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ABSTRACT

We develop a dynamic Markovian method of simulating a battle between two infantry units. Its key
feature is that the probabilities of the outcomes of the battle can be computed efficiently, without the joint
distribution of the strengths of the units or their transition matrix, making the method feasible even with
larger unit strengths. We find the probabilities of the outcomes to be close to the ones obtained from a
more elaborate, but computationally more costly, joint Markov-chain model of strengths. Additionally,
using our method we are able to compute the conditional distributions of the strength of a unit, given that
it has, respectively, won the battle or been defeated by the enemy.

1 INTRODUCTION

The history of modern mathematical modeling of warfare essentially begins from the differential equations
introduced by F. W. Lanchester (1868–1946). In particular, he attempted to model the sea battle of Trafalgar,
which was fought between a British fleet and a combined Franco-Spanish fleet in 1805, by coupled, linear
ordinary differential equations describing the number of operational ships in the opposing fleets (Lanchester
1916). Despite their simplicity and appealing mathematical elegance, a well-documented shortcoming of
Lanchester’s equations—already noted by Lanchester himself in the context of the battle of Trafalgar—is
that they fail to capture the randomness and uncertainty that pervades virtually all theaters of war. In
reality, say, drastic losses suffered by either of the fleets initially would very likely determine how the battle
unfolds and might even help the, a priori, weaker fleet with fewer ships or less firepower to win the battle.
Such phenomena are ruled out by Lanchester’s equations, which imply gradual attrition of the fleets and
a predetermined winner for the battle.

Motivated by the caveats of Lanchester’s equations, various stochastic counterparts have been suggested
in the literature. The canonical example of those is the Markov-process model commonly known as the
stochastic Lanchester model that, according to Ancker and Gafarian (1988), first appears in the work of
Snow (1948). Kingman (2002) gives a more recent description and analysis of this model, which represents
the evolution of the strengths of opposing forces engaging each other in a duel as a bivariate continuous-time
Markov process. Assuming that the strengths of the opposing forces are n and m, respectively, the Markov
process assumes values in a state space with (n+1)(m+1) elements. Alas, for large n and m, fast numerical
computation of the probability distribution of the state of the stochastic Lanchester model becomes difficult.
It has been proved that when n and m tend to infinity, with n/m fixed, the rescaled trajectories of the
stochastic Lanchester model converge to the solution of Lanchester’s classical differential equations—see
Ancker and Gafarian (1988) for a comprehensive review of such results. This, of course, provides a way
to analyze the stochastic Lanchester model with larger troop sizes, but as a first-order (i.e., in the mean)
deterministic approximation, suffering from the shortcomings discussed above, it is clearly insufficient,
e.g., for the purposes of risk analysis.
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In this paper, we present a numerically efficient, approximative, Markovian method of modeling a duel,
which is computationally feasible even with larger troop strengths. The method is geared towards providing
the key probabilities that the battle is won by either of the troops involved in the duel or that both are
defeated—which is typically unlikely, though. The novel feature of this method is that the computation of
the probabilities of the outcomes of the battle can be done using a simple recursion, which does not require
knowledge of the full joint distribution of the strengths of the troops nor the associated state transition
matrix. One needs to keep track only of the conditional marginal distributions of strengths given that the
battle continues. Furthermore, the conditional distributions of the strengths of a unit, given that it has won
the battle or been defeated, respectively, can be computed in a similar recursive fashion rather efficiently.

The results of this paper are a part of the ongoing development of Sandis combat simulation software
(Lappi 2008). Sandis is a land warfare simulator developed and used by Finnish Defence Forces to model
combat scenarios involving military units ranging from platoons to brigades, with strengths ranging from
(roughly) 20 to 3000 soldiers. It comprises detailed models of the armament and equipment of the troops,
effects of direct and indirect fire (with fragmenting ammunition), medical evacuation in the battle field, and
electronic warfare. Mathematically, Sandis is based on Markovian modeling of the probability distributions
the strengths of the involved units. Currently, only marginal distributions of the strengths of the units in a
scenario are computed and the probable outcome of the battle needs to be judged solely based on them,
e.g., by comparing the expected values. While the actual probabilities of friendly or enemy forces winning
are, thus, not readily available in the current version of Sandis, a manual method of deriving them has
been recently described by Lappi (2012). The refined method described in this paper will be used as a
foundation for a proper duel simulation feature that will be implemented in future versions of Sandis.

