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ABSTRACT

We consider the problem of determining schedules for make-to-order production of companies that manu-
facture special purpose glasses. Due to sensitive raw materials and high quality specifications, scheduling
is affected by disturbances arising from stochastic processing times and stochastic scrap rates. Scarce
machine capacities, limited availability of transportation equipment, and technical or organizational tem-
poral constraints lead to a complex planning problem. Hence, discrete-event simulation is valuable for
analyzing the impact and robustness of alternative schedules, but it fails in efficiently guiding the search
for optimal control parameters. In order to overcome this drawback, we propose a simulation-based opti-
mization approach that relies on coupling simulation and optimization through a relaxation-based schedule
generation procedure. Schedules are generated employing a mixed-integer programming model for which
input parameters and additional constraints are iteratively derived using a simulation model. We evaluate
our approach considering real-world instances and present preliminary computational results indicating its
effectiveness.

1 INTRODUCTION

Since most manufacturing problems are characterized by a high level of complexity, the use of simulation
models for supporting operational scheduling tasks has become more and more important in practice.
In this context discrete-event simulation (DES) represents an effective tool for analyzing and evaluating
impacts of alternative schedules for real world production systems. However, if the search for control
parameters that leads to good system performance measures is not guided in an appropriate way, creating
detailed schedules for the shop floor can require a huge number of time consuming simulation experiments.
In special purpose glass manufacturing scarce resources, time-varying bottlenecks, as well as temporal
constraints cause complex production systems and feasible schedules with a good performance are difficult
to generate. Hence, large improvements in both factory performance and planning speed can be achieved
by coupling simulation and optimization through a simulation-based optimization approach. In this paper
we will present a novel approach where schedules are generated by a mixed-integer programming model
for which input parameters and additional constraints are iteratively derived using a simulation model. The
remainder of this paper is organized as follows. In Section 2 we introduce the considered planning problem
and emphasize special characteristics of the underlying glass manufacturing process. An overview of related
work is given in Section 3. In Section 4 we show how the scheduling problem can be formulated as a
resource-constrained project scheduling problem. The proposed simulation-based optimization approach
is presented in Section 5. We give computational results for real-world instances in Section 6 and present
a reactive strategy for rescheduling in Section 7. Finally, Section 8 contains our conclusions and outlines
possibilities for future research.
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2 PROBLEM DESCRIPTION

The planning problem considered in this paper originates from short-term make-to-order production planning
of a medium-sized special purpose glass manufacturer. The raw material glass is highly sensitive and
production is especially error-prone compared to production of materials like metal or plastics. Already
minor changes in partially not controllable process parameters, e. g., air-pressure, or variations in raw
material properties lead to stochastic scrap-rates and considerable variability of processing times which
can hardly be anticipated.

Manufacturing steps are carried out using multi-purpose machines for cutting, edge grinding, printing,
laminating and tempering. Since some jobs may have to visit certain machines more than once, complex
material flows with job recirculation occur. In order to provide flexibility the type of factory layout is
basically a job shop with identical parallel machines. As both the product portfolio and the production
volume vary frequently over time, bottlenecks change and are difficult to predict. Machines are loaded
with workpieces by workers, who also operate the machines and perform quality control operations. If
dimensions of glass plates exceed certain limits, at least two workers are required to handle workpieces for
safety reasons. Hence, workers and their allocation to machines are important in order to run the production
smoothly and their shift plans and breaks have to be considered when generating production schedules.

Because large-scale products (e. g., LCD display front panels) account for a significant percentage of the
production volume, the limited availability of special transportation equipment (e. g., rack trolleys, intainers,
or boxes) plays an important role in the schedule generation process. We carried out preliminary simulation
studies, which show that schedules generated by the traditionally used production planning and control
system often lead to production situations where operations have to be delayed by a significant amount
of time as a result of missing transportation equipment. As a consequence extensive manual rescheduling
activities on shop floor level have to be carried out, and cycle time increases. Further, processing of
large-scale products also leads to increased space requirements caused by temporary material storage in
machine input and output buffers that have to be considered in planning too.

