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ABSTRACT

We propose a stochastic search algorithm for solving non-differentiable optimization problems. At each
iteration, the algorithm searches the solution space by generating a population of candidate solutions from
a parameterized sampling distribution. The basic idea is to convert the original optimization problem into
a differentiable problem in terms of the parameters of the sampling distribution, and then use a quasi-
Newton-like method on the reformulated problem to find improved sampling distributions. The algorithm
combines the strength of stochastic search from considering a population of candidate solutions to explore
the solution space with the rapid convergence behavior of gradient methods by exploiting local differentiable
structures. We provide numerical examples to illustrate its performance.

1 INTRODUCTION

We consider optimization problems with little structure, and assume that the objective function can only be
assessed through “black-box” evaluation, which returns the function value for a specified candidate solution.
In such a general setting, there is little problem-specific knowledge that can be exploited in searching for
improved solutions. These problems arise in many areas of importance and can be extremely difficult to solve
due to the presence of multiple local optimal solutions and the lack of structural properties. An effective
and promising approach for tackling such general optimization problems is stochastic search. This refers
to a collection of methods that use some sort of randomized mechanism to generate a sequence of iterates,
e.g., candidate solutions, and then use the sequence of iterates to successively approximate the optimal
solution. Over the past years, various stochastic search algorithms have been proposed in literature. These
include approaches such as simulated annealing (Kirkpatrick et al. 1983), genetic algorithms (Goldberg
1989), tabu search (Glover 1990), the nested partitions method (Shi and Ólafsson 2000), pure adaptive
search (Zabinsky 2003), sequential Monte Carlo simulated annealing (Zhou and Chen 2012), and the class
of model-based algorithms (cf. e.g., Zlochin et al. (2004)).

This paper focuses on model-based algorithms, which construct a sequence of distribution models to
characterize promising regions of the solution space. These algorithms typically carry out two interrelated
steps at each iteration: (1) draw candidate solutions from the sampling distribution; (2) use the performance
of these candidate solutions to update the sampling distribution. The hope is that at every iteration
the sampling distribution is biased towards the more promising regions of the solution space, and will
eventually concentrate on the set of optimal solutions. Examples of model-based algorithms include ant
colony optimization (Dorigo and Gambardella 1997; Dorigo and Blum 2005), annealing adaptive search
(AAS) (Romeijn and Smith 1994), probability collectives (PCs) (Wolpert 2004), the estimation of distribution
algorithms (EDAs) (Larranaga et al. 1999; Muhlenbein and Paaß 1996), the cross-entropy (CE) method
(Rubinstein 2001), model reference adaptive search (MRAS) (Hu et al. 2007), and the interacting-particle
algorithm (Molvalioglu et al. 2009; Molvalioglu et al. 2010). The various model-based algorithms mainly
differ in their ways of updating the sampling distribution.
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Because model-based algorithms work with a population of candidate solutions at each iteration, they
demonstrate more robustness in exploring the solution space as compared with their classical counterparts
that work with a single candidate solution each time (e.g., simulated annealing). The main motivation of
this paper is to integrate this robustness feature of model-based algorithms into familiar gradient-based
tools from classical differentiable optimization to facilitate the search for good sampling distributions. The
underlying idea is to reformulate the original (possibly non-differentiable) optimization problem into a
differentiable optimization problem over the parameter space of the sampling distribution, and then use a
direct gradient search method on the parameter space to solve the new formulation. This leads to a natural
algorithmic framework that consists of the following two steps at every iteration: (1) generate candidate
solutions from the current sampling distribution; (2) update the parameters of the sampling distribution
using a direct gradient search method. Although there are a variety of gradient-based algorithms that are
applicable in step (2) above, in this paper we focus on a particular algorithm that uses a quasi-Newton-like
procedure to update the sampling distribution parameters.

The rest of the paper is organized as follows. We introduce the problem setting formally in Section 2.
We propose the algorithm along with its derivations in Section 3. We carry out some numerical study in
Section 4 to illustrate the performance of the algorithm. Finally, we conclude this paper in Section 5. All
the proofs are given in the Appendix.