2 MATHEMATICAL FRAMEWORK

Consider a duel between Blue and Red infantry, fought with direct-fire weaponry (e.g., rifles or machine
guns). Let us denote by Bt and Rt the strengths of the Blue and Red units, respectively, at time t = 0,1, . . . ,T ,
where T ∈ N is the total number of time steps in the simulation. The initial strengths B0 ∈ N and R0 ∈ N
are deterministic constants, whereas the subsequent strengths are random variables. Neither of the units
receive any reinforcements during the battle, so we have Bt 6 Bt−1 and Rt 6 Rt−1. Both units have their
respective minimal strengths b ∈ {1, . . . ,B0} and r ∈ {1, . . . ,R0} to be operational. If the strength of the
unit falls below this threshold, the unit is unable to continue the battle and is considered defeated. In this
case, the strengths of the units are frozen to signify the end of the battle. (What happens after that—are the
remaining soldiers of the defeated unit captured as prisoners of war, or are they able to retreat—is beyond
the scope of our modeling problem.) Formally, if we have Bt < b or Rt < r for some t, then Bs = Bt and
Rs = Rt for all s > t. At any given time t, there are four distinct possibilities for the state of the battle:

• the battle continues, Ct = {Bt > b, Rt > r},
• Blue troops have won, WB,t = {Bt > b, Rt < r},
• Red troops have won, WR,t = {Bt < b, Rt > r},
• both troops are defeated, Dt = {Bt < b, Rt < r}.

Since Bt and Rt take decreasing trajectories due to attrition, it follows that the probability of Ct will decrease
and the probabilities of the terminal states, or outcomes, WB,t , WR,t , and Dt will increase over time.

It should be stressed that we have chosen to interpret Blue and Red here as infantry units and measure
their strengths in terms of individual soldiers merely to provide an illustrative exposition. Indeed, our
simulation method is not necessarily restricted to infantry—being equally applicable to the modeling of, e.g.,
armored warfare using the interpretation that the strengths are the numbers of operational tanks involved.
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2.1 Reference Method

We first describe a reference method of defining a probability model for the evolution of the strengths
(Bt ,Rt) of the units over time. It is a generalization of the point-fire model employed by the current version
of Sandis (Lappi and Pottonen 2006), and bears some similarity to the stochastic Lanchester model. We
shall denote the associated probabilities by P. With the reference method, the t-th time step of the simulation
is taken as follows.

1. In the beginning of the time step, the strengths of the units are Bt−1 and Rt−1, respectively.
2. Each Blue (resp. Red) soldier fires independently λB > 0 (resp. λR > 0) rounds, on average, directed

randomly and evenly at the Rt−1 (resp. Bt−1) targets that consist of the enemy soldiers.
3. The probability that a round fired by a Blue (resp. Red) soldier produces a hit that incapacitates an

enemy soldier is pB ∈ (0,1) (resp. pR ∈ (0,1)).
4. In the end of the time step, soldiers that have suffered incapacitating hits are removed from the

battle field and new strengths Bt and Rt are computed.

In accordance to this procedure, the strengths (Bt ,Rt) follow a Markov chain with binomial transition
probabilities

P[Bt = b, Rt = r|Bt−1 = b−1, Rt−1 = r−1] =

(
b−1

b−1−b

)
πR(b−1,r−1)

b−1−b(1−πR(b−1,r−1)
)b

×
(

r−1

r−1− r

)
πB(b−1,r−1)

r−1−r(1−πB(b−1,r−1)
)r (1)

if b−1 > b, b−1 > b, r−1 > r, and r−1 > r, where

πB(b−1,r−1) = 1− (1− pB)
λBb−1

r−1 and πR(b−1,r−1) = 1− (1− pR)
λRr−1

b−1 .

Otherwise, we set

P[Bt = b, Rt = r|Bt−1 = b−1, Rt−1 = r−1] =

{
1, if b = b−1 and r = r−1,
0, if b 6= b−1 or r 6= r−1.

