
Proceedings of the 2012 Winter Simulation Conference
C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A. M. Uhrmacher, eds.

SIMULATION VISUALIZATION OF DISTRIBUTED COMMUNICATION SYSTEMS

Mihal Brumbulli
Joachim Fischer

Humboldt-Universität zu Berlin
Unter den Linden 6

10099 Berlin, GERMANY

ABSTRACT

Simulation is a popular method used for analysis and validation of distributed communication systems due
to their complex dynamics. Visualization has proven to be an added value especially when large networks
are concerned. In this paper we propose a novel approach and tool support for simulation visualization
of formally described distributed communication systems. The system is modeled using Specification and
Description Language Real Time (SDL-RT) and a simulation model for the ns-3 network simulator is
automatically generated. Network visualization is used in combination with Message Sequence Charts
(MSC) for providing detailed visual insight into system dynamics. System validation is also made possible
because of the formal semantics of MSCs.

1 INTRODUCTION

Simulation is a popular method used for analysis and validation of distributed communication systems due
to their complex dynamics. Analysis and validation is often based on a set of simulation traces, which
are a formatted representation of simulation events. These traces present a considerable amount of detail
that can potentially become difficult to comprehend without the support of tools. Visualization tools have
proven to be very useful especially when large networks are concerned. They use simulation traces to
provide visual insight into system dynamics.

Network simulators like ns-3 (Henderson et al. 2006), ns-2 (Breslau et al. 2000), or GTNetS (Riley
2003) can be used for the simulation of distributed systems. These simulators produce traces which can be
visualized using tools like Nam (Estrin et al. 2000), iNSpect (Kurkowski et al. 2005), or NetViz (Belue
et al. 2008). Scalability is considered a major advantage of this approach, because it can handle networks
with hundreds of nodes. Still, the implementation of a simulation model remains a tedious task, because
everything has to be hand-coded using general purpose languages like C/C++. This task can be time
consuming and error-prone, the models will soon become difficult to maintain, and they cannot be used
within other simulation frameworks, except the one they were implemented for. Visualization, on the other
hand, focuses on network dynamics. There exist no means for displaying system dynamics at the node
level. The available tools use packet-based visualization, which hides the information on real messages
exchanged between the nodes.

But network simulation and visualization is not the only approach. The SDL+ methodology (ITU-T
1997) defines how simulation can be used for the analysis and validation of communication systems.
Because of their formal semantics and graphical representation, Message Sequence Charts (MSC) (ITU-
T 2011) are used for test case specification and simulation tracing. Doldi (2003) gives an insight on
the methodology from a more practical perspective. The approach focuses on detailed simulation and
visualization of system dynamics. Having that said, it becomes easy to foresee scalability issues especially
when distributed communication comes into play. It is nearly impossible to visualize (in a comprehensible
way) the dynamics of systems running on distributed environments with hundreds of nodes.

978-1-4673-4781-5/12/$31.00 ©2012 IEEE

Brumbulli and Fischer

The solution presented in this paper aims at exploiting the advantages of both approaches. Specification
and Description Language Real Time (SDL-RT) (SDL-RT Consortium 2006) is used to describe simulation
models for distributed communication systems. Implementation for the ns-3 network simulator can be
automatically derived from model descriptions via code generation. Network visualization is used in
combination with MSCs for scalability and detailed depiction of system dynamics. For this, two levels of
visualization are defined: node and network. MSCs are used at the node level. At the network level we use
message-based network visualization with MSC semantics. The use of MSCs ensures visualization with
formal semantics at both levels, which provides also means for system validation as described in ITU-T
1997.

Section 2 gives an overview of the modeling approach. It shows how SDL-RT can be used to describe
simulation models and configurations. These descriptions are then used as a basis for C++ code generation
for the ns-3 network simulator, as shown in Section 3. Our visualization approach and tool support is
described in Section 4. Finally, we present the conclusions of our work in Section 5.

2 SPECIFICATION AND DESCRIPTION LANGUAGE - REAL TIME

SDL-RT is based on the SDL standard (ITU-T 2007) extended with real time concepts, which include
(SDL-RT Consortium 2006):

• use of C/C++ instead of SDL for data types,
• use of C/C++ as an action language, and
• semaphore support.