2 PROBLEM FORMULATION

Consider the maximization problem

x∗ ∈ argmax
x∈X

H(x), X ⊆ Rn. (1)

where the solution space X is a nonempty set in Rn, and H : X → R is a real-valued function. Denote
the optimal function value as H∗, i.e., there exists an x∗ such that H(x)≤ H∗ , H(x∗), ∀x ∈X . Assume
that H is bounded on X , i.e., ∃Hl >−∞, Hu < ∞ s.t. Hl ≤ H(x)≤ Hu, ∀x ∈X . We consider problems
where the objective function H(x) lacks nice structural properties such as differentiability and convexity
and could have multiple local optima.

Motivated by the idea of using a sampling distribution in model-based optimization, we let { f (x;θ)|θ ∈
Θ⊆Rd} be a parameterized family of probability density functions (pdfs) on X , where Θ is a parameter
space. For each distribution f (x,θ) in the family, it is easy to see that∫

H(x) f (x;θ)dx 6 H∗, ∀θ ∈ Rd .

In this paper, we simply write
∫

with the understanding that the integrals are taken over X . The equality
on the right-hand-side is achieved if and only if there exists a θ ∗ such that the probability mass of f (x;θ ∗)
is concentrated only on the set of global optima. Hence, finding x∗ can be done through finding θ ∗, and
the maximization problem (1) can be converted to

θ
∗ = arg max

θ∈Rd

∫
H(x) f (x;θ)dx. (2)

So instead of considering directly the original function H(x) that is possibly non-differentiable in x, we
now consider the new objective function

∫
H(x) f (x;θ)dx that is continuous on the parameter space and

usually differentiable with respect to θ . For example, under mild conditions the differentiation can be
brought into the integration to apply on the p.d.f. f (x;θ), which is often differentiable and in particular is
differentiable if it is in an exponential family of densities that we will focus on later.

The formulation of (2) suggests a natural integration of stochastic search methods on the solution space
X with gradient-based optimization techniques on the continuous parameter space. Conceptually, that is
to iteratively carry out the following two steps:
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1. Generate candidate solutions from f (x;θ) on the solution space X .
2. Use a gradient-based method for the problem (2) to update the parameter θ .

The motivation is to speed up stochastic search with a guidance on the parameter space, and hence combine
the advantages of both methods: the fast convergence of gradient-based methods and the global exploration
of stochastic search methods. Even though problem (2) may be non-convex and multi-modal in θ , the
sampling from the entire original space X compensates the local exploitation along the gradient on the
parameter space. In fact, our algorithm developed later will automatically adjust the magnitude of the
gradient step on the parameter space according to the global information, i.e., our belief about the promising
regions of the solution space.

For algorithmic development later, we introduce a shape function Sθ : R→R+, where the subscript θ

signifies the possible dependence of the shape function on the parameter θ . The function Sθ satisfies the
following conditions:

(a) Sθ (y) is upper bounded for bounded y and nondecreasing in y;
(b) The set of optimal solutions {argmaxx∈X Sθ (H(x))} is equal to {argmaxx∈X H(x)}, the set of

optimal solutions of the original problem (1).

Therefore, solving (1) is equivalent to solving the following problem

x∗ = argmax
x∈X

Sθ (H(x)). (3)

The main reason of introducing the shape function Sθ is to ensure nonnegativity of the objective function
Sθ (H(x)) under consideration.

For an arbitrary but fixed θ ′ ∈ Rd , define the function

L(θ ;θ
′),

∫
Sθ ′(H(x)) f (x;θ)dx.

According to the conditions on Sθ , it always holds that

0 < L(θ ;θ
′)≤ Sθ ′(H∗) ∀θ ,

and the equality is achieved if there exist a θ ∗ such that the probability mass of f (x;θ ∗) is concentrated
only on the set of global optima. Therefore, problem (3) and thus problem (1) can be converted to finding
θ ∗ that solves the following maximization problem:

θ
∗ = arg max

θ∈Rd
L(θ ;θ

′). (4)

Same as problem (2), L(θ ;θ ′) may be nonconvex and multi-modal in θ .

