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ABSTRACT

In rare event simulation, we look for estimators such that the relative accuracy of the output is “controlled”
when the rarity is getting more and more critical. Different robustness properties of estimators have been
defined in the literature. However, these properties are not adapted to estimators coming from a parametric
family for which the optimal parameter is random due to a learning algorithm. These estimators have random
accuracy. For this reason, we motivate in this paper the need to define probabilistic robustness properties.
We especially focus on the so-called probabilistic bounded relative error property. We additionally provide
sufficient conditions, both in general and Markov settings, to satisfy such a property, and hope that it will
foster discussions and new works in the area.

1 INTRODUCTION

Rare event simulation has been the topic of an extensive research during the past thirty years; see Heidelberger
(1995), Juneja and Shahabuddin (2006), Rubino and Tuffin (2009), and the references therein. Rare events
are indeed important in many fields, from failures in transportation systems or nuclear plants, to losses and
bankruptcy of financial companies, as well as losses of information in telecommunication systems. Even
if the event is rare, its outcome may be so catastrophic in terms of money losses or human lives that it
cannot be neglected and has to be carefully studied. Computing rare event probabilities has been proved to
be a difficult task because the rarity makes the event difficult or impossible to observe.To circumvent this
problem, sophisticated techniques have been designed. The two main methods are: importance sampling
(IS), which consists of changing the probability laws driving the considered model in order to increase
the occurrence of the event but keeps an unbiased estimator by also changing the random variable (rv) of
interest; and splitting, which basically favors “successful” trajectories, i.e., those that get closer to the rare
event, by replicating them in a number of offspring, and proceeds successively until the event is reached.

A key issue when designing a rare event probability estimator is to determine whether or not its accuracy
does not deteriorate as the probability goes to zero (that is, when the event becomes rarer). By accuracy, we
mean relative accuracy, because what counts is the error relative to the value of the probability. There exist
several definitions of robustness in the literature, more or less strict in terms of accuracy and more or less
easy to satisfy. The two main definitions are the so-called bounded relative error property, stating that the
relative error given by the standard deviation of the estimator divided by the probability of interest is kept
bounded whatever the rarity of the event; and the weaker asymptotic optimality (or logarithmic efficiency)
which means that the second moment and the square of the mean go to zero at the same exponential
rate. There exist numerous other properties, for instance dealing with moments of order larger than 2,
or requiring the relative error to decrease to zero with the rarity (the so-called vanishing relative error
property). For a description and an exhaustive list of references, as well as the relations between all those
properties, the reader is advised to go to Rubino and Tuffin (2009), L’Ecuyer et al. (2010).
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But many rare event estimators come from adaptive techniques where parameters leading to a valid
estimator are learned during a presimulation stage, such as in the cross-entropy method (CE). Consequently,
the parameters are random. In CE the optimal parameters are derived from the minimization of the
Kullback-Leibler distance between the considered parametric family and the zero-variance IS change of
measure (Rubinstein 1999). After this learning phase, the rare event can be estimated thanks to a long(er)
simulation. Since the parameters are random, it is hard to guarantee robustness property for a given
choice of parameters. This randomness has to be addressed though when discussing robustness, and to our
knowledge it has never been considered in the literature. The goals of this paper are therefore threefold:

• We aim first at illustrating that getting a robustness property may be itself random for adaptive
methods, and that an adaptive algorithm can yield estimators with a wide diversity of results. We
limit ourselves in this paper to IS.

• Our main goal is then to define probabilistic robustness properties, describing that a robustness
property is verified with a given probability. We here focus on probabilistic bounded relative error,
looking at the evolution of the relative error produced by the confidence interval as the event goes
rarer, for a given choice of the (random) IS parameters. We also discuss briefly the property that
the overall estimator should satisfy. Remark that the other existing robustness properties can easily
be extended to the probabilistic case in a similar way and without complication.

• We then provide sufficient conditions under which those probabilistic robustness properties are
verified.

The rest of this paper is organized as follows. Section 2 describes the basic ideas of adaptive IS, and
more specifically the CE algorithm. It also illustrates why the classical robustness analysis can hardly be
applied in this context. Section 3 introduces the definitions of probabilistic bounded relative error that we
feel relevant for this kind of problem. Section 4 presents a general sufficient condition in order to verify
this property, and the specific contexts of highly reliable Markovian systems and of the simple and toy
M/M/1/b queue are described in Section 5 and Section 6.