These extensions considerably facilitate integration and usage of legacy code and off the shelf libraries
such as real-time operating systems, simulation frameworks, and protocol stacks (SDL-RT Consortium
2006). Ahrens et al. (2009) and Blunk et al. (2011) show how SDL-RT and simulation frameworks can be
used in the development of complex distributed systems. Fischer et al. (2012) have successfully applied
this approach in the development of a wireless mesh sensing network for earthquake early warning.

Further extensions to SDL-RT are provided by UML diagrams (OMG 2011):

• Class diagrams bring a graphical representation of the classes organization and relations.
• Deployment diagrams offer a graphical representation of the physical architecture and how the

different nodes in a distributed system communicate with each other.

SDL-RT can be seen as a pragmatic combination of the standardized languages SDL, UML, and C/C++
for modeling different aspects of real-time systems. These aspects include: architecture and behavior,
communication, and deployment. The following paragraphs focus on each of these aspects in terms of a
simple client-server application example.

2.1 Architecture and Behavior

In SDL-RT the overall design is called the system. It can be composed of agents and communication
constructs. There are two kinds of agents: blocks and processes. A block is a structuring element that
does not imply any physical implementation on the target. Blocks can be composed of other agents and
communication constructs. When the system is decomposed down to the simplest block, the way the block
fulfills its functionality is described with processes. A process provides this functionality via extended
finite state machines. It has an implicit message queue to receive messages. A message has a name and a
parameter that is basically a pointer to some data. Messages go through channels that connect agents and
end up in the processes implicit queues. Figure 1a shows these concepts in a simple client-server example.

Everything outside the system is defined as the environment. This is considered as a special process
and can be used for communication with external entities (i.e. some process that is not part of the system).

Brumbulli and Fischer

cc cs

MESSAGE

mRequest(data),
mReply(data);

pClient

typedef struct data
{

char msg[50];
} data;

pServer

[mReply]

[mRequest]

[mRequest]

[mReply]

C/C++ declarationsSDL-RT declarations

message

channel
process

system

(a) Architecture

RTDS_INFORMATION(d.msg)

tWait(1000)

waiting

strcpy(d.msg, "Hello from Client!");

data d;

waiting

tWait(1000)

RTDS_TCP_CONNECT("10.0.0.2", pServer)

waiting

tWait

mReply(d)

mRequest(d) TO_ENV RTDS_TCP_SEND

(b) pClient

data d;

RTDS_INFORMATION(d.msg)

mRequest(d)

waiting

waiting

mReply(d) TO_ENV RTDS_TCP_SEND

RTDS_TCP_CONNECT("10.0.0.1", pClient)

strcpy(d.msg, "Hello from Server!");

(c) pServer

Figure 1: Architecture and behavior descriptions for a client-server application in SDL-RT.

Brumbulli and Fischer

In our approach the environment process implements the interface for distributed communication using
ns-3 sockets (see Section 2.2). SDL-RT extended final state machines for the client and server processes
are shown in Figure 1b and 1c. The descriptions here are quite straightforward:

• The client sends a request message (mRequest) to the server and waits for a reply (mReply). This
sequence of actions is repeated every 1000 ms (tWait timer).

• The server waits for a request from the client. Upon receiving a request, it immediately sends a
reply to the client.

2.2 Distributed Communication

The SDL-RT channels cannot describe distributed communication. By definition, they model communication
between processes running on the same node.

The simplest solution is to hard code this communication into the description of the process. This is
possible because SDL-RT uses C/C++ as an action language. Although it is quite straightforward, this
solution has some major drawbacks. First, the models become hard to maintain and debug, and second
and most important, coding has to be done for every system description.

Gotzhein and Schaible (1999) introduce a more elegant solution to the problem. They define a set
of SDL patterns for the development of distributed systems in Schaible and Gotzhein 2003. We use this
pattern-based approach with SDL-RT for modeling distributed communication for simulation purposes.
The defined patterns use the ns-3 sockets API for distributed communication via TCP or UDP. Figure
1a shows how this is modeled at the architectural level by simply sending the intended messages to the
environment. The pattern is applied as shown in Figures 1b and 1c by using the RTDS TCP CONNECT
and RTDS TCP SEND macros. RTDS TCP SEND tells the environment to send the message to the peer
process identified by the parameters given to RTDS TCP CONNECT.

