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ABSTRACT

Static network reliability models typically assume that the failures of their components are independent.
This assumption allows for the design of efficient Monte Carlo algorithms that can estimate the network
reliability in settings where it is a rare-event probability. Despite this computational benefit, independent
component failures is frequently not a realistic modeling assumption for real-life networks. In this article
we show how the splitting methods for rare-event simulation can be used to estimate the reliability of a
network model that incorporates a realistic dependence structure via the Marshal-Olkin copula.

1 INTRODUCTION

The problem of static network reliability modeling and estimation has a wide range of applications in
communication and transportation (Cancela, El Khadiri, and Rubino 2009; Gertsbakh and Shpungin 2010).
The static reliability of a network (or graph) is a quantitative measure of the network’s ability to provide
service. It is defined as the probability that a given set of nodes in the graph are connected by operational
links, where each link of the graph is operational with a given probability, called the reliability of the
link. Equivalently, network designers are interested in the unreliability, defined as the complementary
probability.

The exact calculation of network reliability is a #P-complete computational problem (Ball and Provan
1982; Colbourn 1987). This is why for large networks Monte Carlo techniques are indispensable. Also it is
well known (Gertsbakh and Shpungin 2010) that in highly reliable networks the Crude Monte Carlo (CMC)
method is impractical, because the probability of network failure is a rare-event probability. The search for
efficient Monte Carlo algorithms for such graphs has resulted in a number of variance reduction methods.
Among the most prominent ones are conditional Monte Carlo approaches (Cancela and El Khadiri 2003;
Cancela et al. 2009; Elperin et al. 1991; Gertsbakh and Shpungin 2010; Lomonosov and Shpungin 1999),
approximate zero-variance importance sampling (L’Ecuyer et al. 2011), and combinations of these, see
Cancela et al. (2010). For a survey of some of these methods see Cancela, El Khadiri, and Rubino (2009).

A salient feature of all of the above Monte Carlo methods is that they assume that the components of
the network fail independently. In this paper we consider the important situation where the link failures
are dependent.

While there are good algorithms designed for special types of dependent component failures, these
can only cope with small networks. These algorithms are typically deterministic (capable of generating
a symbolic reliability expression) and inefficient for large highly reliable networks, because they rely on
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cutsets/pathsets (Fard and Lee 1999; Netes and Filin 1996; Nahman 1992; Lin and Yang 2011) or graph
factorizations (Theologou and Carlier 1991; Kuo, Yeh, and Lin 2007; Biegel 1977; Ahmad 1990; Chen
and Yuang 1996; Ghosh and Singh 1993) whose numbers grow exponentially with the size of the network.

Our paper contributes to the alleviation of this computational problem by showing how the splitting
method for rare-event simulation can estimate efficiently the reliability of large highly reliable networks
with realistic copula dependence. The aim is to both use one of the most relevant copula models to account
for real-life component failures and at the same time provide an efficient algorithm for reliability estimation
in networks driven by such copula models. While there are other possible choices, in this paper we
model the dependencies among network components using the realistic Marshal-Olkin shock model. The
Marshall-Olkin copula has been used in risk management in finance (Embrechts, Lindskog, and McNeil
2003). Note that other types of realistic dependence include cascading failures models (Iyer et al. 2009;
Buldyrev et al. 2010), which we do not consider here in the rare-event setting.

Modeling dependence in static networks has been considered previously, but the existing proposals
either do not offer a viable algorithm to estimate the reliability in the rare-event setting, or do not capture
the dependence in a realistic way (Singpurwalla 2002; Ram and Singh 2009; Walter et al. 2009; Botev
et al. 2012). For those proposals that consider the rare-event setting, the dependence is typically modeled
using a Gaussian, Pareto, or Weibull copula, which do not easily account for rare shock events that can
knock out a multitude of network components simultaneously. As a result, such simple copulas tend to
overestimate the real-life reliability of a network. In contrast, it is well known that the more complex
Marshall-Olkin copula meets a number of desirable criteria that make it a good candidate for modeling
simultaneous component failures due to a shock event.