2 RARE EVENT SIMULATION AND RELATED ROBUSTNESS ISSUE

Consider the estimation of
µ = E[g(X)] =

∫
g(x)dP(x)

where X is a rv distributed according to probability measure P. Parametric IS makes use of a family of
measures {Pθ : θ ∈Θ} on a set Θ of parameters. Note that we do not assume that the default or original
probability measure P is a member of this family. If dPθ (x)> 0 when g(x)dP(x) 6= 0, then

E[g(X)] =
∫

g(x)
dP(x)

dPθ (x)
dPθ (x) = Eθ [g(X)L(X)]

with L(X) = dP(x)/dPθ (x) the likelihood ratio.
Let us denote by Z(θ) = g(X)L(X) = g(X)dP/dPθ (X) the single run unbiased IS estimator of µ

when using parameter θ . Applying IS is of particular interest when trying to estimate probabilities of
rare events A; i.e., µ = p = P[A]� 1. Thus, g(X) = I{A} is the Bernoulli rv, whose value is 1 if A is
reached and 0 otherwise. Typically we sample n independent copies of Z(θ) and use their sample mean
Ẑn(θ) = (1/n)∑

n
i=1 Zi(θ) as unbiased estimator. This estimator satisfies a δ -α accuracy if

P(p(1−δ )< Ẑn(θ)< p(1+δ ))> 1−α.

Note that this is equivalent to require that the 100(1−α)% confidence interval has δ relative precision.
Applying Chebyshev’s inequality or a CLT approximation we obtain that Var[Ẑn(θ)]/(p2δ 2)< α suffices.



Ridder and Tuffin

Hence, the required sample size is

n≈ RE2[Z(θ)]
δ 2α

, (1)

where RE[Z(θ)] =
√
Var[Z(θ)]/p is the relative error of the single run estimator. Equation (1) relates

samples size and relative error. We have a similar relation for the crude Monte Carlo estimator, Z = g(X) =
I{A}, which has relative error RE[Z] =

√
1− p/

√
p. Then equation (1) says that the required sample size

is of order (1− p)/p∼ 1/p→ ∞ as p→ 0. In other words, the rarer the event, the larger the sample size
required to get a confidence interval with a fixed relative accuracy.

Using IS makes sense here in order to increase the occurrence of the event and reduce the relative error
(Rubino and Tuffin 2009, Chapter 2). For instance, suppose that RE[Z(θ)] remains bounded as p→ 0. In
that case, the sample size needed to get a specified relative accuracy is bounded whatever the rarity of the
event. The estimator Z(θ) will be said to verify bounded relative error (BRE).

But finding out an IS change of measure yielding efficient results (that is an optimal parameter θ in the
set Θ), and robust to rarity, is not an easy task in general. Adaptive IS tries to learn an optimal θ , that is
a θ minimizing the variance of Z(θ) under IS. While this value can be learned during the simulation (i.e.,
updated at each step, but then data are correlated, complicating the output analysis), we consider here the
case where parameters are learned during a presimulation, potentially in a sequential way during k steps
where IS parameters determined at step j−1 are used at step j. More precisely, the algorithm is as follows:

1. Define θ0 ∈Θ

2. Presimulation: For j = 1 to k
(a) use a sample of size n j of independent copies of X generated according to Pθ j−1 ;
(b) determine the value θ j minimizing the variance of Z(θ j).

3. Simulation:
(a) use a sample n of independent copies of Z(θk) generated according to Pθk ;
(b) provide an estimate of µ and an associated confidence interval.

A typical adaptive technique is the so-called Cross-Entropy (CE) method where the minimization procedure
is realized to determine the θ ∈ Θ minimizing the Kullback-Leibler (or Cross-Entropy) distance between
the zero-variance change of measure P(ZV) and Pθ : D(P(ZV),Pθ ) = E(ZV)

[
log dP(ZV)

dPθ

]
. When estimating

E[g(X)], it is known that the optimal change of measure is dP(ZV) = |g(X)|
E[|g(X)|]dP (Asmussen and Glynn

2007). This gives after straightforward simplifications

D(P(ZV),Pθ ) = E
[
|g(X)|

E[|g(X)|]
log
(
|g(X)|

E[|g(X)|]
dP
)]
− 1

E[|g(X)|]
E [|g(X)| logdPθ ] .

The minimization problem is then equivalent to solving at each step j

max
θ

E [|g(X)| logdPθ ] = max
θ

Eθ j−1

[
dP

dPθ j−1

|g(X)| logdPθ

]
≈max

θ

1
n j

n j

∑
i=1
|g(Xi)|

dP(Xi)

dPθ j−1(Xi)
logdPθ (Xi) (2)

with (Xi)i sequence of independent copies of r.v. X .
The next example illustrates the difficulty to ensure robustness properties when using adaptive techniques.

More exactly, it shows that the algorithm, if re-run independently, can lead to learned values of θ yielding
estimators experiencing large variations in their variance.

Example 1 Consider a rv X exponentially distributed with rate λ , and we want to compute P[X < ε] =
E[g(X)] = 1−e−λε with g(x) = I{x ∈ [0,ε]}. Suppose that we use IS and still sample from an exponential
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density, but with a different rate θ , The second moment of that IS estimator is

Eθ [g(X)2L2] =
∫

ε

0

(
λe−λy

θe−θy

)2

θe−θydy =
λ 2

θ(2λ −θ)
(1− e−(2λ−θ)ε). (3)

The estimator satisfies bounded relative error as ε → 0 if Eθ [g(X)2L2]/(E[g(X)])2 remains bounded as
ε→ 0. One can easily check that it is the case when θ = α/ε for any α > 0. As a consequence, the value
of θ minimizing the variance, say θ (min), satisfies BRE too.