(2)

Note that, mathematically, the strengths Bt and Rt are conditionally independent, given the previous strengths
Bt−1 and Rt−1, that is,

P[Bt = b, Rt = r |Bt−1 = b−1,Rt−1 = r−1] =

P[Bt = b |Bt−1 = b−1,Rt−1 = r−1]P[Rt = r |Bt−1 = b−1,Rt−1 = r−1]

for any b, b−1 ∈{0,1, . . . ,B0} and r, r−1 ∈ {0,1, . . . ,R0}. For an introduction to the conditional independence
property, we refer to Pfeiffer (1978).

Equations (1) and (2) give us the entries of the state transition matrix of the Markov chain (Bt ,Rt)
under P. Thus, numerical evaluation of the joint distribution of (Bt ,Rt) boils down to multiplying the
initial (degenerate) distribution vector of (B0,R0) by the state transition matrix t times. Probabilities of
the states Ct , WB,t , WR,t , and Dt can then be calculated from the joint distribution. The state transition
matrix is (B0+1)(R0+1)×(B0+1)(R0+1)-dimensional, but relatively sparse, so for small initial strengths
B0 and R0, the construction of the matrix and the subsequent multiplications are manageable from the
computational point of view. However, with larger initial strengths, the computational burden grows rapidly,
which motivates a search for more efficient methods of simulating the battle, as discussed above.
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2.2 Approximative Method

We now present the approximative method of defining a probability model for (Bt ,Rt), which aims to be
close to the reference model at least in terms of probabilities of the state of the battle. We shall denote
by P̄ the probabilities associated to this approximative method. The method relies on the mathematical
assumption that for any t = 1,2, . . . ,T the strengths Bt and Rt of the units are conditionally independent
given that the battle has continued at time t−1, that is,

P̄[Bt = b, Rt = r |Ct−1] = P̄[Bt = b |Ct−1]P̄[Rt = r |Ct−1]. (3)

We take the t-th time step as with the reference method, except that we draw the previous strengths of
Blue and Red troops independently from the marginal conditional distributions P̄[Bt−1 = b−1 |Ct−1] and
P̄[Rt−1 = r−1 |Ct−1] , respectively. Thus, we set

P̄[Bt = b |Ct−1] =
B0

∑
b−1=b

R0

∑
r−1=r

P̄[Bt−1 = b−1|Ct−1]P̄[Rt−1 = r−1|Ct−1]

×
(

b−1

b−1−b

)
πR(b−1,r−1)

b−1−b(1−πR(b−1,r−1)
)b
, (4)

where the πR(b−1,r−1) and the associated parameters are as in the reference model. For P̄[Rt = r |Ct−1]
we specify an analogous formula. As the battle continues only if the Blue strength is above b, we have

P̄[Bt = b|Ct ] =


P̄[Bt = b|Ct−1]

P̄[Bt > b|Ct−1]
, if b > b,

0, if b < b,
(5)

and an analogous expression for P̄[Rt = r|Ct ].
Let us look into the key properties of the approximative method. Since Ct ⊂ Ct−1, by conditional

independence (3), we may update the probability that the battle continues through

P̄[Ct ] = P̄[Ct ∩Ct−1] = P̄[Bt > b|Ct−1]P̄[Rt > r|Ct−1]P̄[Ct−1].

Moreover, we have

P̄[Bt = b, Rt = r] = P̄[Bt = b |Ct−1]P̄[Rt = r |Ct−1]P̄[Ct−1]+ P̄[Bt−1 = b, Rt−1 = r] (6)

provided that b < b or r < r. This identity enables us to evaluate recursively the decisive probabilities
P̄[Bt = b, Rt = r], where b < b or r < r, without keeping track of the whole joint distribution of (Bt ,Rt). This
procedure requires only a record of the marginal conditional distributions P̄[Bt = b |Ct−1] and P̄[Rt = r |Ct−1]
up to the t-th time step. From (6) we immediately obtain recursive formulae for the probabilities of the
terminal states of the battle:

P̄[WB,t ] = P̄[Bt > b|Ct−1]P̄[Rt < r|Ct−1]P̄[Ct−1]+ P̄[WB,t−1], (7)

P̄[WR,t ] = P̄[Bt < b|Ct−1]P̄[Rt > r|Ct−1]P̄[Ct−1]+ P̄[WR,t−1], (8)

and
P̄[Dt ] = P̄[Bt < b|Ct−1]P̄[Rt < r|Ct−1]P̄[Ct−1]+ P̄[Dt−1]. (9)