The rest of the paper is organized as follows. In Section 2.1 we introduce the the graph evolution
approach to modeling static networks as advocated by Elperin, Gertsbakh and Lomonosov, see Lomonosov
and Shpungin (1999), Elperin, Gertsbakh, and Lomonosov (1991). This is followed by Section 2.2, in
which we explain how we combine the Marshall-Olkin copula with the graph evolution approach. Once
we have selected a satisfactory copula model, we estimate the corresponding reliability using a modified
version of the splitting method of Kahn and Harris (1951). In Section 3 we review the splitting method
for rare-event probability estimation and provide implementation details. Finally, in Section 4 we give a
numerical example and an application of the copula model to networks in which the nodes as well as the
links fail. This is followed by a concluding section discussing possible directions for future research.

2 STATIC NETWORK MODEL

We begin by defining the prototypical mathematical model for a static network. Suppose we are given the
graph G = (V ,E ) with a set of nodes/vertexes V and edges/links E . Associated with each edge i is a
Bernoulli random variable Xi denoting whether the edge is operational (Xi = 1) or failed (Xi = 0). If we label
all edges from 1 to m = |E |, then X = (X1, . . . ,Xm) represents the configuration of the network, showing
which edges are operational and which are failed. Typically, it is assumed that X1, . . . ,Xm are independent
and P(Xi = 0) = ui, i = 1, . . . ,m, where ui is the unreliability of edge i. A subset of nodes V0 ⊂ V is
selected a priori and the network (or graph) is said to be operational if all nodes in V0 are connected to
each other by at least one path or tree comprising of operational edges. Let Ψ(x) = 1 when the network is
operational, and Ψ(x) = 0 otherwise. This function Ψ is referred to as the structure function of the graph
(Barlow and Proschan 1975). An important special case is the two-terminal network reliability problem,
where V0 contains only two nodes, V0 = {v0,v1}, and Ψ(x) = 1 if and only if there is a path between v0
and v1. For example, in the dodecahedron graph on Figure 1 we have V0 = {1,20} and it is operational
when nodes 1 and 20 are connected by a path of working edges. Another special case of interest is the
all-terminal network reliability problem, where V0 = V , so Ψ(x) = 1 if and only if all nodes are connected.

The unreliability of the network G is defined as the probability that the nodes in V0 are disconnected,
that is,

u = P(Ψ(X) = 0) .
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In the next section we give a different formulation of the reliability estimation problem, which views the
static network as a snapshot of a dynamic one at a given point in time.

Figure 1: A dodecahedron graph with 20 nodes and 30 links (all labeled). The destination nodes (1 and
20) are shaded.

2.1 Graph Evolution Approach

In our approach we follow the graph evolution formulation in Elperin, Gertsbakh, and Lomonosov (1991),
Elperin, Gertsbakh, and Lomonosov (1992), Lomonosov and Shpungin (1999) and assume that the i-th
link is operational for yi units of time before it finally fails. In other words, yi is the lifetime of the i-th
component of the network. For the time being we assume that the nodes are perfect and do not fail. The
configuration of the network is thus described by the lifetimes y = (y1, . . . ,ym), where m is the number
of edges. We can signify whether the i-th edge is still alive at time γ by keeping track of the binary
variable xi(γ) = I{yi > γ}, where I is the indicator function. If xi(γ) = 1, then the i-th link is still alive
or operational at time γ , and if xi(γ) = 0, then the i-th link has failed at time γ . We let G (x(γ)), with
x(γ) = (x1(γ), . . . ,xm(γ)), denote the subgraph of G that contains only the edges i which are still alive at
time γ , that is, the edges for which yi > γ or xi(γ) = 1. The network is said to be operational at time γ if
Ψ(x(γ)) = 1.

The lifetime of link i is modeled as a random variable Yi with a lifetime distribution Fi(y) = P(Yi 6 y)
such that Fi(0) = 0 and, in the case of independent failures, Fi(1) = ui. In other words, the probability that
the i-th edge is not alive at time 1 is ui, and the relationship between the Bernoulli indicator Xi and the
lifetime Yi is P(Yi 6 1) = P(Xi = 0) = ui, where ui is the unreliability of edge i. In this case, the system’s
lifetime configuration is described by Y = (Y1, . . . ,Ym). The natural interpretation is that at time 0 all the
links are in perfect working condition, then they start to age, and after a working life of Yi units of time, the
i-th edge fails. Gradually, more and more edges fail, until finally there is no path connecting the destination
nodes and the network has failed. Elperin, Gertsbakh, and Lomonosov (1991) call this the destruction
process. In the destruction process the operational state of each link at time γ is a random binary vector
X(γ) = (X1(γ), . . . ,Xm(γ)) with X(1)≡ X. Thus, the network unreliability u can be written as:

u = P(Ψ(X(1)) = 0) = P(S(Y)< 1),

where S(Y) is the last time the network is operational, that is,

S(Y) = sup{γ > 0 : Ψ(X(γ)) = 1} .
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We evaluate S(Y) for a given Y using the following straightforward depth first search algorithm.