2.3 Deployment

The SDL-RT deployment diagram describes the physical configuration of run-time processing elements of
a distributed system and may contain (SDL-RT Consortium 2006):

• Nodes are physical objects that represent processing resources.
• Components represent distributable pieces of implementation of a system.
• Connections are physical links between nodes or components.
• Dependencies from nodes to components mean the components are running on the nodes.

We use the deployment diagram for the configuration of ns-3 simulations. For this purpose we define
a set of rules to be applied in diagrams as shown in Figure 2:

• The �node� type represents a ns-3 node. It has neither properties nor attributes and acts as a
container for components. Components represent SDL-RT processes that appear in the system
architecture (Section 2.1). Dependencies associate components with �node� types.

• The �device� type represents a ns-3 network device. Its type is described as a property of the
�device� (i.e. PointToPointNetDevice in Figure 2). The attributes provide configuration for the
specific device. Their names and values can change according to the type of the device.

• The �channel� type represents a ns-3 communication channel. Its type is also described as a
property and the attributes are used for configuration.

• We define two types of connections: �node2device� and �device2channel�. The first links a
�node� with a �device�; the second links a �device� with a �channel�.

Brumbulli and Fischer

<<device2channel>> sc<<device2channel>> cc

<<node2device>> s<<node2device>> c

pServerpClient

<<channel>>
p2p

{PointToPointChannel}

+Delay = TimeValue(MilliSeconds(2))

<<node>>
clientNode

<<device>>
serverDevice

{PointToPointNetDevice}

+Address = Mac48AddressValue(Mac48Address::Allocate())
+DataRate = DataRateValue(DataRate("5Mbps"))
+TxQueue = PointerValue(CreateObject<DropTailQueue>())

<<device>>
clientDevice

{PointToPointNetDevice}

+Address = Mac48AddressValue(Mac48Address::Allocate())
+DataRate = DataRateValue(DataRate("5Mbps"))
+TxQueue = PointerValue(CreateObject<DropTailQueue>())

<<node>>
serverNode

Configuration

Figure 2: A simulation configuration for the client-server example using SDL-RT deployment diagram.

In addition, �node-container� and �device-container� node types can be used for describing
configurations with a higher number of nodes. A �node-container� has only one property, which is the
number of nodes to be created. It can be linked with a �device-container� using a �node2device�
connection.

For more flexibility and support for complex configurations, SDL-RT comments can be used to include
C++ code in the description (the Configuration rectangle in Figure 2). This code is merged with the
generated code as described in Section 3.

3 SIMULATION CODE GENERATION

SDL-RT descriptions (architecture, behavior, and deployment) are used as a basis for the generation of an
executable model for the ns-3 simulator. This implies C++ code generation from SDL-RT models.

SDL code generation for network simulators was introduced in (Kuhn et al. 2005). The authors
describe how C++ code for the ns-2 simulator can be generated from SDL models. SDL implementations
interact with the simulator through named pipes leading to potential scalability issues. We have already
addressed this in Brumbulli and Fischer 2011 by generating executables that use directly the simulation
library provided by ns-3. We further improve our approach by providing a generic model for code generation
as shown in Figure 3.

• RTDS InstanceManager handles the creation of process instances.
• RTDS Scheduler keeps track of all process instances running on a node and handles communication

between processes. This communication can be local or distributed. Local communication is
handled via shared memory. In this case the sender and receiver process instances are running
on the same node, which means that they can be accessed by the same RTDS Scheduler. On the
other hand, distributed communication is handled via ns-3 sockets (TCP or UDP), because sender
and receiver are running on different nodes. There exists a one-to-one relationship between the

Brumbulli and Fischer

RTDS_Scheduler

parentNode

tcpSocket

udpSocket

globalMessageId

globalTimerId

RTDS_Scheduler()

RTDS_Scheduler()

~RTDS_Scheduler()

run()

sendMessage()

sendMessageToName()

createInstance()

tcpAccept()

tcpSend()

tcpReceive()

udpSend()

udpReceive()

RTDS_Trace

RTDS_Proc

RTDS_isProcedure

RTDS_initialMessage

RTDS_senderId

RTDS_calledProcedure

RTDS_nextLabelId

RTDS_currentContext

RTDS_sdlStatePrev

sdlProcessNumber

mySdlInstanceId

sdlState

currentMessage

queueId

RTDS_Proc()

~RTDS_Proc()

RTDS_executeTransition()