3 GRADIENT-BASED ADAPTIVE STOCHASTIC SEARCH

Following the formulation in the previous section, we propose a stochastic search algorithm that carries
out the following two steps at each iteration: let θk be the parameter obtained at the kth iteration,

1. Generate candidate solutions from f (x;θk).
2. Update the parameter to θk+1 using a quasi-Newton iteration for maxθ L(θ ;θk).

3.1 Derivation

We first derive the expressions for the gradient and Hessian of L(θ ;θ ′). Assuming it is easy to draw samples
from f (x;θ), then the main obstacle is to find expressions of the gradient and Hessian of L(θ ;θk) that can
be nicely estimated using the samples from f (x;θ). To overcome this obstacle, we choose { f (x;θ)} to be
an exponential family of densities defined as below.



Zhou and Hu

Definition 1 Suppose Θ is an open subset in Rd . A family { f (x;θ) : θ ∈ Θ} is an exponential family of
densities if it satisfies

f (x;θ) = exp{θ T T (x)−φ(θ)}, φ(θ) = ln{
∫

exp(θ T T (x))dx}. (5)

where T (x) = [T1(x),T2(x), . . . ,Td(x)]T is the vector of sufficient statistics, and θ = [θ1,θ2, . . . ,θd ]
T is the

vector of natural parameters.
Proposition 1 Assume that for any fixed θ ′, θ 7→ L(θ ;θ ′) is twice differentiable, and the differentiation
is interchangeable with the integration in L(θ ;θ ′). If f (x;θ) is in an exponential family of densities, then

∇θ L(θ ;θ
′) = Eθ [Sθ ′(H(X))T (X)]−Eθ [Sθ ′(H(X))]Eθ [T (X)],

∇
2
θ L(θ ;θ

′) = Eθ

[
Sθ ′(H(X))(T (X)−Eθ [T (X)])(T (X)−Eθ [T (X)])T ]−Varθ [T (X)]Eθ [Sθ ′(H(X))].

Proof. Please see Appendix.

Notice that if we were to use Newton’s method to update the parameter θ , the Hessian ∇2
θ

L(θ ;θ ′)
is not necessarily negative semidefinite to ensure the parameter updating is along the ascent direction of
L(θ ;θ ′), so we need some stabilization scheme. One way is to approximate the Hessian by the second
term on the right-hand-side with a small perturbation, i.e., −(Varθ [T (X)]+ εI)Eθ [Sθ ′(H(X))], which is
always negative definite. Thus, the parameter θ could be updated according to the following iteration

θk+1 = θk +αk ((Varθk [T (X)]+ εI)Eθk [Sθk(H(X))])−1
∇θ L(θk;θk),

= θk +αk (Varθk [T (X)]+ εI)−1
(

Eθk [Sθk(H(X))T (X)]

Eθk [Sθk(H(X))]
−Eθk [T (X)]

)
, (6)

where αk > 0 is the step size, and Eθk and Varθk denote the expectation and variance taken with respect to
f (·;θk), respectively. Define a density function

p(x;θ),
Sθ (H(x)) f (x;θ)∫
Sθ (H(x)) f (x;θ)dx

=
Sθ (H(x)) f (x;θ)

L(θ ;θ)
. (7)

Then (6) can be rewritten as

θk+1 = θk +αk(Varθk [T (X)]+ εI)−1 (Epk [T (X)]−Eθk [T (X)]) , (8)

where Epk denotes the expectation with respect to p(·;θk).
In the updating equation (8), the term Eθk [Sθk(H(X))]−1 is absorbed into ∇θ L(θk;θk), so we obtain a

scale-free term (Epk [T (X)]−Eθk [T (X)]) that is not subject to the scaling of the function value of Sθk(H(x)).
It would be nice to have such a scale-free gradient so that we can employ other gradient-based methods more
easily besides the above specific choice of a quasi-Newton method. Towards this direction, we consider a
further transformation of the maximization problem (4) by letting

l(θ ;θ
′) = lnL(θ ;θ

′).