We can solve the CE-program (2) by considering the first order condition and interchanging differentiation
and expectation. It is an easy exercise to show that

θ
∗ = argmax

θ

E [I{X ≤ ε} logdPθ ] =
P[X ≤ ε]

E[XI{X ≤ ε}]
=

1− e−λε

(1− e−λε)/λ − εe−λε
=

2
ε
+o(1)

(as ε → 0). The associated IS estimator with θ ∗ shows BRE from our verification right after (3).
Let λ = 1, ε = 10−2, leading to P[X < ε] ≈ 9.95 10−3, and (by numerical computations) θ (min) =

argminθ Varθ [g(X)L]≈ 159.68; θ ∗≈ 200.33. Consider k = 1 in the CE technique with θ0 = λ ; an estimator
of θ (min) during the presimulation is given from (2) by

θ̂n1 =
(1/n1)∑

n1
i=1 I{Xi ≤ ε}

(1/n1)∑
n1
i=1 XiI{Xi ≤ ε}

−→ P[X ≤ ε]

E[XI{X ≤ ε}]
= θ

∗ a.s.(n1→ ∞) (4)

We executed 100 experiments with presimulation sample size n1 = 1000, and later with n = 106 for the
final estimation. We observed important variations in the results. The max variance of an experiment was
4.52 10−4 obtained when θ (min) was estimated as θ̂n1 = 492.25 while the min variance was 5.34 10−5

obtained when θ̂n1 = 158.00, hence a (large) relative ratio of 12. 2

The disparity obtained when estimating the optimal parameter θ (min) in the last example illustrates that
we may end up with a parameter selection yielding bad robustness properties. This can happen even if the
parameter selection algorithm is performing, just because of (statistical) bad luck. As a consequence, it
seems difficult to ensure a strict robustness property for the final estimator in adaptive IS simulation for
a given choice of parameters, due to tits random nature. Our goal is to define a probabilistic robustness
property in the next section, describing a satisfactory probabilistic evolution of the relative error in terms
of the rarity parameter, and, afterwards, to characterize sufficient conditions to satisfy it. We also briefly
look at the overall estimator (parameters plus final estimation) and present a property that it should verify.

Note that similar difficulties have been observed in the literature.

Example 2 Another example is taken from Section 3 of Chan et al. (2011): consider the sum of n i.i.d. rv
Xi (1≤ i≤ n) where each Xi follows an exponential distribution with parameter 1. The goal is to estimate
p = P[X1 + · · ·+Xn ≥ γ] via IS, with the parametric family of exponential distributions with rate θ > 0. It
is shown that the optimal θ (CE) when using the CE technique is such that (quoting Chan et al. (2011)):
“when γ is sufficiently large, the estimation error in obtaining θ (CE) in the multi-level CE procedure might
be so substantial that it renders the resulting IS estimator unreliable”. 2
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3 PROBABILISTIC BOUNDED RELATIVE ERROR DEFINITIONS

We formalize now several notions of Probabilistic Bounded Relative Error (P-BRE). We consider a measurable
space (Ω,F ) on which is defined a default probability measure P, and a family of parameterized probability
measures {Pθ : θ ∈Θ}. Let X : Ω→R be a rv, and g : R→R be the output function. We can assume that
the output function depends on a rarity parameter ε , thus we denote gε(·); for instance gε(x) = I{x ∈ A(ε)}
for some sequence of Borel subsets {A(ε) : ε > 0}. The ε-problem is to estimate µ(ε) = E[gε(X)], where
µ(ε)→ 0 as the rarity parameter ε → 0. Another framework is when it is the probability measure that
depends on ε , leading to a family (Pε)ε defined on (Ω,F ), and µ(ε) = Eε [g(X)] with g(x) = I{x ∈ A}
for a given set A.

A member of the parameterized family can be used as an IS measure if dPθ (x)> 0 whenever gε(x)dP(x) 6=
0. The zero-variance probability measure P(ZV)

ε for the ε-problem is defined by dP(ZV)
ε = |gε (X)|

E[|gε (X)|]dP, which
is not necessarily a member of the parameterized family. However, suppose that there is some probability
space (Ω,F ,P) on which we can do experiments, for instance simulations, that allow us to learn P(ZV)

ε .
More formally, equip Θ with a sigma-algebra FΘ, and let θ̂ : Ω→Θ be a measurable mapping. Suppose
that we can construct such a rv for each ε-problem, resulting in a collection of rv {θ̂(ε) : ε > 0}. The
realizations θ(ε) of θ̂(ε) are used for estimating µ(ε) by the IS measure Pθ(ε).

Suppose that, in this way, we have constructed for each ε > 0 an IS measure Pθ(ε), and its associated
IS estimator Z(θ(ε),ε) being an unbiased estimator of µ(ε). The relative error of this estimator is

RE(θ(ε),ε) =

√
Varθ(ε)[Z(θ(ε),ε)]

µ(ε)
.

