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ABSTRACT

Search algorithms are often used for optimization problems where its mathematical formulation is diffi-
cult to be analyzed, e.g., simulation optimization. In literature, search algorithms are either driven by gra-
dient or based on random sampling within specified neighborhood, but both methods have limitation as 
gradient search can be easily trapped at a local optimum and random sampling loses efficiency by not uti-
lizing local information such as gradient direction that might be available. A combination of the two is 
believed to overcome both disadvantages. However, the main difficulty is how to incorporate and control 
randomness in a direction instead of a point. Thus, this paper makes use of a polar coordinate representa-
tion in any high dimension to randomly generate directions where the concentration can be explicitly con-
trolled, based on which a brand new Gradient Oriented Polar Random Search (GO-POLARS) is designed 
and proved to satisfy the conditions for strong local convergence.

1 INTRODUCTION

For many optimization problems aiming to analyze a complex system, quite often the mathematical pro-
gramming methods cannot be applied, either because the loss function is too complicated to be analyzed 
or the problem is formulated by a simulation model where the close form of loss function does not occur. 
In such cases, adaptive search algorithms becomes better choice as only local information is required 
which can be easily obtained from loss functions or evaluated by simulation models.

One category of well-known search algorithms is driven by gradient information. The oldest method
is the steepest descent approach (Debye 1909) which assumes that the gradient is known at each search 
iterate, so the search always moves towards its opposite direction with a stepsize proportional to its 
magnitude and a given gain sequence. In the case where the gradient cannot be directly measured, a 
finite-difference stochastic approximation method (FDSA) is used for estimating the gradient information  
(Kiefer & Wolfowitz 1952, Blum 1954b). Later, as FDSA is costly in term of number of evaluations 
when dimension p is high, Spall (1998 & 2003) propose the simultaneous perturbation stochastic 
approximation (SPSA) that increases the estimation efficiency.

Although it has been shown that under certain conditions, a gradient-driven algorithm converges to a 
local optimal point almost surely (Spall 2003), the global convergence is difficult to be ensured as the 
greedy use of gradient information sacrifieces the exploration on the whole solution space. It can be 
argued that, in FDSA and SPSA the gradient is approximated with certain noise, which unintensionally 
increases the variety of the search directions. However, since the noise cannot be controlled explicitly, it
is difficult to balance search exploration at a desired level.

Another category, often referred as metaheuristics local search, mainly depend on stochastic sampling 
within carefully designed neighborhood structures. For example, the simulated annealing (SAN) 
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algorithm  (Kirkpatrick et al. 1983), Tabu search  (Glover 1990), genetic algorithms, the nested partitions 
method (Shi and Ólafsson 2000), and COMPASS (Hong and Nelson 2006). Compared to gradient-driven 
algorithms, the neighborhood structure often ensures a better exploration on the search space. But on the 
other hand, there is certainly some room for improvement in term of search efficiency, as the gradient 
information which can probably be measured or approximated is not utilized at all.

It is obvious that if the search direction in a gradient-based algorithm can be randomized with desired 
variation, or the stochstic sampling in a metaheuristic can be oriented by the gradient information, we can 
design a new seach algorithm that believes to have better performance than both. Although Pogu & Souza 
de Cursi (1994) proposed a method for random pertubation of the gradient, we noticed that the 
perturbation within a region surrounding the targeted point cannot control the search direction explicity. 
For example, when the stepsize is sufficiently large or small, the same amount of perturbation may inccur 
much difference in the search direction.

For this reason, in Section 2, it is the first time we propose a generalized polar coordinate framework 
in any p dimension, that provides an explicit way for perturbing a direction. Two random distributions 
are defined based on it, namely the polar uniform distribution and the polar normal distribution.

Using the proposed framework, in Section 3 we propose a new search algorithm called the Gradient-
Oriented Polar Random Search (GO-POLARS). Subsequently, the local convergence property and 
numerical examples are to be discussed.