Recall that, initially, P̄[WB,0] = P̄[WR,0] = P̄[D0] = 0.
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2.3 Conditional Distributions of Strengths

In addition to the probabilities of the states of the battle, we are interested in the conditional distributions of
the strength of a unit given that it has won or been defeated, respectively. With the reference method, such
distributions can be easily obtained from the joint distribution of (Bt ,Rt), whereas with the approximative
one, we can easily derive recursive formulae, akin to (7), (8), and (9), for them. The conditional distribution
of the strength of Blue troops given that they have won satisfies

P̄[Bt = b |WB,t ] =
P̄[Bt = b |Ct−1]P̄[Rt < r |Ct−1]P̄[Ct−1]+ P̄[Bt−1 = b |WB,t−1]P̄[WB,t−1]

P̄[WB,t ]
(10)

for b > b, whereas the distribution given that they are defeated satisfies

P̄[Bt = b |Dt ∪WR,t ] =
P̄[Bt = b |Ct−1]P̄[Ct−1]+ P̄[Bt−1 = b |Dt−1∪WR,t−1](P̄[Dt−1]+ P̄[WB,t−1])

P̄[Dt ]+ P̄[WB,t ]
(11)

for b< b. The initial distributions P̄[B0 = b |WB,0] and P̄[B0 = b |D0∪WR,0] cannot be defined unambiguously,
as P̄[WB,0] = P̄[WR,0] = P̄[D0] = 0, but this is not an issue because their contribution to (10) and (11) is
multiplied by zero in any case. Again, analogous formulae hold for the strength of Red troops.

3 NUMERICAL RESULTS

We evaluated the accuracy of the approximative method relative to the reference method with numerical
experiments. Specifically, we studied how closely the methods match when we compute the probabilities
of the states of the battle or the conditional distributions of the strength of a unit, given that it has won or
been defeated, respectively.

3.1 Example Scenario

To illustrate the output of the methods, we first made a simple experiment involving Blue and Red platoons,
initially with B0 = 26 and R0 = 30 soldiers, respectively. To make the scenario more even, we compensated
for the larger initial strength of Red by assuming that the marksmanship of Blue soldiers is superior and
setting pB = 0.03 and pR = 0.02, respectively. These parameter values are comparable to typical hitting
probabilities recorded in field experiments involving infantry, armed with assault rifles (Lappi and Pottonen
2006, Lappi and Vulli 2008). Moreover, we set the firing rates to be equal, λB = λR = 2. Finally, we used
the typical criterion that a platoon is no longer operational if at least half of its soldiers have been hit in
an incapacitative way, implying that b = 14 and r = 16, respectively.

Figure 1 displays the trajectories of the probabilities of the states and the conditional distributions,
computed using both methods, in this scenario. We observe that with both methods, the battle ends and,
thus, the outcome is clear with overwhelming probability after T = 25 time steps. The approximative
method gives a slightly exaggerated picture of the outcome of the battle—in the sense that it overestimates
the probability of Blue winning and, conversely, underestimates the probability of Red winning. Compared
to the reference method, the approximative method gives more pessimistic conditional distributions of the
strength, given that the platoon has won—in the sense that the probability mass is shifted towards lower
strength. However, in terms of the conditional distributions, given that the platoon is defeated, the methods
are in close agreement.

3.2 Experiment with Varied Parameter Values

To gain an understanding of how the approximation error varies across the parameter space, we made a
more elaborate experiment using a two-dimensional gridded design, varying the parameters of Red troops,
viz. R0 (between 10 and 50) and pR (between 0.002 and 0.032) over 41×41 = 1681 design points. For Blue
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Figure 1: Top: evolution of the probabilities of the states of the battle according to the approximative
method (solid lines) and to the reference method (dashed lines). Bottom: the conditional distributions of the
strengths of the platoons. Values of the parameters: T = 25, B0 = 26, pB = 0.03, λB = 2, b = 14, R0 = 30,
pR = 0.02, λR = 2, and r = 16.
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Figure 2: Probabilities of the states of the battle, as given by the approximative method (left column) and
the corresponding error relative to the reference method (right column). Values of the other parameters:
T = 500, B0 = 30, pB = 0.02, λB = 1, b = 16, λR = 1, and r = bR0/2c+1, where b·c stands for the floor
function.
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Figure 3: Error of the approximative method relative to the reference method with conditional distributions
of the strengths. Values of the other parameters: T = 500, B0 = 30, pB = 0.02, λB = 1, b = 16, λR = 1,
and r = bR0/2c+1, where b·c stands for the floor function.