In the line of our observations in the previous section we recall the classical BRE property to a realization
(θ(ε))ε of (θ̂(ε))ε .

Definition 1 We say that the IS estimators Z(θ(ε),ε) show bounded relative errors (BRE) if

∃K < ∞ that does not depend on ε and for which sup
ε>0

RE(θ(ε),ε)≤ K. (5)

Equivalent conditions are supε>0 RE(θ(ε),ε) < ∞; supε>0
Eθ(ε)[Z2(θ(ε),ε)]

µ2(ε)
< ∞.; or RE(θ(ε),ε) = O(1) as

ε → 0.
However, as discussed before, the IS measure Pθ(ε) for the ε-problem is chosen randomly according

to some learning algorithm. Thus we deal with (random) IS estimators Z(θ̂(ε),ε) with random relative
errors RE(θ̂(ε),ε). In other words, these relative errors are rv Ω→ R. Based on this observation, it is a
natural step to cast the BRE property (5) in a probabilistic framework.

Definition 2

A. We say that the IS estimators Z(θ̂(ε),ε) show bounded square relative error in expectation, if their
relative errors satisfy

E[(RE(θ̂(ε),ε))2] = O(1) (ε → 0).

B. We say that the IS estimators Z(θ̂(ε),ε) show weak probabilistic bounded relative error, if

∀α ∈ (0,1) ∃ a constant K < ∞ such that inf
ε>0

P
(

RE(θ̂(ε),ε)≤ K
)
> α.
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C. We say that the IS estimators Z(θ̂(ε),ε) show strong probabilistic bounded relative error, if

∀α ∈ (0,1) ∃ a constant K < ∞ such that P
(

sup
ε>0

RE(θ̂(ε),ε)≤ K
)
> α.

Instead of ensuring BRE almost surely, we give a probabilistic guarantee to have BRE with any
specified probability, after an estimation procedure of the parameter(s). Strong and weak probabilistic
bounded relative error look at the evolution of the relative error as the rarity parameter goes to 0. The
strong sense means that the upper-bound on the relative error has to be verified for every ε , while in the
weak sense it is not needed, it has to be verified at least with a given probability.

It can be noted that bounded relative error in expectation is linked with the quality of the overall
estimator (parameters plus final estimation). Indeed, from Chebyshev’s inequality,

P

(∣∣∣∣∣ Ẑn(θ̂(ε),ε)

µ(ε)
−1

∣∣∣∣∣≥ γ

)
≤ Var[Z(θ̂(ε),ε)]

γ2(µ(ε))2n
=

Ē
[
(RE(θ̂(ε),ε))2

]
γ2n

.

The last equality comes from Var[Z(θ̂(ε),ε)] = Ē
[
Var[Z(θ̂(ε),ε)]|θ̂(ε)

]
= (µ(ε)2)Ē

[
(RE(θ̂(ε),ε))2

]
.

As a consequence, a bounded square relative error in expectation ensures an overall estimator with a
bounded number n of replications to provide a sufficient accuracy.

From now we rather focus on illustrations and conditions for the strong and weak probabilistic bounded
relative error properties, conditions for the property in expectation and the impact on the overall estimator
being left for further research. We therefore focus on the evolution of the relative error in terms of ε , for
a randomly chosen choice of parameters.

Remark 1 Our set-up and definition of randomization of the statistical performance of estimators follow
the practice of the learning methods which we mentioned in the introduction. That is, typically one executes
a two-stage approach, where the first stage determines parameters by a (pre)simulation procedure. The
second stage is for estimating the wished value after having chosen and fixed the parameters. Another view
on such randomization would be to select a parameter θ at random and execute the simulation using it.
Although this seems to be a more natural approach, we do not follow it because we wanted to stay close to
the practice mentioned above. Moreover, there are clearly two different probability mechanisms involved:
selection of the parameter; running the simulations. Thus, to define properly a statistical property of the
estimator, one needs to be unambiguous about these probability mechanisms.

Remark 2 As an important remark, one can note that in our definitions of robustness, the parameter θ̂

depends on ε – we do not mention here the required time/presimulation runs to obtain it. It might be the
case that the required number of runs is n1(ε) and increases with ε . A truly robust algorithm can be said
to be one for which the presimulation effort is also kept bounded as ε goes to zero. This would lead to
definitions of robustness stronger than the one above, but our goal here is not to define or put in place such
algorithms, it is just to highlight that robustness properties can only be probabilistic for properly chosen
presimulation algorithms.