2 A POLAR FRAMEWORK

2.1 Generalized Polar Coordinates

For a p -dimensional optimization problem, a Cartesian coordinate system is usually adopted to uniquely 
identify a solution point in the domain space. In Cartesian system, all coordinates are orthogonal to each 
other, and a point is denoted by 1, , px x� �� � �x � such that ix refers to its projected position on the i th 
coordinate.

Cartesian system is a natural way to represent solutions of optimization problems, because in many 
cases ix directly refers a decision parameter. However, we observe that for many adaptive or local search
algorithms Cartesian representation may not be the best choice as the search is driven by two key factors, 
namely the direction and the distance. But neither of them is explicitly expressed in a Cartesian system.
Thus, we may think of an alternative way to denote the solution, such as polar coordinates.

It should be well known that, a polar coordinate system can be defined on a two-dimensional space in 
which every point is denoted by its angle with respect to an axis and distance to the origin (Weisstein 
2009). Besides, the similar idea can be brought into a three-dimensional case so as to form a sytem called
spherical coordinates (Weisstein 2005) or spherical polar coordinates (Walton 1963, Arfken 1985).
However, higher dimension cases are seldom discussed in literature. So, as following we propose a 
generized polar coordinate representation that can be adopted for any high dimensional cases.

Definition 1 In a p -dimensional polar coordinate system, a point is denoted by � �,r � , in which 

� 	0,r 
 � and � 	 � � 20,2 0, p� � 

 �� , if its euclidean distance from the origin is r (radial coordinate) 

and � (angular coordinate) refers its direction in the space in the sense that i� denotes its angle with re-
spect to the positive direction of the 1i � th axis towards the hyperplane spanned by the first i axes. 

To be more specific, the relationship between the Cartesian and polar coordinates in p -dimensional
space can be described by Equation (1), (2) and (3).
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An illustration for the generalized polar coordinate representation in the two and three dimensional 
space can be found in Figure 1. We note that the mapping from polar to the Cartesian coordinate system 
is almost one-to-one, and the degree of freedom remains p in both representation.

Figure 1: An illustration of generalized polar coordinates (in 2D & 3D).

2.2 Polar Uniform Sampling

With generalized polar coordinates we are able to denote a point in terms of the direction and distance re-
ferring to a given position, which provides an advantage for algorithms to explicitly control their search
process. But as mentioned in Section 1 where the variation is involved in sampling a direction, random 
distribution need to be defined before we move to introduce the algorithm. First of all, we look at a uni-
form case.

In a p -dimensional space, in order to uniformly sample a direction, we simply consider a hyperball 
with radius r around the origin. For all the points spread in the outermost layer, each of them should 
have equal opportunity to be sampled as the direction. From mathematical point of view, let � 	,f r � be 

the probability density function, then within an infinitesimal space around the point � �,r � , the probability 
for points to be sampled is

� 	 � 	11, , , , pf r r � � 
� �� � .
By consensus of uniformity, this probability should be proportional to the volume of the infinitesimal 
space � 	1, , pV x x� � � � , meaning there exists a function � 	 0c r � such that
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Further notice that the Jacobian determinant (Kaplan 1991) of the mapping from polar to Cartesian coor-
dinate system is expressed as
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So we derive the probability density function for a polar uniform distribution as in (4) and thus have Def-
inition 2. Note that � 	c r depends only on r and has to ensure the integral of � 	,f r � on the domain
equals to 1.

� 	 � 	 1
1
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, sinp j
p

j
jf r c r r �
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� � �� . (4)

Definition 2 A random point � �,r � is said to be from a p -dimensional polar uniform distribution, 

denoted as polarU p , if its probability density function is given as in (4).