RTDS_continuousSignals()

msgQueueReceive()

msgQueueSendToId()

msgQueueSendToEnv()

msgQueueSendToName()

msgSave()

setTimer()

resetTimer()

timerExpire()

processCreate()

setSdlState()

setInformation()

RTDS_semaphoreIdTake()

RTDS_semaphoreNameTake()

RTDS_semaphoreIdGive()

RTDS_semaphoreNameGive()

RTDS_MessageHeader

messageNumber

timerUniqueId

messageUniqueId

sender

receiver

dataLength

pData

RTDS_MessageHeader()

~RTDS_MessageHeader()

RTDS_InstanceManager

factory

RTDS_InstanceManager()

~RTDS_InstanceManager()

createInstance()

RTDS_TimerState

timerNumber

timerUniqueId

watchDogId

timeoutValue

RTDS_TimerState()

~RTDS_TimerState()

scheduledInstanceListRTDS_parentScheduler

*

<<list>>

timerList sdlInstanceId

* 1

offspringSdlInstanceId

parentSdlInstanceId

0..1

0..1

<<list>>

saveQueue

*

<<list>>

Figure 3: Class diagram for simulation code generation.

RTDS Scheduler and the ns-3 node (the �node� type in Figure 2). This concept is implicitly
included in the �node� type definition.

• RTDS Proc provides basic functionality for the SDL-RT processes. All SDL-RT processes (i.e.
pClient and pServer in Figure 1) extend this class by implementing the RTDS executeTransition
member function. This is the C++ implementation of the behavior descriptions shown in Figure
1b and 1c. Each process instance is associated with only one RTDS Scheduler.

• RTDS MessageHeader encapsulates SDL-RT messages. It includes some additional information
required for handling communication between processes. The sender and receiver attributes are
unique identifiers of the source and destination process instance.

• RTDS TimerState implements the SDL-RT timer. The core functionality is given by the watchDogId
attribute, which is a ns-3 timer. This is an important concept because it provides integration with the
ns-3 library. All events are handled by the the ns-3 scheduler and there is no need for synchronization
or external mechanism to interact with the simulator.

• RTDS Trace implements the tracing mechanism used for visualization (see Section 4).

SDL-RT deployment descriptions (Figure 2) are used to automatically generate a configuration for the
ns-3 simulator. The generated code for the client-server example is shown in Listing 1.

First, code is generated for all nodes: �node� (Lines 3-8), �device� (Lines 10-18), and �channel�
(Lines 20-21). Each �node� includes an implicit creation of its associated RTDS Scheduler and the
RTDS Env environment process, which is used for distributed communication (see Section 2.2).

Code generation continues wit components (RTDS Proc instances) and their dependencies. Depen-
dencies associate the RTDS Proc instance with the �node� through its implicit RTDS Scheduler (Lines
23-24).

Brumbulli and Fischer

Finally, all connections are implemented: �node2device� (Lines 26-27) and �device2channel�
(Lines 29-30). All code in SDL-RT comments (Configuration rectangle in Figure 2) is placed after the
generated code.

1 int main(int argc, char **argv)
2 {
3 Ptr<Node> clientNode = CreateObject<Node>();
4 RTDS_Scheduler clientNode_scheduler(clientNode);
5 RTDS_Env(&clientNode_scheduler);
6 Ptr<Node> serverNode = CreateObject<Node>();
7 RTDS_Scheduler serverNode_scheduler(serverNode);
8 RTDS_Env(&serverNode_scheduler);
9

10 Ptr<PointToPointNetDevice> clientDevice = CreateObject<PointToPointNetDevice>();
11 clientDevice->SetAttribute("Address", Mac48AddressValue(Mac48Address::Allocate()));
12 clientDevice->SetAttribute("DataRate", DataRateValue(DataRate("5Mbps")));
13 clientDevice->SetAttribute("TxQueue", PointerValue(CreateObject<DropTailQueue>()));
14

15 Ptr<PointToPointNetDevice> serverDevice = CreateObject<PointToPointNetDevice>();
16 serverDevice->SetAttribute("Address", Mac48AddressValue(Mac48Address::Allocate()));
17 serverDevice->SetAttribute("DataRate", DataRateValue(DataRate("5Mbps")));
18 serverDevice->SetAttribute("TxQueue", PointerValue(CreateObject<DropTailQueue>()));
19

20 Ptr<PointToPointChannel> p2p = CreateObject<PointToPointChannel>();
21 p2p->SetAttribute("Delay", TimeValue(MilliSeconds(2)));
22

23 pClient(&clientNode_scheduler);
24 pServer(&serverNode_scheduler);
25

26 clientNode->AddDevice(clientDevice);
27 serverNode->AddDevice(serverDevice);
28

29 clientDevice->Attach(p2p);
30 serverDevice->Attach(p2p);
31

32 // Configuration
33 ...
34 return 0;
35 }

Listing 1: Generated code for the simulation configuration shown in Figure 2.

