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ABSTRACT

The routing of vehicles or personnel in complex logistics systems is a task that needs to be solved in
numerous applications, e.g., detailed models of transport networks or order picking areas. The number of
relevant nodes in such networks can easily exceed 10,000 nodes. Often, a basic task is finding the shortest
path from one node (start) to another (destination). Within the last years various simulation tools have been
extended by respective algorithms. However, the execution time of the simulation model may significantly
depend on the number of nodes in the network. We present algorithms from the literature and a comparison
of three simulation tools with respect to execution time and model size for different scenarios. We further
present an approach to work with so called sub-networks, i.e., the network is separated into areas, where
finding the shortest path includes the task of starting at a node in one sub-network with a destination in
another one.

1 INTRODUCTION

There is a variety of applications where simulation models are set up to analyze systems in which the
routing of personnel, e.g., workers or order pickers, and vehicles is a relevant part of the modeled process.
A basic task in this field is to find the shortest path from a current position to a given destination (within a
graph of nodes). For this problem, a number of algorithms is known. Several simulation systems offer an
automatic routing of vehicles, such that a vehicle takes the shortest path from the current position (node) to
a destination node automatically. Due to implementation details and the used algorithm, the performance
of simulation tools for finding a shortest path may differ in some most relevant aspects:

• Maximum size of transport networks (number of nodes) that can be simulated
• Average computational time to fulfill a certain number of transport orders during a simulation run
• Average computational time and resulting model size to initialize the corresponding graph and

matrices where shortest paths are stored

We compare three simulation tools, namely Automod, Enterprise Dynamics and Plant Simulation with
respect to the implementation and performance of automatically routing vehicles from a current position
to a destination on the shortest path within a transport network. Furthermore, we present a new approach
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for finding shortest paths which combines the advantages of short computational times and an acceptable
model size.

2 SHORTEST PATH ALGORITHMS

Transport networks can be modeled as graphs consisting of nodes and edges connecting the nodes. Different
algorithms have been proposed for finding the shortest path between the nodes in a graph. All algorithms
presented here are based on weighted graphs, i.e., the network consists of a set N of n nodes and a set E
of m edges (arcs), each connecting two nodes (i, j). The weight of an edge is denoted as d(i, j) for given
direct connections, for all other connections (via other nodes) d(i, j) denotes the shortest distance.

2.1 Basic Approaches from the Literature

Dijkstra’s Algorithm This algorithm delivers the shortest path from a given node i to a single destination
node or all other nodes within a graph with nonnegative edge path costs (Dijkstra 1959). The idea is to set
up a set of unvisited nodes and the tentative distance from node i to all other nodes j, denoted as Dist[ j].
Furthermore, a list Prev[ j] stores the previous node on the path from node i to node j. All distances are
initially set to infinity. The start node i is the initial current node. For the current node all of its unvisited
neighbors (connected by an edge) are considered next and the tentative distances to these neighbors are
calculated. After all neighbor nodes of the current node have been considered, the current node is deleted
from the set of unvisited nodes. The next node selected as the current node is the one with the shortest
distance to node i (i.e., the node which has the minimum value in Dist[ j]). The algorithm terminates
once the destination node has been deleted from the set of unvisited nodes, or once all nodes have been
considered and the set of unvisited nodes is empty. The calculation of the tentative distances is done by
checking if the currently stored distance from node i to node j (given by Dist[ j]) is greater than Dist[k] +
d(k, j). In this case, Dist[ j] is overwritten with Dist[k] + d(k, j) and Prev[ j] is set to node k.

The simplest implementation of Dijkstra’s algorithm stores nodes in a linked list or an array, and the
operation to find the minimum value in list Dist is a linear search through all nodes in Dist. In this case,
the time complexity is O(n2). However, the complexity can be reduced for sparse graphs, i.e., for graphs
with far fewer than n2 edges, with a more intelligent strategy to store the graph in form of adjacency lists
and using different types of heaps to implement the operation to find the minimum value in Dist efficiently.
With a strategy of using the Fibonacci heap the running time can be reduced to O(m+n× log(n)) (Cormen
et al. 2001; Fredman and Tarjan 1987).