4 SUFFICIENT CONDITIONS FOR P-BRE

Suppose that there exists a collection of IS probability measures {Pθ ∗(ε) : ε > 0} for which the associated
IS estimators Z(θ ∗(ε),ε) of µ(ε) show bounded relative error; and suppose that we have estimated these
probability measures by P

θ̂(ε)
.
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Proposition 1 Assume that for all α ∈ (0,1) there exists K > 0 such that for all ε > 0

P

(
sup

x:gε (x)6=0

dPθ ∗(ε)(x)
dP

θ̂(ε)
(x)
≤ K

)
> α. (6)

Then the IS estimators Z(θ̂(ε),ε) show weak probabilistic bounded relative error.

Proof. According to (5), as the estimators Z(θ ∗(ε),ε) show bounded relative error, there is a constant
K′ such that for all ε > 0, Eθ ∗(ε)[Z2(θ ∗(ε),ε)]≤ K′µ2(ε). Choose ε > 0 arbitrary, and let ω ∈Ω such that

for θ
def
= θ̂(ε)(ω) the inequality in (6) holds; i.e., supx:gε (x)6=0

dPθ∗(ε)(x)
dPθ (x)

≤ K. Then,

Eθ [Z2(θ ,ε)] =
∫

g(x)2
(

dP(x)
dPθ (x)

)2

dPθ (x) =
∫

g(x)2
(

dP(x)
dPθ ∗(ε)(x)

)2(dPθ ∗(ε)(x)
dPθ (x)

)
dPθ ∗(ε)[x]

≤ K
∫

g(x)2
(

dP(x)
dPθ ∗(ε)(x)

)2

dPθ ∗(ε)(x) = KEθ ∗(ε)

[
g(X)2

(
dP(X)

dPθ ∗(ε)(X)

)2
]

= KEθ ∗(ε)[Z
2(θ ∗(ε),ε)]≤ KK′µ2(ε).

Thus, choose K̃ = KK′, then for all ε > 0
{

supx:g(x)6=0
dPθ∗(ε)(x)
dP

θ̂(ε)
(x) ≤ K

}
⊂
{

E
θ̂(ε)

[Z2(θ̂(ε),ε)]

µ2(ε)
,≤ K̃

}
. and

∀α ∈ (0,1) ∃K̃ < ∞ such that ∀ε > 0 P
(

RE(θ̂(ε),ε)≤ K̃
)
> α.

Proposition 2 Assume that for all α ∈ (0,1) there exists a finite constant K such that

P

(
sup
ε>0

sup
x:gε (x)6=0

dPθ ∗(ε)(x)
dP

θ̂(ε)
(x)
≤ K

)
> α.

Then the IS estimators Z(θ̂(ε),ε) show strong probabilistic bounded relative error.

Proof. The proof follows the same line of reasoning as the proof of Proposition 1.

Example 3 Coming back to Example 1, we know from the central limit theorem for a ratio of estimators

(Asmussen and Glynn 2007) that, if we note d̂n1 =
1
n1

∑
n1
i=1 XiI{Xi ≤ ε}, the law of

√
n1(θ̂n1−θ ∗)

σ/d̂n1
converges

when n1→ ∞ to a Normal law with mean 0 and variance 1, where

σ
2 = σ

2[I{X ≤ ε}]−2θ
∗Cov[I{X ≤ ε},XI{X ≤ ε}]+ (θ ∗)2

σ
2[XI{X ≤ ε}]

= P[X ≤ ε](1−P[X ≤ ε])−2θ
∗E[XI{X≤ε}](1−P[X ≤ ε])+(θ ∗)2 (E[X2I{X ≤ ε}]− (E[XI{X ≤ ε}])2)

= −e−λε(1− e−λε)

+

(
1− e−λε

(1− e−λε)/λ − εe−λε

)2(
−ε

2e−λε −2
εe−λε

λ
+2

1− e−λε

λ 2 − ((1− e−λε)/λ − εe−λε)2

)
.

Then |θ̂n1−θ ∗| ≤ cα
σ

d̂n1
√

n1
with probability α where cα is the (1+α)/2 quantile of the standard normal

distribution. Let n1 = n1(ε) be large enough so the relative error is bounded by δ < 1 independent of ε , i.e.,
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the right hand-side of the above equation upper bounded by δθ ∗, or more exactly n1≥
(
(cασ)/(E[d̂]δθ ∗)

)2
.

Then, with probability α ,

sup
x:g(x)6=0

dPθ ∗ [x]
dP

θ̂n1
[x]

= sup
0≤x≤ε

θ ∗e−θ ∗x

θ̂n1e−θ̂n1 x
= sup

0≤x≤ε

θ ∗

θ̂n1

e(θ̂n1−θ ∗)x ≤ 1
1−δ

eδθ ∗ε .

As, for ε small enough, θ ∗ε ≤ 3 from (4), one can apply Proposition 2 with K = 1
1−δ

e3δ . 2

5 HIGHLY RELIABLE MARKOVIAN SYSTEMS

Our previous sections were dealing with general probability distributions, but many models used in
simulation are Markov chains. We therefore consider rare events in the context of discrete-time Markov
chains {Xn, n = 0,1, . . .} on a constant finite state space S . Let ΩX be the space of all sample paths of finite
lengths x = (x0,x1, . . . ,xT (x)), T (x) ∈ {1,2, . . .}, with sigma-algebra FX . Denote a matrix of transition
probabilities by θ = (θi j)i, j∈S . Associate with each matrix θ a probability measure Pθ on (ΩX ,FX). Let
Θ be the family of all matrices of transition probabilities; specifically, we consider a given collection of
matrices {θ(ε)} ⊂Θ, parameterized by ε > 0. We call these the default or nominal matrices.