Finally, specific temporal constraints between processing operations have to be observed. Organizational
temporal constraints may, for example, originate from customer deadlines for the delivery of products or
ready times for raw material availability. Technical temporal constraints are, e. g., required to guarantee
production-related drying times or must be established for operations that have to be carried out one
after another without any delay in between. In glass manufacturing transportation lot sizes are generally
magnitudes smaller than production lot sizes. Therefore, allowing overlapping of operations leads to
further temporal constraints. Overlapping means that some units of a production lot may be transferred
to a successive machine where processing is started before the processing of the entire production lot
on the predecessor machine is completed. Overlapping of operations can reduce the cycle time of jobs
substantially, but makes scheduling even more complex because additional time lags have to be considered
that affect the time windows for operations start times.

In this paper we focus on minimizing the makespan, i. e., the maximum completion time of any operation,
which is a commonly used optimization goal in the domain of make-to-order production. The minimization of
the makespan generally leads to improved machine utilization and a reduction in cycle times (Pinedo 2012).
In conclusion, the described planning problem can be interpreted as a generalization of the job shop scheduling
problem. Because of the characteristics of the glass production process (stochastic process parameters,
different resource types, shift plans, transport equipment, material storage, temporal constraints) it seems
appropriate to consider the problem as extended resource-constrained project scheduling problem with
generalized precedence relations (RCPSP/max) under uncertainty, which is in turn a generalization of the job
shop problem and belongs to the class of NP-hard problems (Neumann, Schwindt, and Zimmermann 2006).
Allowing for operations to be interrupted due to shift times or breaks accounts for the first extension to the
underlying problem and considering transport equipment and material storage forms the second extension.
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3 RELATED WORK

Various extensions of basic scheduling problems have been developed in order to cover practical needs
(Hartmann and Briskorn 2010). There is also a vast majority of literature that has primarily been focused
on finding solutions for deterministic scheduling models assuming that all problem characteristics and input
parameters are known (Brucker 2007, Pinedo 2012). However, this assumption is unlikely to be fulfilled in
many manufacturing environments. Therefore, ongoing research aims to close the gap between scheduling
theory and its applicability to industrial applications. Efforts are made to extend deterministic approaches to
situations where some form of executional uncertainty (e. g., disruptions due to machine failures, arrivals of
urgent jobs, changes in job processing time) can occur. A very common approach used in manufacturing sys-
tems is predictive-reactive scheduling, which is basically a two-step process (Ouelhadj and Petrovic 2009).
First, a baseline schedule (also called predictive schedule) is developed. This baseline schedule is then
modified or rescheduled during its execution in response to unexpected real-time events. A similar approach
is deployed in the paper at hand. Aytug et al. (2005) and Herroelen and Leus (2005) give extensive surveys
of recently developed approaches for stochastic scheduling. For a review of rescheduling techniques for
manufacturing problems we refer to Vieira, Herrmann, and Lin (2003).