When enforce 1r � , i.e. let � 	 0c r � if 1r � , the angular coordinate � can be sampled uniformly 

in the sense that � � polar1, U p� � , which is illustrated by Figure 2. Since r is fixed and j� is independent 
from each other, we can decompose the probability density function for each j as

� 	 1   for  1sin , , , 1j
j j j jf j pc� �
 �� 
� (5)

where 1
1

2
c

�
� and 

0

1sin j
j dc

�
� �
� � for 2j � . As there is no close form for jc , one of the method is 

to apply numerical approaches, such as acceptance-rejection method or Alias method (Vose 1999,
Schwarz 2011) after discretization into small intervals, so that the constant term can be ignored.

Figure 2: Polar uniform distribution with 1r � and 3,5,10p � .

In practice, some good properties can be observed. Since (5) is independent with dimension p , a 
point � � polar1, U p� � can be easily extended to 1

polarU p� by adding element p� sampled from distribution 

with density � 	 1sinp
p

p p pf c �� 
� .
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Moreover, considering (2) and (3), we notice that the newly added p� does not affect the relative val-

ues of previous ix ’s since all of them are simply scaled by sin p� , whereas the density in (5) only en-

sures that the new comer 1px � plays harmoniously with the early ones by maintaining the uniformity into 
the higher dimension. This property is important when we need to add controlled bias into the distribution,
which is to be discussed later in 2.3.

Alternatively, we note that a multivariate normal distribution � 	2N , I�0 with any � is a special 
case for polar uniform distribution when it is converted into the generalized polar coordinates (The proof 
is omitted due to the page limit). The sampled points can be easily standardized into unit vector by letting 

1r � before it can be applied in the steps following to be discussed. With this result, we can certainly 
simplify the random generator for polar uniform distribution.

2.3 Concentrated Polar Distribution

Firstly, we consider a simple case, where we want the sampled direction to be concentrated around a giv-
en direction d� that coincides with the positive direction of the p th axis, i.e. p�d e� . It means that, under 

the Cartesian representation only px has a priority to choose larger value. Thus, using the property dis-

cussed in the later part of 2.2, we may have a point � � 1
polar1 U, p
� � , and extend it to p -dimension by add-

ing 1p� 
 where the distribution can be adjusted from (5), so that px has higher chance to take large value
without touching the ratio among the others. A typical way is to take the composite density with a trun-
cated normal distribution with mean 0 and variance 2� , i.e.,

� 	 � 	21 1
2
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p p pp pf c
�
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Note that � 	11 ppf �
 
 is defined on � 	0,2� for 2p � , and � �0,� for 2p � . We refer it as the standard 
polar normal distribution as in Definition 3.

Definition 3 A random point � �,r � is said to be from a p -dimensional standard polar normal 

distribution with variance 2� , denoted as � 	2
polarN p � , if 1

1 2 polar, U, , p
pr � � 


� �� �� � and 1p� 
 distributed 

as in (6).

The procedure of generating � � � 	2
polar1 N, p �� � is described by Algorithm 1. Set � to different val-

ues, then we have the illustration of sampled points shown by Figure 3. It is clear that similar to normal 
distribution, small � will have high density of samples around the given position pe .

An extreme case can be observed when 0� � so that � 	2 10,
0p�

�� 
 � for all 1 0p� 
 � , thus 

1 0p� 
 � with probability 1, meaning that all sampled direction coincide with pe almost for sure. In an-

other way, if � � � , we have equal value of � 	20, 1p�
� � 
 at all 1p� 
 , thus the term cancelled out from (6).

In that case, � 	polar polarN Up p� � .
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Algorithm 1
Step 1: Let 1j � .
Step 2: If 1j p� 
 , sample j� from its domain with density as in (5), then set 1j j� � .

Step 3: If 1j p� 
 , sample 1p� 
 from its domain with proportional density as in (6), then stop and 

report 1 1, , p� � 
� �� � �� � ; otherwise proceed to Step 3.
Step 4: Go to Step 2.

Figure 3: Standard polar normal distribution with 1r � , 5p � and 6, 9, 12� � � �� .

