavior of a G/G/1 system with a Linear
Programming (LP) model having as objective function the sum of start and completion times of all the
customers entering the system and as constraints the set of temporal inequalities modeling precedence
between two consecutive customers. Starting and finishing times are the decision variables of the problem.
A simplified version (with finishing times as the only decision variables) of the original Schruben’s model
for a G/G/1 system is as follows:

min ∑
N
i=1 yi (1)

s.t. yi ≥ ai + ti ∀i (2)
yi+1− yi ≥ ti+1 i = 1, . . . ,N−1 (3)

where N is the number of customers visiting the system. Arrival time ai and service time ti of each
customer i (with i = 1, . . . ,N) are parameters of the model. They can be known from a given data set
or randomly generated from some distributions. The solution of this problem provides the values for the
decision variables yi that are the completion times of each customer. Once the problem has been solved,
from the values of the decision and slack variables it is possible to construct the simulated sample path and
to calculate the system performance measures. On the same stream, LP models for representing tandem
queuing systems and scheduling problems (Chan and Schruben 2003) (Chan and Schruben 2008) and pull
control systems (Alfieri and Matta 2012b) have been proposed in the literature.

There are several benefits in using a mathematical programming model instead of a standard simulation
model implemented in a computer code (Chan and Schruben 2008) (Matta 2008). Among such benefits,
the possibility of easily applying sensitivity analysis and the fast convergence to a near optimal solution,
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when the objective function is changed to optimize some system parameters, are the most relevant ones.
This last issue has been recently investigated by Alfieri and Matta (2012a).

The major drawback of mathematical programming models for simulation is the computational burden
that may be encountered in some cases. The complexity of DESs forces, in most of the cases, to introduce
integer variables into the mathematical programming, thus leading to unacceptable solution times (the
model becomes a Mixed Integer Linear Program (MILP)). Another not affordable case is encountered with
long simulations, because of the relationship between the number of decision variables and the number
of simulated entities. In this case, even if the model is an LP model, the simulation time is a non–linear
function (exponential in the worst case) of the number of customers simulated in the system. For instance,
as N in the G/G/1 system increases the number of variables yi and number of constraints in inequalities
(2) and (3) also increase. Hence, the mathematical programming approach seems to be applicable only for
small instances. How to deal with long runs when mathematical programming is adopted as a mean to
simulate is exactly the topic of the current work.

This paper proposes an algorithm that allows extending the use of mathematical programming to long
runs. The algorithm is a time–based decomposition that splits the mathematical programming model into
a number of submodels that are solved sequentially one after another. The key point is exactly to create
subsets of entities and solve a single model for each subset, exploiting the typical super–additivity of
non–linear functions. In particular, the algorithm starts solving the first submodel, the optimal solution of
which is used to initialize the second submodel and so forth until the last submodel is solved. The number
of submodels is the solution of an optimization problem that minimizes the expected time to solve all the
submodels. The main result is that the solution time is linearized, i.e., the time for a long simulation is a
linear function of the number of simulated entities.

The proposed approach is applicable to all those systems where entities enter at the first stage and
leave the system from the last stage after having visited the intermediate ones. Moreover, the scheduling of
entities visiting stages is assumed to be fixed and known in advance. This class of systems is of practical
interest and includes as examples transfer lines, assembly/disassembly systems, pull controlled systems.

The structure of the paper is the following. The problem we study and the developed solution method
are reported in Section 2 and 3, respectively. Sections 4 and 5 contain the application of the method to
specific systems. Section 6 concludes the paper.

2 PROBLEM

Given a DES the performance of which we want to study with simulation, different mathematical pro-
gramming models can be used to represent its dynamic behavior (Chan and Schruben 2008). Consider an
LP or MILP model that simulates the evolution of N entities in a DES. Entities can represent parts in a
manufacturing system, failures in a maintenance systems, etc. The objective function of the model is the
sum of the starting and finishing events occurring in the system, no matter the type of the event. These time
occurrences are the decision variables of the optimization problem. Decision variables are constrained to
a set of inequalities describing the system behavior. The mathematical programming model can be written
in the following standard form:

min f (x) (4)
s.t. g(x) = 0

where g is a vector of functions describing the system constraints. Functions in g depend on the decision
variables x and on the duration of the activities in the system. Durations are assumed to be known in
advance (Schruben 2000).