4 VISUALIZATION

Visualization is based on a set of traces produced by simulation execution. These traces are made available
after the simulation is finished. This post-simulation visualization approach is also applied by popular
network visualization tools like Nam and iNSpect. The simulation traces are a formatted representation of
simulation events of interest related to distributed communication systems. The event types to be traced
are organized as shown in in Figure 4.

The RTDS Trace class implements the generation of the trace file. The list of traced events is accessible
via nodeEventList and networkEventList attributes. There exists only one instance of RTDS Trace in the
simulation model and it is accessible by all RTDS Scheduler and RTDS Proc instances (see Figure 3).

The RTDS Node contains information about the node (i.e., unique identifier, coordinates, etc.). This
information is used to identify and display the nodes during visualization.

The RTDS NodeState contains information about the node’s state. The state of a node is actually an
aggregation of all current states of process instances running on the node.

RTDS NodeEvent and RTDS NetworkEvent represent the traced simulation events. These events are
visualized in two levels: node and network.

Brumbulli and Fischer

RTDS_TaskStateChange

RTDS_MessageSend RTDS_MessageReceive

RTDS_Information RTDS_MessageSave

RTDS_NodeEvent

RTDS_TaskCreate

RTDS_State

RTDS_PacketReceive RTDS_TaskDelete

<<enum>>

RTDS_NetworkEventType

RTDS_NetworkEvent

RTDS_Node

RTDS_Trace

RTDS_NodeStateChange

RTDS_PacketSend

RTDS_NodeState

RTDS_TimerStart

RTDS_TimerCancel RTDS_TimerTimeout

<<list>>

nodeEventList

<<list>>

*

*

nodeStateList

nodeList

<<list>>

*

networkEventList

<<list>>

*

<<list>>

stateList*

Figure 4: Class diagram for simulation trace generation.

4.1 Node Level

Message Sequence Charts are used for visualization at the node level. MSC is a language to describe
the interaction between a number of independent message-passing instances (ITU-T 2011). It is a formal
language with graphical notations. Its formal definition enables formal and automated validation. The
textual form of MSC is mainly intended for exchange between tools and as a base for automatic formal
analysis. MSC is often used in conjunction with other methods and languages. It can (and often is), for
example be used in combination with SDL (ITU-T 1997).

MSCs describe the order in which events take place inside the node. These events are represented by
the set of classes that extend RTDS NodeEvent in Figure 4:

• RTDS TimerStart, RTDS TimerCancel, and RTDS TimerTimeout represent SDL-RT timer events.
• RTDS MessageSend, RTDS MessageReceive, and RTDS MessageSave represent SDL-RT message

events. They are used to trace communication between process instances running on the same node.
• RTDS TaskCreate, RTDS TaskDelete, and RTDS TaskStateChange represent SDL-RT process re-

lated events. The term task is intended as process instance.
• RTDS Information can be used for debugging information.

The traces at node level are visualized using the MscTracer tool from PragmaDev (PragmaDev 2009).

4.2 Network Level

Communication between nodes and their state are displayed based on network visualization concepts.
A node is represented by a filled circle with a unique identifier. The events that can be displayed are
represented by the set of classes that extend RTDS NetworkEvent in Figure 4:

• RTDS NodeStateChange represents a change to the node’s state. This type of event is displayed
by changing the color of the node accordingly. A distinct color is assigned to each node state.

• RTDS PacketSend represents a message sent from one node to another. The term packet is used only
to make the distinction with RTDS MessageSend, which is used to trace communication between
process instances on the same node. This type of event is displayed by a named arrow from the
sender to the receiver. Each message has a unique identifier.

Brumbulli and Fischer

• RTDS PacketReceive represents a message received from a node. This type of event is displayed
by removing the corresponding sent message (named arrow) from the view. This ensures correct
visualization of communication events, because each message is displayed until it is received. If a
sent message is never received, it is considered lost and it is displayed by a dotted named arrow
from the sender to the receiver.