Denote � �� 	Cart
1,�d � as the Cartesian conversion of � �1,� , we can analyze the expectation of d

(detailed steps are omitted due to the page limit), so as to derive Theorem 1. Later we will use its corol-
lary to prove the local convergence property in 3.2.

Theorem 1 For a unit vector � 	2
polarN p �d � given that � � � , we can always finds a scalar 

� �, 0,1p � 
 depends only on p and � such that � � ,E p p� � �d e .

For the case where the given d� is an arbitrary unit vector, a linear transformation can be applied 
such that every point obtained by Algorithm 1 is reflected on a hyperline lies in the middle of d� and pe .
In a reverse manner, we have Definition 4 for the polar normal distribution. Figure 4 is an illustration.

Definition 4 A random point � �� 	Cart
,r�d � is said to be from a p -dimensional polar normal 

distribution centered at unit vector d� and variance 2� , denoted as � 	2
polarN ,p �d� , if 

� 	2
polar2

2 N
T

p ��



d m m d
m

� where � 	 2p� �m d e� .

Obviously, as the result of linear transformation, from Theorem 1 we have Corollary 1.
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Figure 4: Polar normal distribution with 1
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Corollary 1 For a unit vector � 	2
polarN ,p �d d�� given that � � � , we can always finds a scalar 

� �, 0,1p � 
 depends only on p and � such that � � ,E p � � �
dd
d

�
� .

3 SEARCH ALGORITHM

3.1 The Base Algorithm

The Gradient Oriented Polar Random Search (GO-POLARS) is designed in an adaptive manner. At each 
iteration, the optimum estimate moves to a random direction with a step size which is guided by the gra-
dient. Specifically, let p! " � be the feasible region, the search algorithm can be described as following:

Algorithm 2
Step 1: (Initialization) Pick an initial guess 0ˆ 
!x , and set 0k � .

Step 2: Generate a direction kd from � 	� 	2
polar ˆN ,p

k k�g x in which � 	ˆ kg x is the gradient at ˆ kx .

Step 3: Let � 	newˆ ˆ ˆk k k kb� 
x x g x d . If newˆ 
!x and � 	 � 	newˆ ˆ kL L�x x , set n w1 eˆ ˆk� �x x , other-

wise 1ˆ ˆk k� �x x .
Step 4: Set 1k k� � . Go to Step 2.

Remark. The search procedure can be tuned by controlling the gain sequence kb and the direction 
variation sequence k� . In 3.2, we will discuss conditions in terms of kb and k� for the algorithm to con-
verge to a local optimum.

3.2 Local Convergence Property

In literature, local convergence property of a stochastic algorithm is often shown by convergence theory 
of stochastic approximation (SA) (Spall 2003). And we notice that GO-POLARS shares some similarities 
with SA, such as both have estimates updated adaptively according to the gradient information with cer-
tain noise. So in this subsection, we try to relate GO-POLARS to SA and conclude the convergence con-
ditions for the sequence kb and k� .
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We start with rewriting Step 3 in Algorithm 2 as an SA type, i.e., � 	newˆ ˆ ˆk k k ka Y� 
x x x where 

,k p ka b� � � , (7)

and � 	 � 	
,

ˆ
ˆ k

k k k
p

Y
� 

��
g x

x d . (8)

Note that in a typical SA procedure, ka is the gain sequence and � 	 � 	 � 	ˆ ˆ ˆk k k k k k� �Y x g x e x is an ap-

proximation of gradient kg with error term ke . The “statistics” conditions for strong convergence can be 
drawn as in (9), (10), (11) and (12) (Blum 1954a,b; Nevel'son and Has'minskii 1973).

2

0 0
0, 0, a d, n k

k k
k k ka a a a

� �

� �

� # � � � �� � , (9)

� 	 � 	
* 1/

*in 0f
T

$ $� 
 �

 �

x x
x x Bg x for all 0 1$� � (10)

� 	E 0k �� �� �e x for all x and k , (11)

� 	 � 	2 2E 1k c� � � �
� �

Y x x for all x and k and some 0c � . (12)

where B is some symmetric, positive definite matrix.
By (7) and Corollary 1, condition in (9) can be substituted by (13) and (14).