Simulation-based optimization is usually applied when manufacturing problems are characterized by a
high level of complexity that makes it inappropriate to formulate the (entire) underlying problem analytically.
In our approach we deploy a mixed-integer programming (MIP) model for RCPSP/max that is based on
a discrete-time formulation, which can be solved by standard optimization software like CPLEX. Due to
increases in computers processing power and improved algorithms it is possible to solve medium-sized
real-world instances of the considered problem that way. However, if very large instances have to be tackled,
appropriate heuristic scheduling procedures can easily be integrated in our approach. For a review of state-
of-the-art heuristic solution procedures we refer to Kolisch and Hartmann (2006). Notice, that near-optimal
solutions resulting from solving a MIP model always permit evaluating the gap between this solution and the
best possible solution, whereas heuristics for the problem considered feature no performance-guarantees. In
contrast to the classical RCPSP/max, variants containing the aforementioned extensions, e. g., shift plans by
the concept of calendars (Franck, Neumann, and Schwindt 2001) or interruptions of operations by allowing
activity splitting (Buddhakulsomsiri and Kim 2006), are virtually computational intractable and optimal
or near-optimal solutions can be computed for very small instances only. Further, some characteristics of
the described glass manufacturing process, especially those related to material handling activities, lead to
complex interdependencies that cannot be addressed in an analytical manner, but can be integrated into
a simulation model efficiently. For baseline schedule generation we therefore rely on a MIP model that
contains only the fundamental structural properties of the problem considered, i. e., machines and workers
as well as temporal constraints are explicitly modeled. Shift plans, activity splitting and material handling
are integrated in a simulation model, which transforms the generated solutions to real-world applicable
schedules. Note, that both the MIP model and the simulation model used for schedule evaluation are
based on deterministic input parameters, i. e., mean values for processing times and scrap-rates. In order
to account for uncertainties in processing times and scrap-rates we use the reactive strategy described in
Section 7. For an overview of research on proactive-reactive scheduling, where, in contrast to predictive-
reactive scheduling, statistical knowledge of uncertainty is taken into account when constructing the baseline
schedule, we refer to Van de Vonder, Demeulemeester, and Herroelen (2007).

After generating and parameterizing the simulation model, an initial MIP model is build, where
“difficult” constraints are omitted, i. e., the model contains only a subset of all constraints. This model
consequently represents a relaxation of the problem described in Section 2. Schedules generated with the
relaxed model are in general not feasible. Hence, with the help of consecutive simulations runs additional
constraints are generated, unless the schedule can be proven to be feasible for all constraints of the
considered problem instance. Related relaxation-based approaches have successfully been applied in project
scheduling (Bartusch, Möhring, and Radermacher 1988), but have attracted less attention in simulation-
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based scheduling research yet. Byrne and Bakir (1999), Lee and Kim (2002) and Morito et al. (1999)
employ similar approaches for distribution and supply chain planning.

In research literature, which is related to simulation-based scheduling for manufacturing problems
basically three kinds of optimization approaches are employed (Klemmt et al. 2009): Dispatching rules,
heuristic search methods, and mathematical programming. Albeit promising results concerning dispatching
rules and heuristic search methods have been stated over the last years (Andersson, Ng, and Grimm 2008)
we expect these approaches not to yield the performance envisaged for the considered production system.
Compared to global scheduling approaches like heuristic search or mathematical programming the per-
formance of dispatching rules is hard to predict because decisions are made locally in a myopic manner.
As a result of the described temporal constraints and resource restrictions the integration of appropriate
job dispatching rules and resource allocation rules for transportation equipment in a simulation model
is a difficult task. In our case, several additional information items must be processed to decide which
operation to schedule next, e. g., information about time lags, predicted completion times of operations, shift
times or availability of equipment. We conducted preliminary simulation studies incorporating dispatching
rules that revealed the problem of running into production deadlocks caused by a lack of transportation
equipment which could not be anticipated based on local information. Further, since glass manufactures
are confronted with a frequently changing product mix caused by decreasing life-cycles of their products,
the production system is reconfigured frequently too, e. g., new machines are integrated. Hence, it can
hardly be guaranteed that a type of dispatching rule, which has performed well for the old system, also
performs well for the new one. Instances of the considered planning problem are characterized by a huge
search space. At the same time the number of feasible solutions is quite small because of the restrictiveness
resulting from scarce machines, limited transportation equipment and temporal constraints. In order to build
reliable and valid simulation models of glass manufacturing processes a relatively high level of detail is
required, which causes considerable execution time of simulation runs. Hence, applying randomized search
strategies, where the performance of many alternative schedules is evaluated by successive simulation runs,
is inapplicable due to the high computational effort. Approaches incorporating heuristic search methods to
tackle scheduling problems are generally effective if a great number of rather short simulation runs can be
performed to find good solutions. In contrast, to reduce computing times, our approach aims in carrying
out as few simulation runs as possible until a good feasible schedule is generated.