The bi-directional approach of Diskstra’s algorithm, also called two-side Dijkstra is based on the idea
that finding the shortest path from start node i to destination node j might be carried out faster, if the search
is started from both sides in parallel. As Dijkstra’s algorithm can be interpretated as a breadth-first search,
a lot of ”unnecessary” steps might be carried out before reaching the destination node. Starting from both
sides might reduce the computational effort significantly (Berge and Ghouila-Houri 1965). However, if
the two-sided procedure is terminated as soon as a node has been processed from both directions, there
is no guarantee that this node is actually on the shortest path from the start node i to destination node j
(Vahrenkamp and Mattfeld 2007). Note, that the Bellmann-Ford algorithm also computes the shortest path
to all nodes from a starting node in a weighted digraph. It is slower than Dijkstra’s algorithm (Bellman
1958), but can be used for graphs with negative edge weights, which does not apply for the problems
considered in this paper.

A* Algorithm The A* algorithm is a more general approach than Dijkstra’s algorithm for finding
the shortest path between two nodes in a graph, see (Hart et al. 1968) for a first approach with a correction
in (Hart et al. 1972). As stated above, Dijkstra’s algorithm performs as a breadth-first search where the
next node to be looked at is the one with minimum distance to the starting node (given in Dist). The A*
algorithm introduces a heuristic to determine the order in which nodes are selected in the search process.
This heuristic is a sum of two terms. The first term is the distance to the current node k (given as Dist[k]),
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the second one is an estimation of the distance to the destination node j, usually denoted as h(k). In most
implementations h(k) is computed as the Euclidean distance from the considered node to the destination
node. If coordinates of all nodes are available, the distance can, e.g., be calculated by Pythagoras’ theorem.
Dijkstra’s algorithm can be viewed as a special case of the A* algorithm where h(k) = 0 for all nodes k
(Nilsson 1980).

Floyd-Warshall’s Algorithm This algorithm was developed independently from each other by Floyd
(1962) and Warshall (1962). Instead of computing a path from a given start node to all other nodes (or
a single destination node), all shortest paths, i.e., from each node to all others, are computed within a
single loop. As a result we obtain a matrix Dist, where Dist[i, j] denotes the distance from node i to node
j. Furthermore a matrix Next can be computed where Next[i, j] represents the successor of node i on the
shortest path from node i to node j (see Alg. 1).

for all nodes i of N do
for all nodes j of N do

if there is an edge from i to j then Dist[i, j] := d(i, j) else Dist[i, j] := ∞

for all nodes i of N do
for all nodes j of N do

for all nodes k of N do
if Dist[ j, i]+Dist[i,k]< Dist[ j,k] then Dist[ j,k] := Dist[ j, i]+Dist[i,k]; Next[ j,k] := i;

Algorithm 1: Floyd-Warshall’s algorithm

Floyd-Warshall’s algorithm has a time complexity of O(n3), which is equivalent to performing Dijkstra’s
algorithm n times. However, Floyd is usually faster than executing Dijkstra’s algorithm for each node.
In analogy to techniques to improve the time complexity of Dijkstra’s algorithm, Johnson’s algorithm
(Johnson 1977) can be regarded as a superior approach to find the shortest paths between all pairs of nodes
in sparse directed graph. It allows some of the edge weights to be negative, but no negative-weight cycles
must exist. It works by using the Bellmann-Ford algorithm to compute a transformation of the input graph
that removes all negative weights, allowing Dijkstra’s algorithm to be used on the transformed graph.

Highway Hierarchies Several speed-up techniques for shortest-path algorithms have been proposed
(e.g., Willhalm 2005 and Sturtevant and Geisberger 2010). The approach of highway hierarchies is of
special importance for path-finding in road networks. It bases on the fact, that logistic systems often contain
clusters of densely connected stations while the clusters are interrelated by only a few main edges—i.e.,
there are cities and highways between the cities. A similar structure can be found in plant logistics systems
where manufacturing lines and warehouses resemble cities and in-plant roads correlate with highways.
Highway hierarchies exploit this characteristic. The original graph is extended by adding a coarsened graph.
An edge in the coarsened graph represents a shortest path in the original graph. The original graph and
the coarsened graph are linked by additional edges. Several levels of reduced graphs may be introduced.
Traditional algorithms like Dijkstra’s algorithm can be applied on highway hierarchies. Details on this
approach can be found in Knopp et al. (2007) and Schultes (2008).