� � � (13)
2

0 0
0, 0, a d, n k

k k
k k kb b b b

� �

� �

� # � � � �� � (14)

While, condition in (11) can be derived from Corollary 1 and (8). Similarly the condition in (12) can 
also be simplified as in (15) when Corollary 1 and (8) are concerned.

� 	 � 	2 2ˆ 1k c� �g x x for all x and k and some 0c � . (15)

Thus we have the theorem for local convergence property. Note that the detailed proof is omitted due 
to the page limit.

Theorem 2 Given that conditions in (10), (13), (14) and (15) are satisfied, the search iterate ˆ kx
generated by Algorithm 2 converges to a local optimum almost surely.

4 NUMERICAL EXAMPLES

In this section, we compare GO-POLARS with several benchmark search algorithms including gradient-
based search and metaheuristics local search. Besides, the hybrid of GO-POLARS with advanced stochas-
tic search algorithms such as COMPASS will be illustrated as well.

4.1 A Benchmark Comparison

The Goldstein-Price’s function is a two-dimensional global optimization test function as defined in (16).
Note that the global minimum occurs at � 	* 0, 1� 
x with � 	* 3L �x , and several local minima occur as 

well. Set the search domain 2! � � and assume that the gradient can be calculated at every 
!x , we 
used the function to compare the performance of GO-POLARS with steepest descent (SD) and simulated
annealing method (SAN) as described in Table 1.
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x
(16)

For fair comparison, we adopt a neighborhood structure setting in SAN that is similar to the GO-
POLARS iterate. But instead of choosing direction from a polar normal distribution oriented by the 
gradient, we let it be generated by a multivariate normal distrbibution that does not involve gradient. 
However, for comparison consistancy, the magnitude of gradient is used in determining the sample 
distance. In the experiment, we set 0.001ka k� and 3� �� for all occasions. Besdies, for SAN, the 

tempreture kT is set to be � 	500t k
 . As the experiement does not show significant difference when t
is tuned to be any positive value, we set 1t � for illustration.

Table 1: The overview of settings for testing algorithms.

Algorithms Search Iterate
(Neighborhood Structure) Condition for Accepting newx̂

GO-POLARS
� 	newˆ ˆ ˆk k k ka� 
x x g x d

where � 	� 	2
polar ˆN ,p

k k �d g x� � 	 � 	newˆ ˆ kL L�x x

Steepest descent (SD) � 	newˆ ˆ ˆk k ka� 
 �x x g x

Simulated Annealing
(SAN)

� 	newˆ ˆ ˆ k
k k k

k

a� 

dx x g x
d

where � 	N ,k pd 0 I�

� 	 � 	newˆ ˆ kL L�x x or 

� 	 � 	newˆ ˆexp
k

kL
T

LZ 
% &� ' (
) *

x x where 

� 	,1U 0Z �

The three algorithms can be corelated by starting with a same initial solution 0x that is randomly 

selected from � �22,2
 , and run the algorithms until 500k � . Repeat the process for 50 replications, we 

then present the average � 	*ˆ kL x in Figure 5. Note that in each replication, *ˆ kx denotes the best solution 

visited upon iteration k .

Figure 5: Average � 	*ˆ kL x by different search algorithms.
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It is obvious that the average performance of GO-POLARS across replication is superior than both 
SD and SAN. To analyze the reason, we notice that in SD only single direction is allowed to be sampled, 
but GO-POLARS ensures that all directions have a positive chance to be selected when 0� � , which 
certainly enlarged the pool of candidate solutions. In SAN, the enlarged candidate pool is remianed, 
however, in order to filter it SAN arbitrarly rejects inferior samples after evaluation using an artificial 
tempreture paremeter kT . While in GO-POLARS, solutions on different directions can be filtered in 
advance with the gradient-oriented random distribution even before any evaluation.