Algorithm 1 : Evaluating S(Y)

Require: lifetimes Y
Let π = (π1, . . . ,πm) be the permutation of the edges 1, . . . ,m such that

Yπ1 < Yπ2 < · · ·< Yπm .

Let b = 1 and consider G (X(Yπb)), in which edges π1, . . . ,πb are failed and πb+1, . . . ,πm are working.
while Ψ(X(Yπb)) = 1 (verified using depth first search, for example) do

b← b+1
return S(Y) = Yπb−1 as the last time the network is operational.

Crude Monte Carlo estimates u by generating n independent realizations Y1, . . . ,Yn of Y, and taking
the average of the n replicates of I{S(Y) < 1} = 1−Ψ(X(1)) as an estimator of u. The square relative
error (the relative variance) of this estimator of u is

Var(1
n ∑

n
i=1 I{S(Yi)< 1})

u2 =
Var(I{S(Yi)< 1})

nu2 =
u−u2

nu2 =
r

nu
,

which increases to infinity when u→ 0. For highly reliable networks u is very small so we have a rare-event
probability, and n must be very large to get a meaningful estimator. For example, if u = 10−10, we need
n > 1012 to obtain a relative error below 10%. This inefficiency is the reason why the eclectic variance
reduction methods surveyed in the introduction have been proposed.

2.2 Lifetime Shock Model

One of the reasons for working within the graph evolution framework above is that since each link is
assigned a lifetime, we will be able to use lifetime shock models, which can capture dependencies amongst
random lifetimes (Singpurwalla 2006). An example of such a suitable model is the Marshal-Olkin copula.

For example, the bivariate Marshal-Olkin copula with exponential marginals is the only bivariate
distribution satisfying the desirable bivariate lack of memory property. If Y1 and Y2 denote the exponential
lifetimes of the two interdependent components, then these lifetimes can be defined in terms of three
independent exponential random variables Z1,Z2,Z1,2:

Y1 = min{Z1,Z1,2}, Y2 = min{Z2,Z1,2}

with intensities λ1 = − ln(1− u1), λ2 = − ln(1− u2), and λ1,2 = − ln(1− u1,2), respectively. Here the
parameter λ1,2 captures the intensity of the interdependence between components 1 and 2 so that the
probability of occurrence of the common shock event is P(Z1,2 < 1) = u1,2. The joint survival function is

P(Y1 > y1,Y2 > y2) = P(Z1 > y1)P(Z2 > y2)P(Z1,2 > max{y1,y2}) = e−λ1y1−λ2y2−λ1,2 max{y1,y2} ,

from where we can conclude that the joint density of Y1 and Y2 is discontinuous, and the marginal distributions
of the lifetimes Y1 and Y2 are exponential and satisfy the memoryless property:

P(Y1 > y1 +a,Y2 > y2 +a |Y1 > a,Y2 > a) = P(Y1 > y1,Y2 > y2) .

For a network with m lifetimes Y1, . . . ,Ym the copula model generalizes as follows. Let S be a subset of
{1, . . . ,m}. Thus, without any restrictions the size of S is 2m−1, or the set of all subsets. Each subset
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s ∈S represents a collection of components that can be knocked out simultaneously due to a single shock
event. For example, in the bivariate case there are three subsets s1 = {1}, s2 = {2}, and s3 = {1,2}, giving
S = {s1,s2,s3}. The lifetimes of the network can be expressed in terms of |S | independent exponential
random variables:

Yi = min
s:i∈s

Zs, i = 1, . . . ,m ,

where Zs are independent with densities λse−λs z, z > 0 for all s ∈S . Given the set S and the lifetime
intensities λs = − ln(1− us), s ∈S , the crude Monte Carlo estimator of u consists of the average of n
replications of the indicator:

I{S(Y)< 1}, Yi = min
s:i∈s
s∈S

Zs, for all i = 1, . . . ,m ,

where the Zs are independent and exponentially distributed such thatP(Zs < 1)= 1−e−λs = 1−eln(1−us) = us.
Before continuing with the splitting method for the estimation of u, we switch to working with normally

distributed lifetimes, instead of exponentially distributed ones. We do this to make the application of the
hit-and-run Markov chain algorithm in Section 3 easier. The hit-and-run sampler is most suitable when
sampling from spherically symmetric distributions on a restricted set (Chen and Schmeiser 1996). If the
Yis are expressed in terms of normally distributed (as opposed to exponentially distributed) lifetimes:

Yi = min
s:i∈s
s∈S

Zs, Zs ∼ N(µs,1), µs
def
= 1−Φ

−1(us), independently for all s ∈S , (1)

where Φ−1 is the inverse of the cdf of the normal distribution, then the distributional properties of
Xi(1) = I{Yi < 1}, i = 1, . . . ,m do not change compared with the exponentially distributed case. For
example, the probability of occurrence of each of the shock events remains unchanged: P(Zs < 1) = us for
all s ∈S .

Finally, if vector Z = (Zs1 ,Zs2 , . . .) collects all the variables {Zs, s∈S } and Y is completely determined
from Z via (1), then we can introduce the shorthand notation S∗(Z) ≡ S(Y) and simply write the crude
Monte Carlo estimator as

1
n

n

∑
k=1

I{S∗(Zk)< 1}, Z1, . . . ,Zn
iid∼ N(µ , I) ,

where µ
def
= (µs1 ,µs2 , . . .) collects all the parameters of the shock random variables, and I is the n× n

identity covariance matrix.

3 GENERALIZED SPLITTING FOR RELIABILITY ESTIMATION

To estimate the reliability of a network under the Marshall-Olkin copula we use the Generalized Splitting
(GS) method described in Botev et al. (2012) (which is an adaptation of the splitting method of Kahn and
Harris). Here we use the splitting procedure with the following important difference. In Botev et al. (2012)
we use the construction process, in which all components are initially failed and Y is a vector of repair
times indicating the time at which each component of the network is repaired and becomes operational.
The network is thus gradually “constructed” over time and we wish to estimate u = P(S(Y)> 1), where
S(Y) is interpreted as the first time the network becomes operational, given the repair times Y. In contrast,
in this article we use the destruction process, in which all components are initially operational and Y is
a vector of lifetimes indicating the time at which each component of the network fails. The network is
hence gradually “destroyed” over time and we wish to estimate u = P(S(Y) < 1), where, as mentioned
previously, S(Y) is the last time the network is operational, given the destruction over time. The reason
for using the destruction process instead of the creation process is so that the network model fits the joint
failures from the Marshal-Olkin copula.
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With this modification, the GS algorithm will read as follows. We select an integer s > 2, called the
splitting factor and another integer τ > 0. Then we select intermediate levels ∞= γ0 > γ1 > γ2 > · · ·> γτ = 1,
for which

ρt
def
= P(Ψ(X(γt)) = 0 |Ψ(X(γt−1)) = 0) = P(S(Y)< γt |S(Y)< γt−1)

= P(S∗(Z)< γt |S∗(Z)< γt−1)≈ 1/s
(2)

for t = 1, . . . ,τ , except for ρτ , which can be larger than 1/s. These γt represent the levels of the splitting
algorithm and τ is the number of levels. Good values for τ and {γt} can be estimated by an (independent)
adaptive pilot algorithm, as explained in the Appendix. Botev et al. (2012) argue that s = 2 is a good
choice that yields satisfactory empirical results. Thus, we will use s = 2 for the rest of the paper.

For each level γt , we run a hit-and-run (Kroese, Taimre, and Botev 2011, Page 240) Markov chain
{Zt, j, j ≥ 0} having a stationary density equal to the density of Z conditional on S∗(Z)< γt . We can write
this stationary density as

ft(z)∝ I{S∗(z)< γt}∏
s∈S

e−
1
2 (zs−µs)

2
, t = 0, . . . ,τ, (3)

where by convention f0 is the unconditional density of Z. The transition kernel density of the hit-and-run
Markov chain, which is the density of the next state Zt, j conditional on the current state Zt, j−1, is denoted
by κt(· |Zt, j−1) and defined implicitly via the following algorithm.

Algorithm 2 : Transition density κt(· |zt, j−1) defined via hit-and-run sampling
Require: Initial state Zt, j−1 such that S∗(Zt, j−1)< γt and a positive integer β .