Since ln : R+→ R is a strictly increasing function, the maximization problem (4) is equivalent to

θ
∗ = arg max

θ∈Rd
l(θ ;θ

′). (9)

The gradient and the Hessian of l(θ ;θ ′) are given in the following proposition.
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Proposition 2 Assume that for any fixed θ ′, θ 7→ l(θ ;θ ′) is twice differentiable, and the differentiation
is interchangeable with the integration in l(θ ;θ ′). If f (x;θ) is in an exponential family of densities, then

∇θ l(θ ;θ
′)|θ=θ ′ = Ep(·;θ ′)[T (X)]−Eθ ′ [T (X)],

∇
2
θ l(θ ;θ

′)|θ=θ ′ = Varp(·;θ ′)[T (X)]−Varθ ′ [T (X)],

where p(·;θ ′) is as defined in (7).

Proof. Please see Appendix.

Similarly as before, noticing that the Hessian ∇2
θ

l(θ ′;θ ′) is not necessarily negative definite to ensure
the parameter updating is along the ascent direction of l(θ ;θ ′), we approximate the Hessian by the slightly
perturbed second term in ∇2

θ
l(θ ′;θ ′), i.e., −(Varθ ′ [T (X)]+ εI). Then by setting

θk+1 = θk +αk (Varθk [T (X)]+ εI)−1
∇θ l(θk),

we again obtain exactly the same updating equation (8) for θ . The difference from (6) is that the gradient
∇θ l(θ ;θ ′) is a scale-free term, and hence can be used in other gradient-based methods with easier choices
of the step size. From an algorithmic viewpoint, it is better to consider the optimization problem (9) on
l(θ ;θ ′) instead of the problem (4) on L(θ ;θ ′), even though both have the same global optima.

Although there are many ways to determine the positive definite matrix in front of the gradient in
a quasi-Newton method, our choice of (Varθk [T (X)]+ εI)−1 is not arbitrary but based on some princi-
ple. Without considering the numerical stability and thus dropping the term εI, the term Varθ [T (X)] =
E[∇θ ln f (X ;θ)(∇θ ln f (X ;θ))T ] = E[−∇2

θ
ln f (X ;θ)] is the Fisher information matrix, whose inverse pro-

vides a lower bound on the covariance matrix of an unbiased estimator of the parameter θ (in the sense that
the latter matrix subtracting the former one is a positive semi-definite matrix) (Rao 1945), leading to the
fact that (Varθ [T (X)])−1 is the minimum-variance step size in stochastic approximation. Moreover, from
the optimization perspective, the term (Varθ [T (X)])−1 relates the gradient search on the parameter space
with the stochastic search on the solution space, and thus adaptively adjusts the updating of the sampling
distribution to our belief about the promising regions of the solution space. To see this more easily, let
us consider the special case T (x) = x. Then, a small value of (Varθ [X ])−1 indicates that the sampling
distribution f (·;θ) has a large variance (i.e., exploration dominates exploitation), so the algorithm is more
conservative by allowing a small amount of update in θk. On the other hand, a large value of (Varθ [X ])−1

indicates that we are more confident about certain promising regions, so a large gradient step in updating
θ is taken.

3.2 Algorithm

We will use the Quasi-Newton scheme (8) to update the parameter θ of the sampling distribution. In
implementation, the term Epk [T (X)] is often not analytically available and needs to be estimated. Suppose
{x1

k , . . . ,x
Nk
k } are independent and identically distributed (i.i.d.) samples drawn from f (x;θk). Since

Epk [T (X)] = Eθk

[
T (X)

p(X ;θk)

f (X ;θk)

]
,

we compute the weights {wi
k} for the samples {xi

k} according to

wi
k ∝

p(xi
k;θk)

f (xi
k;θk)

∝ Sθk(H(xi
k)), i = 1, . . . ,Nk,

N

∑
i=1

wi
k = 1.
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Hence, Epk [T (X)] can be approximated by

Ẽpk [T (X)] =
Nk

∑
i=1

wi
kT (xi

k). (10)

Some forms of the function Sθk(H(x)) have to be approximated by samples as well. For example, if
Sθk(H(x)) takes the form Sθk(H(x)) = (H(x)−Hl)I{H(x) ≥ γθk}, where γθ is the (1−ρ)-quantile, then
the quantile γθk needs to be estimated by the sample quantile. In this case, we denote the approximation
by Ŝθk(H(x)), and evaluate the normalized weights according to

ŵi
k =

Ŝθk(H(xi
k))

∑
Nk
j=1 Ŝθk(H(x j

k))
, i = 1, . . . ,Nk.