4.2 Hybrid with Stochastic Search

As stated in Section 1, almost all stochastic search algorithms involve random sampling within a specified 
neighborhood, where it is assumed that gradient information is not available. However, in the cases when 
gradient can be observed or estimated, we can apply GO-POLARS to help in sampling good solutions 
more efficiently. In the other hand, if GO-POLARS alone could not obtain desired efficiency, to integrate 
it with an advanced stochastic search will probably make the achievement.

Assume solutions are to be sampled from a convex set ! in which *ˆ 
!x is the best known up-
todate. We may sample *

newˆ ˆ r� 
 �x x d where � 	� 	* 2
polar ˆN ,p �d g x� and � 	U 0,r R� in which R is 

the maximum value of r that ensures newˆ 
!x .
We illustrate the concept using COMPASS (Hong and Nelson 2006), which is initially proposed for 

solving discrete optimization problems, but has been observed performing well also for contineous cases.
The main idea of the algorithm is to construct a most-promissing-area after evaluation of all historical 
samples and in a new iteration retake samples within the area according to a given sampling scheme. For 
instance, Hong and Nelson (2006) suggest a Revised Mix-D (RMD) method aiming to generate samples 
almost uniformly. But later it is identified to be less efficient in solving high-dimensional problems, for 
which the Coordinate Sampling is proposed instead (Hong et al. 2010).

� 	 � 	 � 	 � �2 22
2 2 1 2

/

1

2

1
100 1   with  4, 4

p

i

p
i i ix xL x
 


�

� �� � 
+ ,�

 ! � 


��x (17)

We apply the COMPASS on a high-dimension continuous test function as in (17). The function is in-
itially proposed by Rosenbrock (1960) with 2p � and extended by Moré et al. (1981) to higher 

dimension. Here, we use the setting 10p � . Note that it has a unique optimum � 	* 0L �x occurring at 

� 	* 1,1, 1�x � .

Figure 6: Average � 	*ˆ kL x by COMPASS with different sampling schemes.
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Two sampling schemes are compared in the test, namely the Coordinate Sampling (CS) and GO-
POLARS sampling as in (17), for which the � is set to � and 6� respectively. Besides, the batch size 
of COMPASS, i.e., the number of solutions to be sampled in each iteration, is set to 1.

From the average � 	*ˆ kL x drawn from 50 replications (Figure 6), we conclude that compared with 
CS, the hybridized GO-POLARS provides a higher convergent rate and the rate increases as the sampling 
concentrates to the gradient direction (denoted by smaller � ). 

In addition, by a long run study we found it almost impossible for CS converge to the uniqe optimum, 
simply due to the reason that CS is designed intently for discrete problems while in continuous cases the 
search could be trapped in the region where solution cannot be improved on any coordinate directions. 
Thus, for COMPASS to be applied in solving continuous problems, GO-POLARS is one of the only 
choices.

5 CONCLUSION

In this paper, we reviewed two categories of search algorithms for optimization problems and suggest that 
incorporating randomness in utilizing gradient information will improve both gradient-based search and 
metaheuristics local search. A brand new algorithms GO-POLARS is built on this purpose using a gener-
alized polar coordinate representation and associated random distributions. It has been shown that GO-
POLARS has the strong local convergence property and works well in numerical examples either inde-
pendently or hybridizing with sophisticated stochastic algorithms such as COMPASS.

Future study may address the adjustment of � and analyze how it affects the solutions quality versus 
search efficiency for different applications. The possibility to hybirdize GO-POLARS with other 
stochastic search algorithms can also be discussed. Besides, instead of gradient, other directional 
information based on the nature of respective problems can also be used to orient the polar random 
distribution. Then a large number of search and sampling algorithms can be developed based on the 
concept. Overall, with the promissing numerical results and the broad derivatives, we have plenty of 
reason to believe that GO-POLARS is openning a new era of polar search.
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