Each constraint in the model is associated to at least one entity of the simulated system. Thus, it is
possible to cluster inequalities using the entities as grouping factor. The first group of constraints (g1)
refer to entity one, the second (g2) to entity two and so on. Using this group concept, we can rewrite the
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mathematical programming model as follows:

min f (x) (5)
s.t. g1(x) = 0

. . .

gN(x) = 0

where gi is the vector of functions representing the inequalities related to the i-th entity. Depending on
the system, there can be coupling constraints, i.e., there can be constraints containing different entities,
especially when finite capacity conditions are present. In this case, gi is the vector of function mainly (but
not only) related to the i-th entity. In the G/G/1 model presented in Section 1 the vector of functions
gi is represented by equations (2)–(3). Notice that the number of constraints increases as the number of
simulated entities does. The number of simulated entities affects also the number of decision variables.
Therefore, the complexity of the model is closely related with the length of simulation. As a consequence,
as the system becomes more complex, the solution time increases due to the increase in the number of
decision variables and constraints. Hence, we can say that for long runs it is not feasible to use mathematical
programming for simulation from a computational time point of view.

However, it is possible to notice that the model based on clustered inequalities has an interesting
form. Indeed, the problem can be divided into several subproblems, each one representing a portion of
the simulation model. More interestingly, this portion is not related to a subsystem of the simulated DES
but to a time window of the simulation. This property can be exploited to develop solution methods based
on decomposition in submodels. The main benefit of this approach, as described in the following, is that
solving the submodels is generally less time consuming than solving the whole mathematical programming
model and without loosing in simulation accuracy.

3 METHOD

3.1 Approach

This section describes the time–decomposition approach for solving the mathematical programming model
formulated in (5). The approach is based on a simple idea: decomposing the complete model in many
simpler submodels that can be solved in a shorter time.
As explained before, the proposed approach can be applied to mathematical programming models for
simulation for a specific class of DESs, the main characteristic of which is the use of static rules for
dispatching entities and the fixed, and known in advance, sequence of entities moving through the system
(Alfieri and Matta 2012a). This class of DESs is large and contains several systems that are relevant in
practice such as production lines, supply chains, assembly systems, etc.

Let us decompose the general model (5) in z different submodels. Theoretically, z can be chosen
between one (no decomposition) and the number of simulated entities N. Each submodel s = 1, . . . ,z
simulates a batch with a number bs of entities. Let Ωs be the set of entities referring to submodel s. The
submodels must simulate all of the entities, i.e.,

⋃z
s=1 Ωs = {1, . . . ,N}. Remember that each submodel s

corresponds to a portion of the whole simulation, specifically the part of simulation related to entities in
the set Ωs. Since entity sequence is fixed and cannot be changed, each Ωs must contain a set of consecutive
entities.

Solving each submodel independently is not a good approach because the generic submodel s has to
consider the initial status of the system when the first entity in Ωs enters the system. This initial status
depends on the output of the already solved submodels, i.e., on how many entities of the previous submodel
are still in the system. This is due to the fact that constraints might contain different entities and hence also
the entities considered in the previous submodel. Therefore, the solution of a submodel has to consider the
information coming from the previous submodels. This interrelationship is modeled by introducing a new
set of constraints built on the basis of the submodel previously solved. For instance, if at the (simulated)
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time the first entity of submodel s enters the system, some entities of submodel s−1 are still there, some
entities in s may be blocked and have to wait for the entities of s−1 to leave the system. This new set of
constraints is denoted by ϒ and its construction depends on the structure of the modeled system.
The mathematical programming formulation for submodel s can be written as:

min fs(xs)

s.t. gs(xs) = 0
ϒs = { hs(xs) = 0}

Notice that both the objective function and the constraints refer only to the entities simulated in the submodel.
The additional constraint set ϒs puts into relationship the entities of the current portion of simulation with
the entities simulated with the previous submodels; function hs is specific for the modeled system. For the
first submodel the set ϒ1 is obviously empty if we assume an empty system at (simulated) initial time.

3.2 Time Efforts

Let φs be the time needed for solving submodel s (LP time in the following). This time is a function of the
number of entities bs simulated in the submodel. Indeed, as z increases each submodel becomes simpler
because it simulates a smaller number of entities and the LP time should be smaller. Function φs is assumed
random with an unknown distribution. In case of equal number of entities the LP times of the submodels
are assumed independent and identically distributed. Also the total time to solve all the submodels (i.e.,
the sum of all φs) is a random variable and depends on bs of each submodel s. As the number of submodels
becomes large enough, we know from the central limit theorem that φT can be approximated by a normal
distribution.