Then the term Epk [T (X)] is approximated by

Êpk [T (X)] =
Nk

∑
i=1

ŵi
kT (xi

k). (11)

The variance term Varθk [T (X)] is either not directly available or too complicated to compute analytically,
so it also needs to be estimated by samples:

V̂arθk [T (X)] =
1

Nk−1

Nk

∑
i=1

T (xi
k)T (x

i
k)

T − 1
N2

k −Nk

(
Nk

∑
i=1

T (xi
k)

)(
Nk

∑
i=1

T (xi
k)

)T

. (12)

The expectation term Eθk [T (X)] can be evaluated analytically in most cases. For example, when { f (·;θk)}
is chosen as the Gaussian family, Eθk [T (X)] reduces to the mean and second moment of the Gaussian
distribution.

Based on the above implementation of the updating scheme (8) for θ , we propose the following algorithm,
namely Gradient-based Adaptive Stochastic Search (GASS), for solving the maximization problem (1).
Algorithm 1 Gradient-Based Adaptive Stochastic Search (GASS)

1. Initialization: choose an exponential family of densities { f (·;θ)}, and specify a small positive
constant ε , initial parameter θ0, sample size {Nk}, and step size {αk}. Set k = 0.

2. Sampling: draw samples xi
k

iid∼ f (x;θk), i = 1,2, . . . ,Nk.
3. Estimation: compute the normalized weights ŵi

k according to

ŵi
k =

Ŝθk(H(xi
k))

∑
Nk
j=1 Ŝθk(H(x j

k))
,

and then compute Êpk [T (X)] and V̂arθk [T (X)] respectively according to (11) and (12).
4. Updating: update the parameter θ according to

θk+1 = θk +αk(V̂arθk [T (X)]+ εI)−1(Êpk [T (X)]−Eθk [T (X)]).

5. Stopping: check if some stopping criterion is satisfied. If yes, stop and return the current best
sampled solution; else, set k := k+1 and go back to step 2).
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In the above algorithm, at the kth iteration candidate solutions are drawn from the sampling distribution
f (·;θk), and then are used to estimate the quantities in the updating equation for θ so as to generate the
next sampling distribution f (·;θk+1). For the ease of exposition, suppose T (X) = X , and then the term
V̂arθk [T (X)] basically measures how widespread the candidate solutions are. Since the magnitude of the
ascent step is determined by (V̂arθk [T (X)]+ εI)−1, the algorithm takes smaller ascent steps to update θ

while the candidate solutions are more widely spread (i.e., V̂arθk [X ] is larger), and takes larger ascent steps
while the candidate solutions are more concentrated (i.e., V̂arθk [X ] is smaller). It means that exploitation
of the local structure is adapted to our belief about the promising regions of the solution space: we will
be more conservative in exploitation if we are uncertain about where the promising regions are and more
bold otherwise.

3.3 Accelerated GASS

GASS can be viewed as a stochastic approximation (SA) algorithm in searching the root of

(Varθk [T (X)]+ εI)−1
∇θ l(θ ;θk)|θ=θk = 0.

To improve the convergence rate of SA algorithms, Polyak (1990) and Ruppert (1991) first proposed to
take the average of the θ values generated by previous iterations, which is often referred to as Polyak (or
Polyak-Ruppert) averaging. The original Polyak averaging technique is “offline”, i.e., the averages are not
fed back into the iterates of θ , and hence the averages are not useful for guiding the stochastic search in
our context. However, there is a variation, Polyak averaging with online feedback (c.f. pp. 75 - 76 in
Kushner and Yin (2004)), which could also enhance the convergence rate of SA, although not as optimal as
the original Polyak averaging. It can be applied to accelerate the convergence of GASS, i.e., the parameter
θ will be updated according to