Z0← Zt, j−1
for i = 1, . . . ,β do

generate a vector d uniformly distributed over the m-dimensional unit sphere
generate a random scale Λ∼ N((µ −Zi−1) ·d,1) // here · denotes the vector dot product
if S∗(Zi−1 +Λd)< γt then

Zi← Zi−1 +Λd
else

Zi← Zi−1
return Zt, j← Zβ .

The indentation in the algorithm above demarcates the scope of the if, else, and for statements. Note
that to evaluate S∗(Z) we simply determine Y from Z and use Algorithm 1 to compute S(Y) = S∗(Z).
In the algorithm above β is a positive integer that can be 1. However, a higher value for β reduces the
Markov chain dependence between the input state Zt, j−1 and the output state Zt, j. In our simulations we
use β = 30. Note that while there are many possibilities for constructing a Markov chain with stationary
density (3), here we use the hit-and-run Markov chain, because it yields simple updating rules, regardless
of the Marshall-Olkin dependence structure.

Generating Z conditional on S∗(Z) < γ0 is the same as generating it via (1). If a generated state Z
satisfies S∗(Z)< γ1, then its distribution is obviously the distribution of Z conditional on S∗(Z)< γ1, so
that the underlying Z has density f1. At the t-th stage, if the Markov chain starts from a state having
density ft−1 and evolves according to the kernel κt−1(· | Zt−1, j−1), then each visited state also has density
ft−1 — the stationary density for the kernel κt−1. With this in mind, the GS algorithm reads as follows.
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Algorithm 3 : generalized splitting algorithm; returns W , an unbiased estimate of u
Require: s,τ,γ1, . . . ,γτ ,S ,µ // use the adaptive algorithm in Appendix to get splitting levels

Z1← /0
for j = 1 . . . ,s do

Let Z j = (Zs1 ,Zs2 , . . .), where Zs ∼ N(µs,1) for all s ∈S independently.
if S∗(Z j)< γ1 then

add Z j to Z1 // Set of states Z that have reached level γ1
for t = 2, . . . ,τ do

Zt ← /0 // set of states Z that have reached the level γt ; initially empty
for all Z0 ∈Zt−1 do

for j = 1, . . . ,s do
sample Z j from the density κt−1(· | Z j−1)
if S∗(Z j)< γt then

add Z j to Zt

return W ← |Zτ |/sτ as an unbiased estimate of the unreliability u.

In the script above, Zt stands for the collection of vectors Z, which yield lifetimes Y that have reached
the level γt . Note that Algorithm 3 states the procedure with a single starting chain (trajectory) and gives the
unbiased estimator W of the unreliability u. In practice, we run n times Algorithm 3 to obtain n independent
realizations W1, . . . ,Wn and deliver the estimator

û =
1
n

n

∑
i=1

Wi, (4)

with estimated relative error σ̂n/(û
√

n), where σ̂2
n = 1

n ∑
n
i=1(Wi− û)2. In the Appendix we show that under

two idealizing assumptions, this estimator is logarithmically efficient as the unreliability u goes to zero.

4 NUMERICAL EXPERIMENTS

Now that we have a computational tool for estimating the reliability under the Marshal-Olkin copula, we
can consider the types of dependencies that we wish to model. First note that if S is unrestricted and
we consider all possible interactions among the component failures, then the number of parameters in the
Marshal-Olkin copula grows exponentially with the number of components. For a relatively small network
with a mere 100 components the number of possible interactions is already above 2100−1≈ 1030, and thus
computationally unmanageable. Thus, to make the model scalable, one has to restrict the size of S and
consider only subsets of possible dependencies. Which subsets are most suitable depends on the particular
modeling requirements and will in practice be determined on a case by case basis. We now give an example
of such specific modeling.

One of the common assumptions in static network models is that the nodes do not fail and hence all
failures are (independent) link failures (Aggarwal, Gupta, and Misra 1975; L’Ecuyer, Saggadi, and Tuffin
2011; L’Ecuyer and Tuffin 2011). In reality nodes also fail, exacerbating the reliability of the network, and
we must take their fallibility into account. Node failure can be elegantly accounted for by observing that
the failure of a node is equivalent to the simultaneous failure of the links incident to that node (Aggarwal,
Gupta, and Misra 1975; Fard and Lee 1999; Nahman 1992).