In addition to the solution time, each submodel also requires a time ϕs for the input and output of
data (I/O time in the following). This time is a random variable and depends on the number of constraints
ϒs that have to be added to the submodel s before solving it and on the storage of the solution needed
to create the set of constraints ϒr (r > s) for the next submodels. Notice that the number of constraints
ϒs also depends on the number of entities bs in submodel s. The total I/O time ϕT , being the sum of the
single values ϕs of each submodel, is a random variable. Also in this case, for large enough values of z,
function ϕT can be approximated by a normal distribution.

The times for solving the submodels and for manipulating the data can be fitted with standard techniques
after having executed some experimentations.
Since each submodel is an LP, time φs is the time for solving a linear programming problem. Such time
is known to be, on the average, a non–linear (polynomial) function of the number of decision variables
(Schrijver 1998) that in our problem are related to the number of simulated entities. The shape and order
of the LP time function strictly depends on the specific model to be solved.

Computer experiments on specific models in the class of those that can be treated with our approach
have shown that a quadratic function can be a good approximation for fitting φs; some of these experiments
will be presented in the next sections. In this special case, the following expression can be used:

φs = β0 +β1bs +β2b2
s + εφ , (6)

where coefficients β0, β1 and β2 are bounded to be non-negative (the function in the first quadrant must be
increasing) and εφ is the random noise. In general, we can assume that φs is a monotonically increasing
function in bs. The total LP time φT can be obtained by summing up the single contributions φs.

As far as ϕs is concerned, this time strictly depends on the number of data manipulations that are
executed to feed ϒs to the submodel and to store its results. The more the entities in the submodel, the
higher the number of constraints in ϒs and hence the time to feed it and to store the results. However,
since the I/O time is, in this case, a “reading and writing” time, the increase can reasonably be assumed
linear in bs, i.e.,

ϕs = α0 +α1bs + εϕ , (7)
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where coefficients α0 and α1 are also bounded to be non-negative and εϕ is the random noise. The total
I/O time ϕT can be obtained by summing up the single contributions ϕs.

Partitioning entities into subsets of different cardinality bs for each s can be impractical and can make
little sense in a real context. Then, in the following, we will consider only the special case in which all
submodels have the same number of entities, i.e., bs = b ∀s = 1, . . . ,z. In this case, if φs is quadratic and
the number of submodels to be solved is z = N/b, the total LP time can be expressed as

φT = β0
N
b
+β1N +β2Nb+ εφ , (8)

and the total I/O time as:
ϕT = α1N +α0

N
b
+ εϕ . (9)

3.3 Algorithm to Find the Optimal Number of Submodels

Our aim is to find a partition of the N entities into z subsets so as to have the smallest possible total time
(i.e., the sum of LP time and I/O time). This can be achieved finding a value of b that allows to efficiently
solve each submodel. It is known that the maximum efficiency (in terms of computational time) is reached
for small complexity models, i.e., when the number of variables and constraints is small. In this case, the
solution time of an LP model has an almost linear dependence with the number of variables. The reason
for this behavior relies in the fact that any polynomial function f (x) changes its slope as the value of x
increases and then the first order approximation will be less and less accurate as x becomes larger and
larger.

Let us define bmax as the value of b such that for any b≤ bmax function φs is linear. In this case, any
function φs can be well approximated as:

φs = β0 +β1b+ εφ , (10)

and
φT = β0

N
b
+β1N + εφ . (11)

Hence, it is necessary to choose b≤ bmax for having the total LP time linear in N. An estimate of bmax can
be found by solving the problem for different values of b and testing the adequacy of a linear model. The
value bmax is the last value of b after which a linear model is no more valid.

However, the batch length b cannot be very small because ϕT is an hyperbola in b and solving z
submodels requires more time than solving the complete model. Therefore, the problem reduces to find
the smallest possible value for ϕT while φT is still linear and this happens exactly when b = bmax.

The overall algorithm to find the optimal solution to the LP model representing the DES dynamic
behavior is as follows:

1. Setting. Let b0, δ and r be positive integer parameters and assign them some initial values. Let γ

be a non-negative continuous parameter in the interval (0,1) and assign it an initial value.
2. Initial experiments. Solve r different submodels (using the equations in Section 3.1) for each

batch length b = b0 +(m− 1)δ , with m = 1,2,3. Collect the time to solve each LP problem φs,
with s = 1, . . . ,3r. Set the batch length b = b0 +2δ .