troops, we fixed B0 = 30 and pB = 0.02. As before, we used the criterion that a unit is no longer operational
if at least half of its soldiers have been hit in an incapacitative way. Thus, b = 16 and r = bR0/2c+ 1,
where bxc= max{k ∈ Z : k 6 x}, for x ∈ R, stands for the floor function. Parameters λB and λR were set
to unity. The number of time steps, T = 500, was chosen as to ensure that the probability of the battle
continuing at T would be negligible. Indeed, we found that both P̄[CT ] and P[CT ] were less than 10−70

across all design points.
Figure 2 displays contour plots of the probabilities of the terminal states of the battle obtained using

the approximative method and the corresponding errors relative to the reference method. As expected, the
probability of that Blue troops have won increases as the initial strength R0 of Red troops and their hitting
probability pR decreases (and for Red troops, vice versa). The probability that both units end up being
defeated is rather low, being less than 0.04 in all design points. The highest values are obtained when Blue
and Red have roughly equal initial strengths or when Blue troops outnumber Red slightly, but the difference
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is offset by Red troops’ higher hitting probability. In the plots of errors, we observe consistently the pattern
that was already evident in Figure 1: the approximative method slightly exaggerates the probability that
the more-likely winner has won. However, for practical purposes the magnitude of error is small, being
less than 0.07 in all design points. When the winning probability is close to unity, the error essentially
disappears.

Contour plots of the error of the approximative method for the conditional distributions of the strengths
are displayed in Figure 3. To measure the magnitude of the error, we used the maximum norm of finite
dimensional vectors,

‖x‖∞ = max
06i6d

|xi|, for x = (x1, . . . ,xd) ∈ Rd ,

that simply gives the maximal distance of the point probabilities in the compared distributions. The
conditional distributions, given that the unit has won, exhibit errors of magnitude at most 0.07. However,
a glance at Figure 2 reveals that the largest errors actually appear in the regions of the parameter space
where the conditioning event occurs with very low probability. In such cases the conditional distribution
would be of limited informational value, anyway. The errors of conditional distributions, given that the
unit is defeated, are smaller. This is largely due to the fact that the probability mass of these distributions
is tightly concentrated to values immediately below the thresholds b and r leaving less room for error.

The numerical experiments were made using prototype implementations of the methods, written in
R programming language (R Development Core Team 2011). They were not particularly optimized in
terms of performance, so only very tentative performance comparisons can be made based on the current
experiments. With this caveat in mind, even for moderate initial strengths—e.g. with B0 = 26 and R0 = 30,
as in the first illustrative experiment—the observed run times of the reference method were roughly 100-fold
compared to the approximative one.

4 CONCLUSIONS

We have introduced an approximative Markovian method of modeling a duel between two infantry units.
The method is based on the mathematical assumption that, in each time step of the simulation, the strengths
of the units are conditionally independent, given that the battle continues after the preceding time step. This
assumption allows us to compute the probabilities of the outcomes of the battle in an efficient recursive
manner. The conditional distributions of the strength of a unit, given that it has won the battle or been
defeated, respectively, can be computed in a similar way. We compared numerically the approximative
method to a more elaborate reference method that entails modeling the strengths of the units jointly as
Markov chain, requiring the joint distribution of the strengths to be evaluated in each time step. The
key finding is that the approximative method performs efficiently and its output is numerically close and
qualitatively parallel to the one obtained from the reference method.

Based on this study, we find the approximative method to be accurate enough to be used a foundation
for a duel simulation feature, to be implemented in future versions of Sandis combat simulation software.
As a further theoretical work, it would be of interest to study, whether there exist a simple analytical bound
for the error of the approximative method. This could then be output by Sandis, as a quick measure of
robustness, whenever the duel simulation is performed.
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