θk+1 = θk +αk

(
V̂arθk [T (X)]+ εI

)−1
(Êpk [T (X)]−Eθk [T (X)])+αkc(θ̄k−θk), (13)

where the constant c is the feedback weight, and θ̄k is the average

θ̄k =
1
k

k

∑
i=1

θi,

which can be calculated recursively by

θ̄k =
k−1

k
θ̄k−1 +

θk

k
. (14)

With this parameter updating scheme, we propose the accelerated GASS algorithm as following.
Algorithm 2 Gradient-based Adaptive Stochastic Search with Averaging (GASS avg)
Same as Algorithm 1 except in step 4) the parameter updating follows (13) and (14).

4 NUMERICAL EXPERIMENTS

In this section, we test the proposed algorithms GASS and GASS avg on some benchmark continuous
optimization problems selected from (Hu et al. 2007). To fit in the maximization framework where
our algorithms are proposed, we consider the negative of those objective functions that are originally for
minimization problems. The problems we consider are listed below with their dimensions in the parentheses.

(1) Griewank function (n=20): H1(x) = − 1
4000 ∑

n
i=1 x2

i +∏
n
i=1 cos

(
xi√

i

)
− 1, where x∗ = (0, · · · ,0)T ,

H∗ = 0.
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(2) Trigonometric function (n=20): H2(x) =−∑
n
i=1
[
8sin2(7(xi−0.9)2)+6sin2(14(xi−0.9)2) +

(xi−0.9)2
]
−1, where x∗ = (0.9, · · · ,0.9)T , H∗ =−1.

(3) Powel singular function (n=20): H3(x) =−∑
n−2
i=2

[
(xi−1 +10xi)

2 +5(xi+1− xi+2)
2 +(xi−2xi+1)

4+

10(xi−1− xi+2)
4
]
−1, where x∗ = (0, · · · ,0)T , H∗ =−1.

(4) Pintér’s function (n=20): H4(x) =−
[
∑

n
i=1 ix2

i +∑
n
i=1 20isin2(xi−1 sinxi− xi + sinxi+1) +

∑
n
i=1 i log10(1+ i(x2

i−1−2xi +3xi+1− cosxi +1)2)
]
−1, where x∗ = (0, · · · ,0)T , H∗ =−1.

Specifically, Griewank (H1) and Trigonometric (H2) are multimodal problems with a large number of local
optima, and the number of local optima increases exponentially with the problem dimension; Powel (H3)
is a badly-scaled function; Pintér (H4) is both multimodal and badly-scaled.

We compare the performance of GASS and GASS avg with two other algorithms: the latest version of
the cross-entropy (CE) method, i.e., the modified CE based on stochastic approximation (Hu et al. 2012),
and Model Reference Adaptive Search (MRAS) (Hu et al. 2007). We choose the shape function in GASS
and GASS avg to be of the similar form as in the CE method or MRAS:

Sθk(H(x)) = (H(x)−Hl)I{H(x)≥ γθk},

where the (1−ρ)-quantile γθk is estimated by the (1−ρ) sample quantile of the function values corresponding
to all the candidate solutions generated at the kth iteration. In all the four methods, we set ρ = 0.05, set
the sample size N = 1000, and choose the parameterized exponential family of distributions f (x;θk) to be
multivariate normal distributions N (µk,Σk), with the initial mean µ0 generated randomly according to the
uniform distribution on [−50,50]n, and the initial covariance matrix set to be Σ0 = 2500In×n, where n is the
dimension of the problem. We observe in numerical experiments that the performance of the algorithms
is insensitive to the choice of the initial candidate solutions if the initial variance is large. In GASS and
GASS avg, we use the step size αk =

α0
(k+A)α , where α0 reflects the initial step size, the constant A is used

to keep the initial step size small and reduce the unstable behavior, and the parameter α should be in
(0,1]; we set A = 50, α0 = 10, and α = 0.5 for all the problems. In GASS avg, the feedback weight is
c = 0.1 for problems H1 and H2 and c = 0.02 for H3 and H4. In the modified CE method, we use the gain
sequence αk = 5/(k+100)0.5, which should be less than 1 for all k. In the implementation of MRAS, we
use a smoothing parameter ν when updating the parameter θk of the exponential family of distributions;
we set ν = 0.2 as suggested by Hu et al. (2007); the rest of the parameters in MRAS are set as follows:
ε = 10−5, λ = 0.01, and r = 10−4.