3. Linear fitting. Assume that the regression linear model (10) fits the data (b,φs) and test the
adequacy of this assumption with the Lack of Fit test at γ confidence level (Montgomery and Peck
1991). If a linear model is valid and the number of customers still to simulate is larger than b,
increase the batch length b to b+ δ , solve other r different submodels and re–test linearity. If
linearity does not fit with data, assign bmax = b−δ and goto step 4.

4. Simulation. Solve sequentially one submodel at a time with constant batch length bmax.
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The algorithm uses at the beginning a three–level experiment for fitting a linear model with the Lack
of Fit test. The test is based on partitioning the residual sum of squares into two components, the sum of
squares due to pure error and that due to the lack of fit. The relative weight of these two components is
then assessed using the Fisher statistic. See the book of Montgomery and Peck (1991) for more details.
If the linearity assumption cannot be rejected, a new experiment level is added until the null hypothesis
of linearity is rejected. The Lack of Fit tests executed at different iterations are not independent. This
dependency increases the probability of stopping the iterations in the linear part because the probability
of committing at least one Type I error over all the tests increases iteration by iteration. In alternative,
sequential testing procedures could be adopted (Bechhofer, Santner, and Goldsman 1995).

Notice that in steps 2 and 3 no computational time is lost because the r submodels solved for each
value of m are not different realization of the same submodel but they are distinct submodels solved one
after the other. In such a way the simulation goes on as the submodels are successively solved.

4 G/G/1 QUEUES

4.1 Description

We consider the classical G/G/1 queue with generally distributed random arrival and service times. A
number N of customers entering the system and being served is simulated. Customer i = 1, . . . ,N arrives
at time ai, waits in the queue if the unique server is busy, and then leaves the system at time yi when its
service is finished. The queue can accommodate an infinite number of customers and the First In First Out
(FIFO) rule is adopted.

The LP model of this system is represented by equations (1)–(3) introduced in Section 1. Given
customer i, inequalities (2) and (3) together represent the vector of functions gi. In the following we refer
to this model as the complete model.

4.2 Decomposed Models

The LP model of the G/G/1 system can be decomposed in a straightforward way since the interdependence
between the submodels can easily be captured by simple initial conditions. Let us decompose the complete
model in z submodels, each one simulating a set of customers Ωs⊂Ω. The customers simulated in submodel
s have to follow, according to the FIFO rule, the customers in submodel s− 1. However, it can happen
that a customer of submodel s arrives into the system when some customers of submodel s− 1 are still
there. In this case, it is necessary to introduce an additional constraint imposing that the starting time of
the first customer simulated in s has to be greater than or equal to the finishing time of the last customer
in submodel s−1.

The simulation submodel s can be written as follows:

min ∑i∈Ωs yi (12)
s.t. yi ≥ ai + ti i ∈Ωs (13)

yi+1− yi ≥ ti+1 i ∈Ωs (14)
y f ≥ d + t f (15)

where parameter d is set to the departure time of the last customer of submodel s− 1. The set of the
entities simulated in submodel is defined as Ωs = {∀i : i = ∑

s−1
j=1 b j +1, . . . ,∑s

j b j}, where b j is the number of
customers simulated in the submodel j. Constraint (15) models the dependence on the previous submodel
and allows to apply the proposed decomposition algorithm. Customer f = ∑

s−1
j=1 b j +1 is the first customer

of submodel s. Referring back to Section 3, constraints (13) and (14) represent the vector of functions gs,
related to the entities in Ωs, while equation (15) is the set ϒs of initial conditions.
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Figure 1: Average total time vs batch length (left); average φT and ϕT vs batch length for N = 100,000
(right).

4.3 Computational Experiments

In this section we first consider a finite horizon simulation of a high traffic intensity single server queue
with exponential interarrival and service times. The utilization rate of the queue is ρ = 1. This system
has been simulated with the complete LP model described in Section 4.1 and the decomposed submodels
described in Section 4.2. Linear programs have been solved by using the dual simplex algorithm of IBM
ILOG CPLEX.

The computational time for solving the complete model is a non–linear function of the batch length b.
Figure 1 on the left reports the average total time (in seconds) as a function of a constant batch length for
different levels of N; 100 independent experiments were executed for each point shown in the graph. The
batch length that minimizes the total time function is independent from the number of simulated customers
N. On the left of the minimum the function assumes high values due to the hyperbolic behavior of the
term N/b. On the right, instead, the function increases linearly.