Furthermore, we assume here that the state space contains a perfect state 0, a set B of failed states,
and the set U of remaining ‘up’ states, i.e., S = {0}∪U ∪B. For any x ∈ ΩX we define T (x) = inf{n :
xn ∈ {0}∪B}, the stopping time of “return” to 0 or reaching failure, and for any state i ∈ S we let
µi(ε) = P

θ(ε)(XT (X) ∈ B|X0 = i) = E
θ(ε)[I{XT (X) ∈ B}|X0 = i] the probability of reaching a failed state

before the perfect state given that we start in i. Note that µ0(ε) = 0 and µi(ε) = 1 whenever i ∈ B. The
purpose is to estimate µ(ε) = ∑i∈S θ(ε)0iµi(ε), the probability that after leaving the perfect state 0, the
chain will hit the failure set B before returning to 0. We assume that µ(ε)→ 0 as ε→ 0. We are interested in
efficient IS estimators of these performance measures. More on this type of model and specific IS schemes
can be found in L’Ecuyer and Tuffin (2012), Nakayama (1996), Rubino and Tuffin (2009), Shahabuddin
(1994).

Example 4 As a toy example, consider birth-death type of Markov chains on S = {0,1, . . . ,b} for
a finite constant b; thus we consider only transition probabilities satisfying θi,i+1 + θi,i−1 = 1; we let
the states 0 and b be absorbing. Let T (x) = inf{n : xn ∈ {0,b}}. For each θ ∈ Θ we assume that
Pθ (T (X) < ∞) = 1, with Pθ (XT (X) = b|X0 = i) > 0 for all i 6= 0. Suppose that the nominal matrices
θ(ε)∈Θ satisfy maxi=1,...,b−1 θ(ε)i,i+1 ≤ ε . Finally, define µi(ε) = P

θ(ε)(XT (X) = b|X0 = i): the probability
of absorption in state b when the chain starts in state i. 2

Suppose that for each ε > 0 there is besides the nominal matrix θ(ε) some other transition matrix
θ(ε) ∈ Θ, such that θ(ε)i j > 0 whenever θ(ε)i j > 0. This matrix is called the reference matrix, and it

induces an unbiased IS estimator of µ(ε) by Z(θ(ε),ε) def
= L(X;θ(ε),θ(ε))I{XT (X) ∈ B} with likelihood

ratio L(x;θ(ε),θ(ε))
def
=

dP
θ(ε)(x)

dPθ(ε)(x)
= ∏

T (x)−1
n=0

θ(ε)xn ,xn+1
θ(ε)xn ,xx+1

, x ∈ΩX .

Recall that the zero-variance probability measure is induced by taking reference matrices θ (ZV)(ε) ∈Θ

for which

dP
θ(ε)(ZV)(x) =

I{xT (x) ∈ B}dP
θ(ε)(x)

µ(ε)
, x ∈ΩX . (7)
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It is known from L’Ecuyer and Tuffin (2012) that a matrix θ(ε)(ZV) with ∀i, j ∈S , i 6= j, θ(ε)
(ZV)
i, j =

θ(ε)i, jµ j(ε)
µi(ε)

. For instance, in the setting of Example 4, it gives

θ(ε)
(ZV)
i,i+1 =

θ(ε)i,i+1µi+1(ε)

µi(ε)
. (8)

We shall consider a sufficient condition for probabilistic bounded relative error. Denote by P
θ̂(ε)

the

probability measure on (Θ,FΘ) induced by the rv θ̂(ε) : Ω→Θ.

Proposition 3 Assume that for all α ∈ (0,1) there exist finite constants K1,K2 > 0 such that for all ε > 0
the (random) parameters are close enough the to zero-variance ones with probability at least α:

P

(
K1 ≤ sup

i, j∈S ,θ (ZV)(ε)i j 6=0

θ (ZV)(ε)i j

θ̂(ε)i j
≤ K2

)
> α. (9)

Then, under the assumption that cycles have P
θ(ε)-probability O(εδ ) for some constant δ > 0, the IS

estimators Z(θ̂(ε),ε) show weak probabilistic bounded relative error.

Proof. Choose ε > 0 and a reference transition matrix θ = θ(ε) from a realization of θ̂(ε) such that

K1 ≤ sup
i, j∈S ,θ (ZV)(ε)i j 6=0

≤
θ (ZV)(ε)i j

θ
≤ K2.