2.2 Comparison of the Algorithms for the Usage in Simulation Models

A comparison of different approaches for finding shortest paths in road networks can be found in (Zhan
and Noon 1998). As we focus on the implementation of shortest path algorithms in simulation models,
we can distinguish two cases:

• Shortest paths are calculated during the simulation run (e.g., Dijkstra’s algorithm or A*).
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• All shortest paths are computed beforehand and are stored in respective matrices (e.g., Floyd-
Warshall’s algorithm). Once computed, finding the shortest path—or finding the next node to be
visited on the path to the destination node, respectively—is done by looking it up in matrix Next.

If each shortest path is needed once for any simulation run with the respective model, both strategies
should require similar computational times. However, the same shortest paths are often needed multiple
times in simulation models of order picking or transportation systems. This may be due to several vehicles
within the system taking the same paths. Furthermore, one has to consider the number of replications of
simulation runs within an experiment. More important, however, is the fact that paths may only differ in
a few nodes at the start or the end of the complete path. Using a pre-calculation of all shortest paths will
also prevent from the re-calculation of paths. In this case, the pre-calculation of all shortest paths should
lead to a much better computational time in total (cf. Sec. 5 for respective findings).

In case of using Floyd-Warshall’s algorithm, the short computational times in model execution have to
be paid for with additional storage space consumption. The required space for storing matrix Next depends
on the squared number of nodes. This may become a restrictive factor even for moderately large graphs
(or respective road networks). As can be seen from the results in Sec. 5, common simulation tools whose
shortest path algorithms include the generation of adjacency matrices, can only handle problem sizes of
up to 6,500 nodes for a regular PC with 6 GB RAM. On the other hand, approaches which are based
on Floyd-Warshall’s algorithm are much faster in model execution than approaches that compute shortest
paths during model execution.

The next section presents a combined approach, where most of the computation is done before model
execution and only a rather small ratio of computation has to be done during the simulation run. This
approach results in small model sizes and is especially designed for large graphs.

3 A HIERARCHICAL APPROACH USING FLOYD-WARSHALL’S ALGORITHM

In this section we present an approach to combine the advantage of Floyd-Warshall’s algorithm with a
reasonable model size and RAM requirement for the corresponding matrices. Unlike the more general
approach of highway hierarchies (see Sec. 2.1) we add just one hierarchy level. The main idea is, that the
overall graph is split into several sub-graphs of reasonable size. If we consider a graph with 150× 150
nodes (22,500 nodes) and split it up into 36 sub-graphs of 25×25 nodes (each 650 nodes), we reduce the
space requirement for disk space and RAM significantly to about only 4.4% —from 1504 = 506,250,000 to
36×254 = 14,062,500 data fields of the needed matrices of the sub-graphs and 2900×2900 = 8,410,000
data fields of the additional matrix Main which stores the connections between the sub-graphs.

Floyd-Warshall’s algorithm is performed for each sub-graph. Shortest paths with start node and
destination node belonging to the same sub-graph can be handled as described in Sec. 2.1. Paths which
start in one sub-graph and have their destination node in another sub-graph need to be calculated during the
simulation run. With the definition of sub-graphs, we also can define two sub-sets of the node set of each
sub-graph, referred to as exit and entry nodes of a sub-graph: An exit node is defined as a starting node of
an edge with the partner node belonging to another sub-graph, which is called an entry node, respectively.

Consider the example given in Fig. 1. The shortest path from a node in sub-graph A to a node in
sub-graph F might lead through sub-graphs B, C or B, E or D, E. In order to find the shortest path, we
need to check the distance from the start node to each exit node of the sub-graph and correspondingly the
distance from each entry node of the destination sub-graph to the final destination node. We further need
to know the shortest distance between all entry and exit nodes of the sub-graphs. Here, an additional graph
on a higher hierarchy level is used: We define a graph called Main, which consists of all nodes that are
either an entry or an exit node (or both) of any of the given sub-graphs. Some of these nodes are connected
directly by an edge. For each sub-graph we also know the shortest distances between all entry and all exit
nodes (as a result from the application of Floyd-Warshall’s algorithm to the respective sub-graph). These
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Figure 1: Hierarchy of graphs with six sub-graphs.

shortest distances now constitute further edges within graph Main (cf. Fig. 1). For the resulting graph all
shortest distances are calculated according to Floyd-Warshall’s algorithm again.