Even though these events are displayed in a network visualization fashion, the tracing format used to
represent them is that of MSCs in textual form. This allows formal analysis and validation the system at
both levels (node and network) with the standardized methodology defined in ITU-T 1997.

4.3 Tool for Visualization

We provide tool support for the visualization of events at the network level. Our tool (DcsAnimator -
Distributed Communication System Animator) can interact with PragmaDev’s MscTracer for visualization
at the node level. Figure 5 shows a snapshot of the tool displaying simulation traces of the client-server
example. Figures 5b and 5c show corresponding MSC traces for the nodes in Figure 5a.

Time resolution is in milliseconds. Current time is synchronized between the tool and MscTracer. The
visualization speed is expressed in percentage of real-time (100% means nearly-real-time visualization)
and can be set in the Configuration parameters. Visualization controls can be used to navigate through
traced events. Navigation can be time or event based. Time-based navigation means that the current time
is increased (or decreased) by Skip milliseconds (Configuration parameters) and the events are visualized
accordingly. Event-based navigation allows to jump to the next (or previous) event relative to the current
one. The list of possible states is also configurable via the tool’s interface. It is possible to choose which
states to display during visualization. This becomes useful when the list is too long and there is no interest
in displaying some of states.

5 CONCLUSIONS

Network simulation and visualization is a well known and popular approach to analysis and validation of
distributed communication systems. Nevertheless, the description of simulation models is not a trivial task.
The models are hard to maintain and simulator dependent. Also, network visualization does not offer the
required level of detail when nodes’ internal behavior is concerned.

The approach presented in this paper uses SDL-RT and MSCs to address this issues. SDL-RT is used to
describe simulation models and configurations. Implementation for the ns-3 simulator can be automatically
derived from these descriptions with the help of code generation. The models for code generation are
flexible enough to be easily adapted for other network simulators. The only limitation is the programing
language; it has to be C/C++ because this is the action language of SDL-RT.

We use MSCs in combination with network visualization for displaying nodes’ internal behavior. Our
tool support provides detailed visualization of system’s dynamics at network and node level. The format
used for simulation traces is that of MSCs in textual form. This allows formal analysis and validation of
the system at both levels.

Brumbulli and Fischer

Visualization controls Current time

Configuration parameters

Node states

(a) Visualization at the network level with DcsAnimator.

(b) Client node in MscTracer. (c) Server node in MscTracer.

Figure 5: Snapshot of the visualization tool.

Brumbulli and Fischer

REFERENCES

Ahrens, K., I. Eveslage, J. Fischer, F. Kühnlenz, and D. Weber. 2009. “The Challenges of Using SDL for
the Development of Wireless Sensor Networks”. In SDL 2009: Design for Motes and Mobiles, edited
by R. Reed, A. Bilgic, and R. Gotzhein, Volume 5719 of Lecture Notes in Computer Science, 200–221.
Springer Berlin / Heidelberg.

Belue, J. M., S. H. Kurkowski, S. R. Graham, K. M. Hopkinson, R. W. Thomas, and J. W. Abernathy.
2008, December. “Research and Analysis of Simulation-based Networks through Multi-Objective
Visualization”. In Proceedings of the 2008 Winter Simulation Conference, edited by S. J. Mason, R. R.
Hill, L. Moench, O. Rose, T. Jefferson, and J. W. Fowler, 1216–1224. Piscataway, New Jersey: Institute
of Electrical and Electronics Engineers, Inc.

Blunk, A., M. Brumbulli, I. Eveslage, and J. Fischer. 2011, July. “Modeling Real-time Applications for
Wireless Sensor Networks using Standardized Techniques”. In SIMULTECH 2011 - Proceedings of 1st
International Conference on Simulation and Modeling Methodologies, Technologies and Applications,
edited by J. Kacprzyk, N. Pina, and J. Filipe, 161–167: SciTePress.

Breslau, L., D. Estrin, K. R. Fall, S. Floyd, J. S. Heidemann, A. Helmy, P. Huang, S. McCanne, K. Varadhan,
Y. Xu, and H. Yu. 2000. “Advances in Network Simulation”. IEEE Computer 33 (5): 59–67.