The graph on the right side of Figure 1 shows the detail for N = 100,000, plotting the average values of
φT and ϕT as a function of b. The I/O time is hyperbolic for small values of b and then tends asymptotically
to a constant value for increasing values of b according to equation (9). The LP time behaves as the total
time according to equation (8).

The decomposition algorithm has been applied in a second experiment in which we considered a system
with interarrival times uniformly distributed between 1 and 10 time units and service times uniformly
distributed between 1 and 5 time units. The algorithm has been executed with the following parameters:
b0 = 100, δ = 100, γ = 0.95 and r = 50. These parameters were chosen on the basis of a preliminary
design of experiments. Figure 2 shows, on the left, the average total time (in seconds) versus the batch
length identified by the algorithm in the experiments with the factor δ at levels 100 and 1000 and factor r
at levels 10 and 50. The number of independent replications were 10, and N = 5,000,000 and b0 = 100.
The chosen values of δ and r (i.e., 100 and 50, respectively) correspond to the points close to the minimum
reached for small values of b (Figure 2, left hand side).

Once the parameters b0, δ , γ and r have been chosen, the algorithm has been applied on 100 independent
replications for different values of N and the average total time is shown on the right of Figure 2. Notice
that the computational time becomes a linear function of the number of simulated customers when the
decomposition algorithm is applied.



Alfieri and Matta

Figure 2: Average total time vs the batch length found by the algorithm (left); average total times vs number
of simulated customers (right).

5 TANDEM QUEUING SYSTEMS

5.1 Description

We consider a tandem queuing network with J single–server stages, on which N identical customers have to
be processed. The FIFO policy is used to sequence customers in each stage of the line, hence, in practice,
no scheduling problem has to be solved. The arrival time ai of customer i to the line and its processing
time ti j at each stage j are assumed known. Due to the FIFO policy, ai ≤ ai+1 for each customer i. After
having been processed in the first stage, customers proceed to the second stage, then to the third and so
forth until they visit the last stage and eventually leave the system. Completion time of customer i at stage
j is denoted by yi j.

We consider no balking rate for the system, which implies that the capacity of the first stage (server
and queue positions) is infinite. On the contrary, the capacity of stage j ( j >= 2) is bounded to be at
maximum c j. If the server in stage j is busy with customer k, customers i > k has to wait in queue at stage
j and, due to the finite capacity of the queue, they eventually can block the server in stage j−1, j−2 and
so on. With respect to the blocking phenomenon, the blocking before service control rule is assumed for
servers (Dallery and Gershwin 1992).

Servers are perfectly reliable and transportation times are considered negligible or already included in
service times. Finally, for sake of simplicity, the last stage is never blocked, thus customers completing
their processing in the last stage can always leave the system. These assumptions can be easily relaxed
and do not limit the generality of the presented results.

This line can be simulated by the following linear programming model, that can be obtained from the
formulation of Chan and Schruben (2003):

min ∑
N
i=1 ∑

J
j=1 yi j (16)

s.t. yi1 ≥ ai + ti1 ∀i (17)
yi+1, j− yi j ≥ ti+1, j ∀ j, i = 1, . . . ,N−1 (18)
yi, j+1− yi j ≥ ti, j+1 ∀i, j = 1, . . . ,J−1 (19)

yi+c j, j− yi, j+1 ≥ ti+c j, j i = 1, . . . ,N− c j, j = 1, . . . ,J−1 (20)

The objective function, as in the case of G/G/1 queue, is the minimization of the completion times of
each customer in each stage, i.e., the starting times of customers at each stage are not considered since
implicitly minimized by the minimization of the completion times.

Equations (17)-(20) describe the system dynamics. In particular, constraints (17) state that parts i can
be completed on the first server only if it is arrived at the system and it has been processed. Constraints
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(18) and (19) impose that, at the same time, nor a server can process two different customers neither a part
can be processed in two different stages, respectively. Constraints (20) prevent a customer from leaving
a stage if the immediate downstream queue is full. Finishing times y can assume only positive values in
the real domain because the arrival times are non-negative input parameters. The solution of the linear
problem provides the optimal values for decision variables y, i.e., the smallest finishing times.

Notice that for each i, equations (17)-(20) correspond to gi of Section 2.