In order to obtain the shortest path from node i in sub-graph SGstart to a destination node k in sub-graph
SGdest we apply Alg. 2. The function dist(A, i, j) returns the shortest distance from node i to node j of
graph A. Note, that a simple improvement is to enter the inner loop only if dexit is smaller than dmin. As
can be seen, the computational time depends on the number of entry and exit nodes of the two respective
sub-graphs with a complexity of O(n×m) with n being the number of exit nodes of SGstart and m being
the number of entry nodes of SGdest .

dmin := ∞

for all exit nodes j of SGstart do
dexit = dist(SGstart , i, j)
for all entry nodes l of SGdest do

dmain := dist(Main, j, l); dentry := dist(SGdest , l,k); dtotal := dexit + dmain + dentry

if dtotal < dmin then dmin := dtotal; jbest := j; lbest := l

Algorithm 2: Obtaining the shortest path for nodes within different sub-graphs.

With jbest and lbest we can obtain the sequence of all other entry and exit nodes on the shortest path
directly from the successor matrix Main. We set up a list of these nodes from Main. This way, the given
algorithm has to be performed only once for each transport order. The vehicle asks at each node for the
next node to visit. If the next node on the list is a direct neighbor of the current node, we can delete the
node from the list. Otherwise, the next node is retrieved from the corresponding successor matrix of the
current sub-graph; with the next node on the list as the destination node. Once the vehicle has reached
the destination sub-graph the original destination node is used to find the next node to be visited from the
successor matrix of the destination sub-graph.

4 IMPLEMENTATION OF AUTOMATIC ROUTING IN SIMULATION TOOLS

There are various software tools available in the field of discrete event simulation (see Lindemann and
Schmid (2007) for a market survey). We have inspected three simulation systems widely used in the domain
of production and logistics: Tecnomatix Plant Simulation from Siemens, AutoMod from Applied Materials,
and Enterprise Dynamics from INCONTROL Simulation Solutions. Although the algorithms implemented
in these tools are not published by the software vendors, some conclusions can be drawn from the modeling
requirements. In this section we discuss how to model a transport network and a vehicle that has to fulfill
a sequence of transport orders defined by their respective destination nodes.
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4.1 Plant Simulation

Plant Simulation provides uni- and bidirectional tracks to model road networks (Bangsow 2010). Each
track has a starting point and an endpoint, which might be connected with starting points or endpoints
of other track objects. An event handler may be called whenever a vehicle reaches the starting point or
endpoint of a track. Using this modeling concept, arbitrary complex road junctions can be modeled.

Plant Simulation is obviously using Dijkstra’s, A* or a derivative of these algorithms for determining
the path of a vehicle from its current location to a given destination: There is no preprocessing of the road
network required before performing a simulation run. It is even possible to modify the network during a
simulation run: Vehicles will always use the shortest path to reach their destination.

For modeling the different graphs we used bi-directional tracks. For modeling the nodes we created
an object consisting of a short bi-directional track and a method to check whether the node is the current
destination of the vehicle. If so, the current transport order is fulfilled and the destination node of the next
transport order is taken from the order list, i.e., the respective attribute is overwritten. The entire layout
including all connections of tracks and stations is generated by respective methods.

We also used Plant Simulation as a basis for implementing the strategy presented in Sec. 3. Note
however, that this approach is independent from any of the simulation tools we consider in this paper.

4.2 AutoMod

AutoMod is a compiler based 3D simulation tool, that provides a subsystem type called path mover for
modeling vehicle systems. The path network distinguishes paths and control points. Paths have to be
drawn using different primitives (straight sections, curves etc.) and control points for interaction have to
be snapped on them. Each control point can only be assigned to one path. A network can also be imported
from a text file with a little help of a spreadsheet. In this case, the uncompiled model’s size exceeds the
network’s text file only by a few kilobyte.

In AutoMod, algorithms are used to calculate fastest routes between points, regarding user defined
transfer-times and navigation-factors on specific paths. During the compiler run, AutoMod builds up a
routing table with route information for every possible combination of control points. This leads to large
compiled models. Building up this routing table cannot be disabled. Hence, the model size is limited.

The vehicle’s behavior is simulated very accurately by regarding acceleration, curve speed, speed limits
depending on load types and other physical details. Vehicle queuing, strategies for assigning jobs to vehicles
and other features can be used, too. During a simulation run, vehicles can be rescheduled by user defined
methods but the network itself cannot be modified.

In our simulation experiments, the vehicle reads the given list of transport orders (destination nodes)
from an external text file and begins traveling on the bi-directional paths. AutoMod is able to perform
simulation runs with 1,000 vehicles and more at one time in the 41×41 network (see Sec. 5).