Table 1: Comparison of GASS, GASS avg, Modified CE and MRAS.
GASS GASS avg Modified CE MRAS

H∗ H̄∗(std err) Mε H̄∗(std err) Mε H̄∗(std err) Mε H̄∗(std err) Mε

Griewank H1 0 0(3.75E-14) 100 0(4.48E-15) 100 0(4.22E-10) 100 -0.034(0.0044) 7
Trigonometric H2 -1 -1(4.67E-13) 100 -1(6.21E-13) 100 -1(3.03E-12) 100 -1.063(0.0216) 90

Powel H3 -1 -1(3.19E-7) 100 -1(9.9E-7) 100 -1(1.18E-15) 100 -1.0002(4.66E-6) 100
Pinter H4 -1 -1.001(1.47E-5) 100 -1.013(0.006) 91 -1(2.23E-18) 100 -1.101(0.0076) 2

In the experiments, we found the computation time of function evaluations dominates the time of
other steps, so we compare the performance of the algorithms with respect to the total number of function
evaluations, which is equal to the total number of samples. The average performance based on 100
independent runs for each method is shown in Table 1, where H∗ is the true optimal function value; H̄∗ is
the average of the function values returned by the 100 runs of an algorithm; std err is the standard error
of these 100 function values; Mε is the number of ε-optimal solutions out of 100 runs (ε-optimal solution
is the solution such that H∗− Ĥ∗ ≤ ε , where Ĥ∗ is the optimal function value returned by an algorithm).
We consider ε = 10−2 for problem H4 and ε = 10−3 for all other problems. Fig. 1 shows the average (over
the 100 runs) best value of H(·) at current iteration versus the total number of samples generated so far.
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Figure 1: Comparison of GASS, GASS avg, Modified CE and MRAS.

From the results, GASS and modified CE find the ε-optimal solutions in all the 100 runs for all the
problems; GASS avg finds all the ε-optimal solutions for H1, H2, and H3; MRAS only finds all the ε-optimal
solutions for the badly-scaled problem H3. GASS avg always converges faster than GASS, verifying the
effectiveness of the averaging of iterates with online feedback. Both GASS and GASS avg converge faster
than MRAS on all the problems, and converge faster than the modified CE method on most problems
except H4.

5 CONCLUSION

In this paper, we introduced a new algorithm, Gradient-based Adaptive Stochastic Search (GASS), for
solving general optimization problems with little structure. The algorithm generates candidate solutions
from a parameterized sampling distribution over the feasible region, and uses a quasi-Newton-like iteration
on the parameter space of the parameterized distribution to find improved sampling distributions. Thus,
the algorithm enjoys the fast convergence speed of classical gradient search methods while retaining the
robustness feature of model-based optimization methods. We further developed an accelerated version of
GASS (GASS avg), relying on the Polyak avaraging technique with online feedback. Our preliminary
numerical experiments show that both GASS and GASS avg work very well on several benchmark problems.
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A APPENDIX

Proof of Proposition 1. Consider the gradient of L(θ ;θ ′) with respect to θ ,

∇θ L(θ ;θ
′) =

∫
Sθ ′(H(x))∇θ f (x;θ)dx

=
∫

Sθ ′(H(x)) f (x;θ)∇θ ln f (x;θ)dx

= Eθ [Sθ ′(H(X))∇θ ln f (X ;θ)]. (15)

Consider the Hessian of L(θ ;θ ′) with respect to θ ,

∇
2
θ L(θ ;θ

′) =
∫

Sθ ′(H(x))∇2
θ f (x;θ)dx

=
∫

Sθ ′(H(x)) f (x;θ)∇2
θ ln f (x;θ)dx+

∫
Sθ ′(H(x))∇θ ln f (x;θ)∇θ f (x;θ)T dx

= Eθ [Sθ ′(H(X))∇2
θ ln f (X ;θ)]+Eθ [Sθ ′(H(X))∇θ ln f (x;θ)∇θ ln f (x;θ)T ], (16)

where the last equality follows from the fact that ∇θ f (x;θ) = f (x;θ)∇θ ln f (x;θ). Furthermore, if f (x;θ) =
exp{θ T T (x)−φ(θ)}, we have