5.2 Decomposed Models

The model presented in the previous section can be decomposed into a set of submodels to be sequentially
solved. Since the working sequence of customers is known a priori, the decomposition of the problem is
equivalent to partitioning the sequence of customers into subsequences. Each subsequence of parts will be
independently solved with appropriate initial conditions.

The initial conditions are related to the temporal constraints that link the last customers of each submodel
s (s = 1, . . . ,z) and the first customers of the next submodel to be solved (s+1). In fact, if some customers
of submodel s are still in process in some stages, the customers in submodel s+1 have to wait. In other
words, the system at the beginning of a single simulation can be not empty.

To find the number z of submodels, the procedure described in Section 3 can be used as is, since it is
problem independent. In this section, instead, we focus on the determination of the initial conditions, i.e.,
on the determination of ϒ.

Assumed already chosen the number b of customers in each submodel, the problem is then to identify
which customers of the previous submodel are still in the system (and influence the initial conditions) when
the first customer of a given submodel arrives.

Let s be the current submodel to be solved and let Iprev be the number of customers of submodel (s−1)
that are related to the customers in s. Iprev is bounded from above by the total available space in the line
(the sum of the maximum queue and server positions of each stage) and from below by 1 (the last customer
of the previous submodel). In particular, consider the last customer k of submodel (s−1). When k enters
stage j, only customers i < k that are still in queue at stage j+1 have to be considered since only they
can cause blocking on k thus interfering with the flow of customers of submodel s.

Notice that if the completion time of the last customer of s−1 is smaller than the arrival time of the
first customer of s, submodels s−1 and s are independent and no initial condition for s is necessary.

Given submodel s, Iprev can be identified according to the following procedure:

1. Solve the LP represented by submodel s−1, obtaining completion time yi j for each customer i in
s−1 and each stage j;

2. For each customer i in submodel s−1, proceeding backward from i = (s−1)b, check:
(a) if yi, j+1 > y(s−1)b, j for at least a stage j, customer i is constraining;
(b) if yi, j+1 < y(s−1)b, j for all stages, customer i is non-constraining.

Notice that condition (2.b) can be verified also for a number of customers smaller than the total number
that can be accommodated in the system.

Each submodel has then to consider its b customers plus the Iprev customers belonging to the previous
submodel. Notice that the Iprev customers are the first ones of the sequence (due to the FIFO policy) and
their service has not to be considered neither in the objective function nor in the constraints since they
have already being optimized in the previous submodel.

Using the notation previously introduced, the LP for submodel s (s = 1, . . . ,z) is as follows:
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min ∑
b+Iprev
i=1+Iprev

∑
J
j=1 yi j (21)

s.t. yi1 ≥ ai + ti1 i = 1+ Iprev, . . . ,b+ Iprev (22)
yi+1, j− yi j ≥ ti+1, j ∀ j, i = 1+ Iprev, . . . ,b+ Iprev−1 (23)
yi, j+1− yi j ≥ ti, j+1 i = 1+ Iprev, . . . ,b+ Iprev, j = 1, . . . ,J−1 (24)

yi+c j, j− yi, j+1 ≥ ti+c j, j i = 1+ Iprev, . . . ,b+ Iprev− c j, j = 1, . . . ,J−1 (25)
yi, j−di−1, j ≥ ti, j, i = 1+ Iprev, j = 1, . . . ,J−1 (26)

yi, j−1−di−c j, j ≥ ti, j−1 i = 1+ Iprev, . . . ,c j−1 + Iprev, i > c j−1, j = 2, . . . ,J (27)

The objective function (21) and constraints from (22) to (25) are the same as the complete model,
just limited to the customers in the submodel, i.e., they represent the gs vector of functions introduced
in Section 3. Notice that the last customer in the submodel is customer b+ Iprev, but both the objective
function and the constraints do not consider the first Iprev customers, since, as explained above, they are
customers from the previous submodel, the completion times of which have already been computed and
are represented by parameters di j for the current submodel. In details, parameters di j are the completion
time in stage j of customer i belonging to the previous submodel (s− 1). Clearly di j correspond to the
values of variables y in the optimal solution of (s−1).