Brumbulli, M., and J. Fischer. 2011. “SDL Code Generation for Network Simulators”. In System Analysis
and Modeling: About Models, edited by F. Kraemer and P. Herrmann, Volume 6598 of Lecture Notes
in Computer Science, 144–155. Springer Berlin / Heidelberg.

Doldi, L. 2003. Validation of Communications Systems with SDL: The Art of SDL Simulation and Reachability
Analysis. Wiley.

Estrin, D., M. Handley, J. S. Heidemann, S. McCanne, Y. Xu, and H. Yu. 2000. “Network Visualization
with Nam, the VINT Network Animator”. IEEE Computer 33 (11): 63–68.

Fischer, J., J.-P. Redlich, J. Zschau, C. Milkereit, M. Picozzi, K. Fleming, M. Brumbulli, B. Lichtblau,
and I. Eveslage. 2012. “A wireless mesh sensing network for early warning”. Journal of Network and
Computer Applications 35 (2): 538–547.

Gotzhein, R., and P. Schaible. 1999. “Pattern-based development of communication systems”. Annals of
Telecommunications 54:508–525.

Henderson, T. R., S. Roy, S. Floyd, and G. F. Riley. 2006, October. “ns-3 Project Goals”. In Proceeding
from the 2006 workshop on ns-2: the IP network simulator (WNS2 ’06), edited by T. Jiménez and
D. Ros. New York, NY, USA: ACM.

ITU-T 1997. “SDL+ methodology: Use of MSC and SDL (with ASN.1). ITU-T Recommendation Z.100
- Supplement 1”. Technical report, International Telecommunication Union.

ITU-T 2007. “Specification and Description Language (SDL). ITU-T Recommendation Z.100”. Technical
report, International Telecommunication Union.

ITU-T 2011. “Message Sequence Chart (MSC). ITU-T Recommendation Z.120”. Technical report, Inter-
national Telecommunication Union.

Kuhn, T., A. Geraldy, R. Gotzhein, and F. Rothländer. 2005. “ns+SDL The Network Simulator for SDL
Systems”. In SDL 2005: Model Driven, edited by A. Prinz, R. Reed, and J. Reed, Volume 3530 of
Lecture Notes in Computer Science, 1166–1170. Springer Berlin / Heidelberg.

Kurkowski, S., T. Camp, N. Mushell, and M. Colagrosso. 2005, September. “A Visualization and Analysis
Tool for NS-2 Wireless Simulations: iNSpect”. In 13th IEEE International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS 2005), edited by
G. Riley, R. Fujimoto, and H. Karatza, 503–506. Washington, DC, USA: IEEE Computer Society.

OMG 2011. “OMG Unified Modeling Language (OMG UML), Superstructure. Version 2.4.1”. Technical
report, Object Management Group.

PragmaDev 2009. MSC Tracer User Manual.

Brumbulli and Fischer

Riley, G. F. 2003, October. “The Georgia Tech Network Simulator”. In Proceedings of the ACM SIGCOMM
workshop on Models, methods and tools for reproducible network research (MoMeTools ’03), edited
by G. Carle, H. Ritter, and K. Wehrle, 5–12. New York, NY, USA: ACM.

Schaible, P., and R. Gotzhein. 2003. “Development of Distributed Systems with SDL by Means of Formalized
APIs”. In SDL 2003: System Design, edited by R. Reed and J. Reed, Volume 2708 of Lecture Notes
in Computer Science, 158–158. Springer Berlin / Heidelberg.

SDL-RT Consortium 2006. “Specification and Description Language - Real Time. Version 2.2”. Technical
report, SDL-RT Consortium.

AUTHOR BIOGRAPHIES

MIHAL BRUMBULLI is a PhD student in computer science at Humboldt University Berlin, Germany.
He received a diploma in computer engineering from the Polytechnic University of Tirana, Albania. His
research interests are in formal description techniques for modeling and simulation of distributed systems.
His email address is brumbull@informatik.hu-berlin.de.

JOACHIM FISCHER is a professor for System Analysis, Modeling and Computer Simulation at Humboldt
University Berlin, Germany. His major research interests are object-oriented modeling of dynamic systems,
especially of distributed systems and the development of simulation tools. The combination of model
checking, simulated execution and target code generation based on abstract system models plays an important
role. He is a member of OMG and SDL-Forum. Currently he is the speaker of an interdisciplinary graduate
school supported by the German Research Foundation (DFG). His email address is fischer@informatik.hu-
berlin.de.