4 OPTIMIZATION MODEL

In this section we describe the deployed optimization model. For details on network planning and project
scheduling we refer to Neumann, Schwindt, and Zimmermann (2003). To present the optimization problem
we use an activity-on-node network N = (V,E;d ), with node set V , arc set E and arc weights d . We
interpret the production process as project planning problem by assigning to every manufacturing operation
(in what follows we use the terms “operation” and “activity” synonymously) a corresponding node i ∈V .
Node set V := {0,1, . . . ,n,n+1} consists of n (real) activities, 1, . . . ,n, that have to be carried out without
interruption, and two fictitious activities, 0 and n+1, that represent the beginning and completion of the
underlying project, respectively. We denote the start time of activity i ∈V by Si ∈ Z≥0, its processing time
by pi ∈ Z≥0 and its completion time by Ci := Si + pi. A sequence of start times S = (S0,S1, . . . ,Sn+1),
where Si ≥ 0 (i ∈ V ) and S0 := 0, is termed a schedule. Sn+1 equals the project duration. The complete
planning period is partitioned into d time slots [t−1, t[ for t = 0, . . . ,d. Parameter d represents an upper
bound on the shortest project duration and can be defined as d := åi∈V max(pi,max〈i, j〉∈E di j). We choose
a hourly time pattern, i. e., the difference between two adjacent points in time t−1 and t (t ∈ {1, . . . ,d})
is constant and amounts to one hour. For notational convenience we set T := {0, . . . ,d}.

Between two operations i, j ∈V, i 6= j general temporal relationships can exist, that can be derived from
technical or organizational needs. If, e. g., activity j cannot be started earlier than dmin

i j ∈ Z≥0 time units
after activity i (minimum time lag), i. e., S j−Si ≥ dmin

i j , we introduce an arc 〈i, j〉 having weight di j := dmin
i j

into network N. If activity j must be started no later than dmax
i j ∈ Z≥0 time units after activity i (maximum
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time lag), i. e., S j−Si ≤ dmax
i j , we introduce a backward arc 〈 j, i〉 with weight d ji :=−dmax

i j . The resulting
arc set E represents the temporal constraints S j−Si ≥ di j among the start times of activities i, j ∈V . The
set of feasible start times of activity i ∈V forms a time window {ESi, . . . ,LSi}, where ESi is the earliest
and LSi the latest start time of activity i with respect to the given temporal constraints.

In practice, different types of resources are required to carry out operations. In this paper we consider
sets of renewable resources R and cumulative resources Rg , respectively. Renewable resources are available
in each single time period of the planning horizon independently of their previous utilization. We use
this kind of resource to model machinery and workers. Activity i ∈V requires rik ∈ Z≥0 units of resource
k ∈R during its execution. Given some schedule S, the set of activities in progress at time t, is given by
A (S, t) := {i∈V | Si ≤ t <Ci}. Thus, rk(S, t) := åi∈A (S,t) rik represents the total amount of resource k ∈R

required for those activities in progress at time t ∈ T . Each resource has a maximum capacity denoted by
Rkt . For example, consider certain periods {t̃0, . . . , t̃n} ∈ T where one out of two identical parallel machines
is down due to maintenance. We model this situation by setting Rkt := 1 (k ∈ R, t ∈ T ∩ {t̃0, . . . , t̃n})
and Rkt := 2 (k ∈ R, t ∈ T \ {t̃0, . . . , t̃n}), respectively (note, that k is the proper resource index). For a
schedule S to be feasible, the amount of resources required must not exceed the capacity of resources,
i. e., rk(S, t) ≤ Rkt (k ∈R, t ∈ T ). Transportation equipment and storage facilities are modeled by using
so-called cumulative resources, which have given maximum quantities Rg

k (Bartels and Zimmermann 2009,
Neumann and Schwindt 2003). In contrast to renewable resources, the availability of cumulative resources
at a certain point in time depends on the history of the manufacturing process as they are used and released
over time. (Note, that in literature, renewable resources with Rkt = 1 are sometimes called “disjunctive
resources”, whereas the name “cumulative resource” is then used when referring to renewable resources
with capacities Rkt > 1.) Typically, associated with the start of operation i, say, rik > 0 units of cumulative
resource k ∈Rg are needed in order to store workpieces. Likewise, at the completion of activity i, −rik′ > 0
units of cumulative resource k′ ∈Rg are released. By V+