∇θ ln f (x;θ) = ∇θ

(
θ

T T (x)− ln
∫

exp(θ T T (x))dx
)

= T (x)−
∫

exp(θ T T (x))T (x)dx∫
exp(θ T T (x))dx

= T (x)−Eθ [T (X)]. (17)

Plugging (17) into (15) yields

∇θ L(θ ;θ
′) = Eθ [Sθ ′(H(X))T (X)]−Eθ [Sθ ′(H(X))]Eθ [T (X)].

Differentiating (17) with respect to θ , we obtain

∇
2
θ ln f (x;θ) = −

∫
exp(θ T T (x))T (x)T (x)T dx∫

exp(θ T T (x))dx

+

∫
exp(θ T T (x))T (x)dx

(∫
exp(θ T T (x))T (x)dx

)T

(
∫

exp(θ T T (x))dx)2

= −Eθ [T (X)T (X)T ]+Eθ [T (X)]Eθ [T (X)]T

= −Varθ [T (X)]. (18)

Plugging (17) and (18) into (16) yields

∇
2
θ L(θ ;θ

′) = Eθ [Sθ ′(H(X))(T (X)−Eθ [T (X)])(T (X)−Eθ [T (X)])T ]− Varθ [T (X)]Eθ [Sθ ′(H(X))].
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Proof of Proposition 2. Consider the gradient of l(θ ;θ ′) with respect to θ ,

∇θ l(θ ;θ
′)|θ=θ ′ =

∇θ L(θ ;θ ′)

L(θ ;θ ′)

∣∣∣∣
θ=θ ′

=

∫
Sθ ′(H(x)) f (x;θ)∇θ ln f (x;θ)dx

L(θ ;θ ′)

∣∣∣∣
θ=θ ′

(19)

= Ep(·;θ ′)[∇θ ln f (X ;θ
′)].

Differentiating (19) with respect to θ , we obtain the Hessian

∇
2
θ l(θ ;θ

′)|θ=θ ′ =

∫
Sθ ′(H(x)) f (x;θ)∇2

θ
ln f (x;θ)dx

L(θ ;θ ′)
+

∫
Sθ ′(H(x))∇θ ln f (x;θ)(∇θ f (x;θ))T dx

L(θ ;θ ′)
...

− (
∫

Sθ ′(H(x)) f (x;θ)∇θ ln f (x;θ)dx)(∇θ L(θ ;θ ′))T

L(θ ;θ ′)2

∣∣∣∣
θ=θ ′

Using ∇θ f (x;θ) = f (x;θ)∇θ ln f (x;θ) in the second term on the right-hand-side, the above expression
can be written as

∇
2
θ l(θ ;θ

′)|θ=θ ′ = Ep(·;θ ′)[∇
2
θ ln f (X ;θ

′)]+Ep(·;θ ′)
[
∇θ ′ ln f (X ;θ

′)(∇θ ′ ln f (X ;θ
′))T ]

− Ep(·;θ ′)
[
∇θ ln f (X ;θ

′)
]

Ep(·;θ ′)
[
∇θ ln f (X ;θ

′)
]T

= Ep(·;θ ′)[∇
2
θ ln f (X ;θ

′)]+Varp(·;θ ′)
[
∇θ ln f (X ;θ

′)
]
. (20)

Furthermore, if f (x;θ) = exp{θ T T (x)−φ(θ)}, plugging (17) into (19) yields

∇θ l(θ ;θ
′)|θ=θ ′ = Ep(·;θ ′)[T (X)]−Eθ ′ [T (X)],

and plugging (17) and (18) into (20) yields

∇
2
θ l(θ ;θ

′)|θ=θ ′ = Varp(·;θ ′)[T (X)]−Varθ ′ [T (X)].
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