4.3 Enterprise Dynamics

Enterprise Dynamics offers the creation of node networks, to which vehicles can be linked. Each node has
a position given by its coordinates. All bi-directional edges can be created using an adjacency matrix of
all nodes, where a value of one denotes a direct connection between the respective nodes. The length of
the edges are computed by Enterprise Dynamics.

After generating the network, an optimization routine needs to be carried out before the first run. The
shortest distances between all nodes in a network are computed by Enterprise Dynamics in advance using
an optimized version of Dijkstra’s algorithm.

For modeling the different graphs we used the node network. A source and a destination object for the
vehicle (transporter) under consideration are used to communicate the next two destinations to visit. As
vehicles need a transport order as a basis, we always create a new order with starting point being the next
node on the list and the destination node being the one following that node on the list. Once the vehicle
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reaches its destination, the source and destination objects are dynamically attached to the corresponding
next nodes (according to the order list). The entire layout is generated by respective methods generically.

5 EMPIRICAL RESULTS

5.1 Considered Problem Instances

In order to analyze the performance of different algorithms or implementations, instances of road networks
(graphs) of different size and complexity are needed. We have generated road networks (graphs) where
each station (node) (u;v) with u,v = 1, . . . ,n is located at coordinates (x;y) = (u ·g+ rnd(g);v ·d + rnd(g)).
This basically describes a squared grid with grid size g where the stations are translated out of their regular
position by a random distance rnd(g) between 0 and g. Each station that is not located on the boundary of
the grid is connected by edges with its four direct neighbors (u−1;v), (u+1;v), (u,v−1), and (u;v+1)
(cf. Fig. 2). We further randomly generate a list of 10.000 stations as an order list. As a result, we obtain
three tables which are used as input data for all simulation tools under consideration:

• Stations: List of all stations (nodes) in the graph with coordinates.
• Tracks: List of all tracks (edges) in the graph with the two connected stations and the length of

the track.
• Transport orders: List of 10,000 stations to be visited subsequently by one single vehicle.

At first, we have defined a set of 13 different graphs ranging from 100 nodes to 22,500 nodes. The
structure along with the number of edges and the average number of visited nodes per transport order are
given in Tab. 1.

A second set of network instances is designed for analyzing transport networks containing sparsely
connected clusters of densely connected stations. To obtain such instances we divided the original graphs
into sub-graphs and eliminated connecting edges between adjacent sub-graphs. For graphs with more than
2,000 nodes, we defined sub-graphs with an average size of 610 nodes (cf. Tab. 1, where the number of
sub-graphs and the average number of connecting edges between adjacent sub-graphs is given). Starting
with these graph structures, we reduced the number of connecting edges between adjacent sub-graphs.

Table 1: Problem instances for the empirical study.

number of number of avg. length of number of avg. number of
nodes edges shortest path sub-graphs edges between

(num. of nodes) adjacent sub-graphs
10×10 = 100 180 6.67 1 -
25×25 = 625 1,200 16.67 1 -

34×34 = 1,156 2,245 22.67 2 34
41×41 = 1,681 3,282 27.33 4 20.5
47×47 = 2,209 4,327 31.33 4 23.5
52×52 = 2,704 5,308 34.67 4 26
57×57 = 3,249 6,389 38 6 23.75
81×81 = 6,561 12,966 54 12 23.63
98×98 = 9,604 19,019 65.33 16 24.5

114×114 = 12,996 25,772 76 20 25.65
127×127 = 16,129 32,013 84.67 25 25.4
139×139 = 19,321 38,374 92.67 30 25.48
150×150 = 22,500 44,711 100 36 25
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Figure 2: Left: Original graph with 625 nodes. Right: Graph with four sub-graphs and two remaining
edges between adjacent sub-graphs.

For one set of problem instances we reduced the number of connecting edges to eight, for another set we
reduced it to only two edges (see Fig. 2 for an example with two remaining edges).

5.2 Findings

Three different experiments were performed. All of them were executed on a workstation with a 3.07 GHz
Intel Xeon CPU and 6 GB RAM operating on the 64-bit version of Windows 7.

Experiment 1 At first, the performance of the three simulation tools mentioned above was compared.
Only Plant Simulation was able to cope with all problem sizes. Both Enterprise Dynamics and AutoMod
were not able to generate or run a model with more than 52×52 (2,704) nodes on the hardware tested.
AutoMod seems to have difficulties with fully utilizing the physical memory under the 64-bit version of
Windows 7: The ’insufficient memory’ message appeared when only 3 GB RAM were actually in use.