k := {i ∈ V |rik > 0} and V−k := {i ∈ V |rik < 0}
we denote the disjoint sets of activities using and releasing resource k ∈Rg . In the event that activity
i ∈ V both uses and releases, say, r̃ik units of one and the same cumulative resource k ∈ Rg (e. g., a
circular storage system at a printing machine), we split up activity i into two new ones, say, i′ and i′′ with
pi′ = pi′′ := pi and ri′k = −ri′′k := r̃ik. Further, we add arcs 〈i′, i′′〉 and 〈i′′, i′〉 with weight di′i′′ = 0 and
di′′i′ = 0 to project network N. In doing so, for any feasible schedule, Si′ = Si′′ holds. Then, during time
interval [Si′ ,Ci′′ [, exactly r̃i units of cumulative resource k are occupied (note that Ci′′ = Si′+ pi′). Given a
schedule S, the active set, i. e., the set of activities that have used resource k ∈Rg by time t ≥ 0, is given
by A

g
k (S, t) := {i ∈V+

k |Si ≤ t}∪{i ∈V−k |Ci ≤ t} (k ∈Rg , t ∈ T ). Thus, the term rg
k(S, t) := åi∈A

g
k (S,t)

rik

represents the units of resource k ∈Rg in use at time t ∈ T . We call function rg
k(S, ·) the demand profile

of resource k ∈Rg . Schedule S is feasible if it satisfies the constraints rg
k(S, t)≤ Rg

k (k ∈Rg , t ∈ T ).
Considering a discrete-time formulation (Pritsker, Watters, and Wolfe 1969) with binary variables xit

that allocate feasible start times t ∈ T to activities i∈V , i. e., xit := 1, if activity i starts at time t and xit := 0
otherwise, the resource-constrained project scheduling problem with cumulative resources and generalized
precedence relations PSc|temp|Cmax can be formulated as a mixed-integer programming model as follows:

Minimize
LSn+1

å
t=ESn+1

t xn+1,t (1)

subject to
LSi

å
t=ESi

xit = 1 (i ∈V ) (2)

LS j

å
t=ES j

t x jt −
LSi

å
t=ESi

t xit ≥ di j (〈i, j〉 ∈ E) (3)
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å
i∈V

rik

min{t, LSi}

å
t=max{ESi, t−pi+1}

xit ≤ Rkt (k ∈R, t ∈ T ) (4)

å
i∈V+

k

rik

t

å
t=0

xit + å
i∈V−k

rik

t−pi

å
t=0

xit ≤ Rg
k (k ∈R

g
, t ∈ T ) (5)

x00 = 1 (6)
xit ∈ {0,1} (i ∈V, t ∈ {ESi, . . . ,LSi}) (7)

Objective function (1) minimizes the start time of the terminating activity, i. e., the makespan. Constraints (2)
and (7) force each activity to receive exactly one start time. Since Si = åt∈{ESi,...,LSi} t xit for i ∈ V ,
inequalities (3) guarantee that the temporal constraints will be satisfied. Restrictions (4) and (5), respectively,
ensure that the renewable and cumulative resource constraints are satisfied. Condition (6) sets the start
time for the project to zero. For alternative modeling techniques employing SAT-solvers or constraint
propagation algorithms we refer to Horbach (2010) and Laborie (2003).

5 SIMULATION-BASED OPTIMIZATION APPROACH

In what follows, we are going to present the proposed simulation-based optimization approach. The
framework of the approach is schematically shown in Figure 1.

ERPPDA

Scheduling

Probability distributions for process

times and scrap rates

Temporal!and resource constraints

Process plans,!production data

Robuster!