For example, consider the dodecahedron network, a popular benchmark problem, in Figure 1. The
failure of node 1 has the same effect as the simultaneous (due to a shock event) failure of links 1,2,3.
Thus, by making the links incident to each node dependent on a common shock event, we can account for
the node failures and avoid overestimating the reliability of the network.

As a numerical example consider the dodecahedron network with fallible nodes. Since the degree of
connectivity of this network is 3 (meaning that there are 3 links emanating from each of the 20 nodes),
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the copula model has 20 parameters describing the joint failure of all triplets of components incident to a
node. For example, some of these triplets in Figure 1 are (2,7,6),(6,12,14),(22,14,23), corresponding to
nodes 3,7, and 13, respectively. Taking into account the failure of each of the 30 links individually, we get
that the size of S is 20+30 = 50. Thus in this setting the number of parameters in the copula is always
under control. Table 1 shows the reliability of the dodecahedron network under the perfect and imperfect
nodes assumption.

Table 1: Reliability of dodecahedron network with and without node failures. Here V0 = {1,20} and
n = 104.

imperfect nodes perfect nodes
us û estimated rel. error CPU time min. û estimated rel. error

10−1 0.15 1.1% 5 0.0028 1.3%
10−2 0.0014 2.1% 25 2.05×10−6 1.9%
10−3 5.40×10−5 3.1% 41 2.02×10−9 2.4%
10−4 4.72×10−6 3.6% 47 2.01×10−12 2.8%
10−5 4.52×10−7 4% 64 1.98×10−15 3.1%
10−6 4.59×10−8 3.5% 65 1.96×10−18 3.5%

While in the imperfect node case |S |= 50, in the perfect node case S = {1,2,3, . . . ,30} (the copula
reduces to the independent component failure case). In both cases us = P(Zs < 1) is the same for all s ∈S ,
(which means that the node failure probability is the same as the link failure probability) and û and its
estimated relative error are obtained via (4) with n = 104. Note that the relative error grows slowly when
the network becomes more and more reliable.

As expected from Table 1 we can see that the reliability of the network is much lower when the nodes
are considered imperfect and having the same reliability as a link. This example shows that node failures
are a special case of the more general Marshall-Olkin copula for dependent component failures.

5 CONCLUSIONS

Network reliability computation requires smart time-saving Monte Carlo simulation strategies even under the
simplifying assumption of independent component failures. When the independence assumption is relaxed
the complexity of reliability estimation becomes more challenging. In this article we have shown how the
(rare-event) probability of failure of highly reliable static binary networks governed by a Marshall-Olkin
copula model can be estimated via the GS algorithm — a static version of the splitting method of Kahn
and Harris.

As future research we intend to consider the Network Planning Problem (NPP). The objective of
the NPP is to optimally purchase a collection of links, subject to a fixed budget, so as to maximize the
network reliability. We intend to consider this NP-hard integer optimization problem under the additional
complication of dependent link failures.

The dependence model considered here also makes analysis of stochastic flow networks with rare-event
effects more challenging. In stochastic flow networks one is interested in the (rare-event) probability that the
network capacity exceeds a given network demand, where instead of having the i-th link assigned a random
lifetime, each link has a (discrete or continuous) random flow capacity. The splitting approach presented
here may also allow practitioners to handle stochastic flow networks with dependent link capacities.
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APPENDIX

Here we briefly present the pilot splitting algorithm used to determine τ and γ1, . . . ,γτ . This algorithm is
an modification of the one given in Botev et al. (2012). We have tailored the algorithm to the destruction
process, instead of the construction process.

Suppose we are given the splitting factor s = 2. Initially, we generate m× s independent states Z from
N(µ , I), and determine a threshold parameter γ1 so that exactly m of them have S∗(Z)6 γ1. Then at each
step t, for t = 2,3, . . . , we run for s steps the hit-and-run Markov chain in Algorithm 2 with stationary
density (3) from each of those m states Z for which S∗(Z)6 γt−1. This gives another m× s states and we
select a parameter γt so that exactly m of them have S∗(Z)6 γt . This is done until γt ≤ 1 for some t. Then
τ is set to this t and we put γτ = 1. This iterative procedure is summarized in the following Algorithm 4.