We wish to show that there is a constant K̃ which does not depend on ε , such that Eθ [Z2(θ ,ε)]
µ2(ε)

≤ K̃. Then P-BRE

follows from the fact that, by assumption, θ = θ(ε) is a realization of θ̂(ε) such that supi, j∈S
θ (ZV)(ε)i j

θ
≤K2

with probability at least α .
Note that we can rewrite this ratio using the expression for the zero-variance probability measure given

in (7) which says that
I{XT (X)∈B}L2(X;θ(ε);θ (ZV)(ε))

µ2(ε)
= 1 a.s., and then bound it using that θ in the set given

in (9):

Eθ [Z2(θ ,ε)]

µ2(ε)
=

Eθ [I{XT (X) ∈ B}L2(X;θ(ε);θ)]

µ2(ε)

=
Eθ [I{XT (X) ∈ B}L2(X;θ(ε);θ (ZV)(ε))L2(X;θ (ZV)(ε);θ)]

µ2(ε)

= Eθ [I{XT (X) ∈ B}L2(X;θ
(ZV)(ε);θ)] = Eθ

[
I{XT (X) ∈ B}

(dP
θ (ZV)(ε)

dPθ

(X)
)2
]
≤ Eθ [K

2T (X)
2 ].

Define A (i) to be the set of sample paths that, starting in state i ∈S , reach the failure set before state
0 without cycles: A (i) = {x ∈ ΩX : x0 = i;xT (x) ∈ B;no cycles}. Let A =

⋃
i∈S A (i). Because the state

space S is finite, there is a finite constant m such that for any ε > 0 all sample paths x ∈A have length
T (x)< m. Denote p0(ε) = Pθ (A ). Note that p0 depends on ε because transition matrix θ = θ(ε) refers
to the estimate θ̂(ε) of the zero-variance matrix for the ε-problem.

Clearly, Pθ (T (X) ≥ m) ≤ Pθ (A
c) = 1− p0(ε). From this we can reason that Pθ (T (X) ≥ km) ≤

(1− p0(ε))
k for all k = 0,1, . . . (see also the proof of Theorem 1 in L’Ecuyer and Tuffin (2012)). Hence,
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T (X)/m is stochastically smaller than a geometric rv Y (on 0,1, . . .) with parameter p0(ε). Using the
expression of the generating function Eθ [zY ] of Y , we get

Eθ [K
2T (X)
2 ] = Eθ [(K2m

2 )T (X)/m]≤ Eθ [(K2m
2 )Y ] =

p0(ε)

1− (1− p0(ε))K2m
2

,

if we are able to prove that (1− p0(ε))K2m < 1 (for ε small enough). Then BRE will be obtained.
But, following exactly the proof of Theorem 2 in L’Ecuyer and Tuffin (2012), thanks to our assumptions,

we can show that p0(ε)→ 1 as ε → 0, hence the result. This basically comes from the fact that any path
x is such that Pθ [x] = Θ( P[x]

µ(ε)) by expanding the probability of the path as the product of probabilities
of individual transitions and using the bounds in terms of the zero-variance change of measure. As a
consequence dominant paths (those of probability Θ(µ(ε)) under the original distribution) have probability
Θ(1) while non-dominant paths have probability o(1) and therefore p0(ε)→ 1.

6 M/M/1/b MODEL

As a special case of Section 5 we consider a Markov chain on S = {0,1, . . . ,b} for a finite constant b
with transition probabilities

θ(ε)i,i+1 = ε, θ(ε)i,i−1 = 1− ε, (i = 1, . . . ,b−1),

for ε > 0. This models the discrete-time Markov chain associated with the continuous-time M/M/1/b
Markov chain by embedding at the jump times. States 0 and b are absorbing, θ(ε)00 = 1, θ(ε)bb = 1. For
instance, when ε = k−δ for some δ > 0 and k→∞, the decaying is polynomially fast. When ε = e−δk for
some δ > 0, the decaying is exponentially fast as k→∞. The output function I{xT (x) = b} is absorption in
state b, where T (x) is the first entrance time in the absorption set, and I{A} denotes the indicator function
of event A. Suppose that the chain starts in state i, then we denote

µi(ε)
def
= P

θ(ε)(XT (X) = b|X0 = i).

Let ρ(ε)
def
= (θ(ε)i,i−1)/(θ(ε)i,i+1) = (1− ε)/ε. Then it is well-known, e.g., see Chapter XIV in Feller

(1968), that

µi(ε) =
ρ(ε)i−1
ρ(ε)b−1

, i = 0, . . . ,b. (10)

Specifically we are interested in µ1(ε) for ε → 0:

µ1(ε) =
ρ(ε)−1
ρ(ε)b−1

=
(1− ε)/ε−1
(1− ε)b/εb−1

=
(1−2ε)εb−1

(1− ε)b− εb = Θ

(
ε

b−1
)
, ε → 0.

Thus, the rare event probability µ1(ε) decays to 0 polynomially in ε as ε → 0.