The ϒ constraints containing the initial conditions are represented by equations (26) and (27). In
particular, equations (26) allow the first customer of the current submodel (i.e., part 1+ Iprev) to be
processed in stage j only if stage j has already processed the last customer of the previous submodel (i.e.,
customer Iprev). This condition has to be forced in each stage j. Instead, constraints (27) forbid the first
c j−1 customers of the current submodel (for each stage j from the second to the last) to leave the stage if
the downward buffer is full. If s = 1 (the first submodel to be solved), no initial condition is necessary,
i.e., Iprev = 0 and ϒ1 = /0.

5.3 Computational Experiments

The decomposition algorithm for the tandem queue has been tested on randomly generated instances with
the following characteristics: 4 servers; processing times exponentially distributed with mean equal to 0.4,
0.5, 0.7 and 0.2 time units for the first, second, third and forth server, respectively; customers are all
available at time zero (i.e., ai = 0 for any i); the buffer capacities are equal to 6, 8 and 5 for stage 2, 3
and 4, respectively. Linear programs have been solved by using the dual simplex algorithm of IBM ILOG
CPLEX.

The complete model has been solved for an increasing number of customers N. For each value of
N, five replications have been considered. The average times are reported in Figure 3, on the left. It is
possible to notice that the I/O time ϕT is linearly increasing with N, since it refers only to the time needed
to read the data and write the solution, while the increasing of the LP time φT (and then of the total time)
is non–linear, as discussed in Section 3. Notice however that, for small N, both LP and total time can be
well approximated by a first order function.

In the right side of Figure 3 the computational times to solve the sequence of submodels are reported
as a function of the number of customers b in each submodel. In this case, we consider a single sample
path. It is possible to notice that for small values of b, the I/O time is higher that the LP time and this is
reasonable since it refers to data manipulations that are mainly independent from the number of entities in
a submodel and hence they are not reducible, while the time to solve the submodel is in the linear region.
Increasing b, the number of subproblems to be solved decreases, leading, at the beginning, to a decrease
in the I/O time bigger than the increases in the LP time. Increasing b further, the decrease in the I/O time
slows down, while the increase in the LP time speeds up. The total time, hence, first decreases and then
increases, showing the minimum around 20,000 customers. This point is towards the end of the linear
behavior of the LP time, and also corresponds to the steepest decrease in the I/O time.
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Figure 3: Average LP, I/O and total times for the complete model (left); Average LP, I/O and total time
for the decomposed model (right).

6 CONCLUSIONS

In this paper we considered mathematical programming model to simulate DESs. A time–based decompo-
sition algorithm was proposed to overcome one of the major drawback of using mathematical programming
to simulate, i.e., the non-linear increasing of computational time as the length of simulation increases.

The developed algorithm first estimates the best number of submodels in which the complete model
should be partitioned, and then solves them sequentially, devising, from the solution of each submodel,
the initial conditions necessary to solve the next submodel.

Partitioning the complete model into a number of submodels exploits the typical super–additivity of
many non–linear functions and makes the mathematical programming approach usable also for long run
simulations. In fact, as the number of submodels increases, the number of entities in each submodel
decreases, making the computational time of the submodel to decrease as well. However, as the number of
submodels increases, the time for data manipulation also increases due to the augmented number of times
the solution of a submodel is propagated to the next submodel.

The algorithm estimates the optimal number of submodels solving the trade-off between solution time
and data manipulation time. The algorithm has been tested on the G/G/1 queue system. Numerical results
confirm that partitioning an LP simulation model allows to execute long runs in a computational time that
is a linear function of the number of entities. This important result can extend the use of mathematical
programming applied to simulation of DESs. We also applied our algorithm to a tandem queueing system
and the results showed that also in this case the reduction in the solution time can be substantial.

When compared with standard simulation, the mathematical programming approach is still looser in
terms of computational time. In other experiments (not reported in this paper for reasons of space) we found
that the slope of the total computation function of a mathematical programming simulation is steeper than
the slope of the standard simulation linear time function. However, having linearized the simulation time
will allow to use mathematical programming in a simulation–optimization context in which different models
dealing with simulation, or optimization or both have to be used in a unique framework. Notice that in
simulation–optimization context standard simulation models are a black–box that differs from optimization
models in the mathematics they use and in the software environments they are coded. Having a unique
framework is undoubtedly a large advantage for both practitioners and developers.

Finally, the concept of decomposition is valid for LP and MILP problems, however the specific systems
for which the proposed algorithm can be fully exploited have still to be clearly defined. A fixed sequence
of entities is a prerequisite, but additional features may be requested. All these issues will be the subjects
of our research.
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