As stated above, both Enterprise Dynamics and AutoMod generate adjacency matrices for storing the
shortest paths before model execution. These matrices get to big for the available RAM-size for large
models. As can be seen in Tab. 2, the model size increases with the squared number of nodes. Because
Plant Simulation does not perform any pre-calculation of shortest paths, the model size grows only linearly
with the number of nodes and it can handle all problem sizes tested. As we have also implemented
Floyd-Warshall’s algorithm as an external program, but store the necessary matrices in a Plant Simulation
model, we have a value for comparison of model size, when setting up only one sub-graph (see Tab. 2).

Table 2: File size of compiled simulation model [MB].

number of AutoMod Enterprise Floyd-Warshall’s algorithm
nodes Dynamics (Plant Simulation)

10×10 = 100 3.13 0.78 0.60
25×25 = 625 91.60 10.61 2.74

34×34 = 1,156 309 33.75 6.48
41×41 = 1,681 652 70.34 13.38
47×47 = 2,209 1,100 120.62 22.15
52×52 = 2,704 1,650 124.95 32.44
57×57 = 3,249 - - 46.00
81×81 = 6,561 - - 178.45
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Figure 3: Computational times for model execution with different tools.

Using our implementation, Plant Simulation can cope with 6,561 nodes, which is more than twice the size
that Enterprise Dynamics or AutoMod can handle.

Two aspects have to be considered when comparing the computational effort: The time for running
a simulation and the time for preprocessing the adjacency matrix. Model execution takes much more
time using Plant Simulation’s built-in algorithm than with other approaches, as one should expect (see
Fig. 3). AutoMod is about 70% faster than Enterprise Dynamics. However, our own implementation of
Floyd-Warshall’s algorithm is slightly faster than even AutoMod (about 10% in direct comparison).

The advantages in model execution have to be paid for with an additional effort for pre-calculating
and storing shortest paths. To perform this calculation on the 52×52 instance requires AutoMod 219 s,
Enterprise Dynamics 75 s, and our implementation of Floyd-Warshall’s algorithm 185 s. The computational
time grows with the cube of the number of nodes. Our implementation of Floyd-Warshall’s algorithm
required 2,510 s to pre-calculate the shortest paths on the 81× 81 instance. Based on these numbers, a
break-even-point can be calculated: Our implementation is to be preferred over Plant Simulation’s standard
functionality, if more than 18,113 transport orders have to be fulfilled in the 52×52 graph, or more than
86,210 transport orders in the 81× 81 graph. Note, however, that the computational times for Floyd-
Warshall’s algorithm include the time for the export and import of all necessary matrices (since we use an
external Java program) and a routine to copy and transform the results to internal data structures within
Plant Simulation. Probably, the computational time for preprocessing could be reduced with an improved
implementation.

Experiment 2 The next experiment evaluates the hierarchical approach presented in Sec. 3. Compared
to Floyd-Warshall’s original algorithm, our hierarchical approach is significantly slower, of course. However,
it is still about 50% faster than Plant Simulation’s standard algorithm and able to handle at least the 150×150
graph with 22,500 nodes, which is superior to all implementations of Floyd-Warshall’s algorithm discussed
in this paper. Tab. 3 shows the computational times for preprocessing and model execution. For simulating
the fulfillment of random transport orders in the original graph, there is a certain critical number of orders
(see column ’Break-Even’ in Tab. 3): If more than this number of transport orders has to be simulated, the
hierarchical version of Floyd-Warshall’s algorithm is less time-consuming than Plant Simulation’s internal
algorithm. Since road networks are usually stable in the course of a simulation study and many replications
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Table 3: Comparison of Plant Simulation with the hierarchical version of Floyd-Warshall’s algorithm.

number of Plant Simulation’s Hierarchical version of Break-even
nodes internal algorithm Floyd-Warshall’s algorithm [number of

model execution [s] preprocessing [s] model execution [s] transport orders]
10×10 = 100 4.31 0.41 3.14 3,473
25×25 = 625 18.16 4.24 5.66 3,395