Algorithm 4 Adaptive splitting sampler.
Require: S ,µ and splitting factor s = 2

Z1← /0
for i = 1 to m× s do

generate a vector Z∼ N(µ , I) and add it to Z1
sort the elements of Z1 by decreasing order of S∗(Z) = S(Y), say Z(1), . . . ,Z(m×s)
γ1← [S∗(Z(m))+S∗(Z(m+1))]/2
t← 1
while γt > 1 do

t← t +1
Zt−1←{Z(1), . . . ,Z(m)} // retain only the best performing m elements from Zt−1
Zt ← /0
for all Z0 ∈Zt−1 do

for j = 1 to s do
sample Z j from the hit-and-run sampler in Algorithm 2 and add it to Zt

sort the elements of Zt by decreasing order of S∗(Z), say Z(1), . . . ,Z(m×s)
γt ←max{[S∗(Z(m))+S∗(Z(m+1))]/2,1}
τ ← t

return τ,γ1, . . . ,γτ

In this algorithm, Zt denotes a set of vectors Z for which S∗(Z)6 γt−1. When this set contains m× s
elements, we sort it to retain the m vectors having the smallest value of S∗(Z), and we remove the other
vectors from this set. The threshold parameter γt is placed midway between the m-th and the (m+1)-th
smallest values of S∗(Z).

A IDEAL CASE ANALYSIS OF GS ALGORITHM

We present an analysis of the asymptotic performance of the GS algorithm under two idealizing assumptions,
which hold only approximately in practice. The first assumption is that the hit-and-run Markov chain in
Algorithm 2 mixes perfectly. In other words, Zt, j and Zt, j−1 are independent of each other and Zt, j follows
the conditional density (3) exactly. In practice, Zt, j and Zt, j−1 are dependent and this dependence is
attenuated as β is increased. Note that this simplifying assumption is standard in analyzing similar splitting
algorithms (Guyader et al. 2011). The second assumption is that the pilot algorithm selects the levels {γt}
so that the conditional probabilities ρt in (2) are exactly (as opposed to approximately) equal to 1/s for all
t.

Let Nt = |Zt | be the random number of points or states that have reached level γt at the t-th iteration
of the GS Algorithm 3. Initially we have N0 = 1, because Algorithm 3 runs a single trajectory. In this
setting and under the above assumptions, each state Z j can either yield s offspring points or zero points
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and all states yield s offspring with the same probability. If we denote the number of offspring of state j
in the t-th iteration by Q j,t , then we have the branching process recursion:

Nt+1 = Q1,t +Q2,t + · · ·+QNt ,t ,

where P(Q j,t = s) = ρ = 1/s, P(Q j,t = 0) = 1−ρ . Thus, E[Q j,t ] = sρ = 1, Var(Q j,t) = s−1,and we have
via standard branching process arguments (Harris 1989, Page 6) that E[Nt ] = 1, Var(Nt) = t(s− 1) .
Hence, for the unbiased estimator W = Nτ/sτ in Algorithm 3 we obtain Var(W ) = τ(s− 1)/s2τ with
τ = b− lns(u)c=− lns(u) from Assumption 2.

Recall that an estimator û of u is logarithmically efficient (Kroese et al. 2011, Page 382) if the following
condition holds:

limsup
u↓0

∣∣∣∣ ln(Var(û))
ln(u2)

∣∣∣∣> 1 .

For the logarithmic efficiency criterion we thus obtain

lim
u↓0

∣∣∣∣ ln(Var(W ))

ln(u2)

∣∣∣∣= lim
u↓0

∣∣∣∣ ln(τ(s−1))−2τ ln(s)
−2τ ln(s)

∣∣∣∣= lim
τ↑∞

∣∣∣∣ ln(τ(s−1))−2τ ln(s)
−2τ ln(s)

∣∣∣∣= 1 .

Therefore, under the two idealized assumptions the estimator W and hence û in (4) is logarithmically
efficient. Next, note that the total simulation effort (proportional to computing time) in Algorithm 3 is the
random variable s(N0 + · · ·+Nτ−1) with expected value sτ . Hence, the expected relative time variance
product is given by

Var(W )

u2 × (sτ) = τ(s−1)× (sτ) = τ
2 s(s−1) = [lns(u)]2 s(s−1) =

[ln(u)]2 s(s−1)
[ln(s)]2

,

which is minimized as a function of s for s > 1 at s = 1.9036969... (s = 2 when constrained on the integers).
This theoretical finding agrees with empirical results that the best performance of the GS occurs when the
splitting factor s = 2.
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