6.1 An Estimator with Bounded Relative Error

Define transition matrices {θ ∗(ε), ε > 0} by θ ∗(ε)i,i+1 = θ(ε)i,i−1 = 1−ε, θ ∗(ε)i,i−1 = θ(ε)i,i+1 = ε, (i=
1, . . . ,b− 1), for ε > 0. States 0 and b are again absorbing. It is known that by interchanging arrival
and service jump probabilities the IS estimators show BRE when b→ ∞ while keeping the transition
probabilities θ(ε)≡ θ not dependent on ε . The same holds true in our study of absorption probabilities
for systems with constant state space as we shall show formally.
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Proposition 4 Suppose that we apply IS simulation with these θ ∗(ε) matrices to estimate µ1(ε). Then
the associated IS estimators Z(θ ∗(ε),ε) show bounded relative error.

Proof. Recall that Z(θ ∗(ε),ε) =
dP

θ(ε)(X)

dPθ∗(ε)(X) I{XT (X) = b}. The likelihood ratio of a path X that reaches
b equals

dP
θ(ε)(X)

dPθ ∗(ε)(X)
=

b−1

∏
i=1

θ(ε)i,i+1

θ ∗(ε)i,i+1
×

b−1

∏
i=2

(
θ(ε)i,i−1

θ ∗(ε)i,i−1

θ(ε)i−1,i

θ ∗(ε)i−1,i

)Ni(X)

,

where the second ∏-factor takes into account all cycles: Ni(X) is the number of times the cycle i→ i−1→ i
occurs. By definition of the IS transition probabilities θ ∗(ε)i j, this cycle product equals 1. Thus

Eθ ∗(ε)[Z
2(θ ∗(ε),ε)] =

(
b−1

∏
i=1

ε

1− ε

)2

Eθ ∗(ε)[I{XT (X) = b}] =
(

ε

1− ε

)2(b−1)

Pθ ∗(ε)(XT (X) = b).

But Pθ ∗(ε)(XT (X) = b) = 1−ρ(ε)−1

1−ρ(ε)−b , where ρ(ε)−1 = ε

1−ε
→ 0 with ε . So,

Eθ ∗(ε)[Z2(θ ∗(ε),ε)]

µ1(ε)2 = ρ(ε)−2(b−1) 1−ρ(ε)−1

1−ρ(ε)−b
(ρ(ε)b−1)2

(ρ(ε)−1)2
(calculus)

=
1−ρ(ε)−b

1−ρ(ε)−1 ≤ 2(1−ρ(ε)−b)< 2,

for all ε < ε0 for which 1−ρ(ε0)
−1 > 1

2 .

Using (8) and (10) the zero-variance probability measure gives θ(ε)
(ZV)
i,i+1 = ε

ρ(ε)i+1−1
ρ(ε)i−1 , θ(ε)

(ZV)
i,i−1 =

(1− ε) ρ(ε)i−1−1
ρ(ε)i−1 , for 1≤ i≤ b−1. Note that θ(ε)

(ZV)
1,0 = 0, thus P

θ(ε)(ZV)(XT (X) = b) = 1.

6.2 Cross-Entropy Estimators

Applying the cross-entropy method with a pre-simulation sample size n1 results in estimates

θ̂(ε)i,i+1[n1] =
∑

n1
r=1 I{X(r)

T (X(r))
= b}Ni,i+1(X(r))

∑
n1
r=1 I{X(r)

T (X(r))
= b}

(
Ni,i+1(X(r))+Ni,i−1(X(r))

) , (11)

where X(r) is the r-th simulated sample path, and Ni,i+1(X) counts the number of transitions i→ i+1 on
the sample path X. The simulations have been executed under P

θ(ε) but Pθ(ε) could also be used, in which
case the numerator and denominator in (11) should include the likelihood ratio L(X(r);θ(ε),θ(ε)). In both
cases, we obtain

lim
n1→∞

θ̂(ε)i,i+1[n1] =
E

θ(ε)[I{XT (X) = b}Ni,i+1(X)]

E
θ(ε)[I{XT (X) = b}(Ni,i+1(X)+Ni,i−1(X)]

= θ(ε)
(ZV)
i,i+1 a.s. (12)

The last equality in (12) has been shown in Ridder (2010). Estimator (11) satisfies the central limit theorem,
see for instance Asmussen and Glynn (2007), page 107):

√
n1

(
θ̂(ε)i,i+1[n1]−θ(ε)

(ZV)
i,i+1

)
d→ N(0,σ2(ε)) (n1→ ∞)

for some σ2(ε). Apply the delta method for obtaining an expression for the variance σ2(ε). Hence,
denoting z1−α/2 the 1−α/2 quantile of the standard normal distribution, we get for n1 large enough

P
θ̂(ε)

(∣∣∣θ̂(ε)i,i+1[n1]−θ(ε)
(ZV)
i,i+1

∣∣∣< z1−α/2
σ(ε)
√

n1

)
≈ 1−α.
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Proposition 5 The cross-entropy estimators satisfy probabilistic bounded relative error.

Proof. Apply Proposition 3 while using (12) and the constant size of state space for all ε .
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