34×34 = 1,156 40.72 7.36 17.02 3,108
41×41 = 1,681 65.47 8.35 28.97 2,286
47×47 = 2,209 89.73 13.71 38.28 2,665
52×52 = 2,704 113.35 20.79 47.39 3,153
57×57 = 3,249 142.01 20.53 64.60 2,652
81×81 = 6,561 308.57 47.72 140.53 2,840
98×98 = 9,604 459.95 83.80 210.54 3,360

114×114 = 12,996 634.70 139.54 318.66 4,415
127×127 = 16,129 816.04 200.93 396.90 4,794
139×139 = 19,321 980.38 286.75 493.23 5,886
150×150 = 22,500 1,171.86 396.77 571.77 6,612

have to be performed in order to achieve an acceptable confidence level, our algorithm should be preferred
over Plant Simulation’s algorithm in many cases.

Experiment 3 The last experiment analyzes the influence of the graph structure on the performance
of the hierarchical version of Floyd-Warshall’s algorithm: Connecting edges between the sub-graphs were
eliminated as described in Sec. 5.1. In a first step, eight edges remained between adjacent sub-graphs. As
we start with an average of about 25 connections between each two adjacent sub-graphs, we still keep
about 30% of the original number of connecting edges. The computational time for preprocessing was not
effected by this change. However, a significant reduction of simulation time can be observed (see Fig. 4).
The computational times for model execution are reduced by 69% (for the 52×52 graph) up to 89% (for
the 150× 150 graph). If adjacent sub-graphs are connected by two edges only, the runtime advantage
becomes even more pronounced and reaches 93% for the 150×150 instance. While the performance of the
hierarchical version of Floyd-Warshall’s algorithm strongly depends on the network structure, the execution
time for the internal algorithm of Plant Simulation differs not significantly.

Of course, the ’natural’ clusters of the underlying graph have to be reflected in the simulation model
when using the hierarchical version of Floyd-Warshall’s algorithm, i.e., the appropriate sub-graphs have to
be identified. In general, graph partitioning is a computationally intensive and therefore time-consuming
task. However, when simulating material flows and plant logistics systems (which is the major use case
for the simulation tools considered in this study), the sub-graphs usually correlate with plant buildings and
manufacturing lines. In this case, the partitioning can be done manually in the course of model development.

6 CONCLUSIONS AND FURTHER WORK

We have compared three simulation tools with respect to their performance concerning the automatic
routing of vehicles. Different strategies are pursued by Plant Simulation on the one hand and AutoMod and
Enterprise Dynamics on the other hand. While the latter two systems pre-calculate all possibly relevant
shortest paths before the actual simulation run, Plant Simulation performs this search for each transport
order during model execution. It depends on the simulation study in question which approach is to be
preferred: If the same paths have to be used many times, the pre-calculations of AutoMod and Enterprise
Dynamics will pay off. However, these tools are not able to simulate very large transportation systems.
Only Plant Simulation proved to be able to handle networks with more than 3,000 nodes.



Gutenschwager, Radtke, Völker, and Zeller

l
l

l

l

l

l

l

l

0 5000 10000 15000 20000

0
10

0
20

0
30

0
40

0
50

0
60

0

graph size [number of nodes]

co
m

pu
ta

tio
na

l t
im

e 
[s

]

l original graph
8 edges between adjacent sub−graphs
2 edges between adjacent sub−graphs

Figure 4: Computational times for all problem instances for the hierarchical Floyd-Warshall’s algorithm.

When comparing different simulation systems, not only the time required for model execution has to
be considered. Another—often more important—aspect is the effort for model creation, since this requires
the work of a simulation engineer. According to our subjective impression, there are larger differences in
usability than one could expect after decades of software development for discrete-event simulation.

In addition to the routing algorithms available in standard simulation software, we presented an extension
of Floyd-Warshall’s algorithm. We implemented this algorithm in Plant Simulation to use it instead of
Plant Simulation’s internal algorithm. Our approach is feasible for large networks and static road networks.
It delivers superior results for the network structures analyzed. It is very well suited, if there are loosely
coupled clusters of densely connected nodes. This is a typical characteristic of road networks that connect
towns, but may also be found in plant structures.

Future research could be done on analyzing different graph structures, and further tools could be consid-
ered also. Considering the presented hierarchical approach to find shortest paths based on Floyd-Warshall’s
algorithm, improvements could be implemented and tested. Furthermore, research could concentrate on
computing optimal partitions of given graphs such that the number of connecting edges is minimized while
the number of nodes per sub-graph does not exceed a certain limit.
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