Terminplan

Simulation

Discrete!Event

Simulation

Preprocessing

Schedule

Problem!instance

Simulation!parameters

Input!parameters

Constraint

generation

PDA!=!Production Data!Acquisition System

ERP!=!Enterprise!Resource Planning System

Figure 1: Simulation-based optimization framework.

A simulation model is based on several input parameters (e. g., probability distributions for processing
times and scrap rates) as well as the configuration of the production system. Modeling is carried out
data-driven by using a generation procedure that is implemented in the ModL programming language of the
simulation software ExtendSim. All the data needed for a simulation run is stored in a database (internal
ExtendSim database), so the simulation model is (at least conceptually) separated from the simulation
software. The generation procedure builds a simulation model that represents the actual planning problem
by combining predefined meta-blocks (machine-blocks, transport-blocks, and dispatching-blocks). Then,
during a preprocessing-step, the meta-blocks are configured; e. g., a block representing a machine is linked
to the database table that contains its shift-plan. Other configuration steps are carried out dynamically by
items (e. g., jobs) at simulation run time. For this purpose every created job has an additional attribute
that references an database entry point. Starting from that entry point jobs can access job-related (e. g.,
due-dates) and job-resource-related (e. g., processing times, resource demands, starting times) parameters.
Notice, the possibility to use job-resource-related parameters to (re-)configure meta-blocks, e. g., consider
a machine block that switches from batch-processing to single-item-processing et vice versa. Once the
simulation model has been generated, the MIP model can be build. Thereby, the set of operations V is derived
from information about customer orders within the planning horizon. As parameters pi (i ∈V ) depend on
probability distributions for both processing times and scrap rates, we carry out preprocessing simulation
runs in order to estimate the values used in the optimization model (i. e., the mean values). Resource
requirements rik as well as capacities Rkt and Rg

k (i ∈V, k ∈R∪Rg , t ∈ T ) follow from process plans and
the number of available machines, workers, and transportation equipment. Time lags di j (〈i, j〉 ∈ E) result,
among others, from customer due dates, delivery dates for raw materials, process plans, and consideration of
overlapping between operations. Suppose, e. g., that due to a customer order, some job has to be completed
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by time t ′ at the latest and raw material needed to start this job is available at time t ′′ at the earliest. Let
{i′, j′, . . . ,h′} ∈V be the operations required to perform this job. Activity h′ then has to be begun a period
of time dmax

0h′ := t ′− ph′ after the beginning of the project at the latest. Similarly, activity i′ can be begun
dmin

0i′ := t ′′ after the beginning of the project at the earliest. Thus, arc set E is extended by arcs 〈h′,0〉 and
〈0, i′〉 with weights dh′0 := −t ′+ ph and d0i′ := t ′′, respectively, and proper temporal constraints (3) are
added to the MIP model. Figure 2 illustrates how time lags for activity overlapping are derived.

Operation i

qi = 75 items

τi = 10 minutes/item

ϑi = 15 minutes

σi = 17%

pi = (qiτi)+ϑi = 765 minutes

zi = 25 items

Operation j

q j = qi · (1−σi) = 62 items

τ j = 5 minutes/item

ϑ j = 60 minutes

σ j = 20%

p j = (q jτ j)+ϑ j = 370 minutes

z j = 10 items

Legend:

q : Production lot size

τ : Processing time per item

ϑ : Machine setup-time

σ : Scrap-rate

z : Transportation lot size

i

j

ϑi τi ·
zi

1−σi
τi ·

zi
1−σi

τi · (qi mod zi
1−σi

)

δi j = 455 minutes ϑ j

Figure 2: Overlapping operations with minimum time lag.

Operations j is slower than operation i, i. e., pi > p j. In order to start operation j once the first transport lot
is available, and then process it without interruption, preparing resources required to carry out j should be
started at the right time. Here, a minimum time lag between operations i and j is introduced. Analogously,
time lags are constructed for pi ≤ p j.

Schedule generation is carried out through an iterative process of solving a resource-relaxation of
problem PSc|temp|Cmax, and evaluating its solution with the help of the simulation model. The initial
MIP model is obtained by omitting cumulative resource constraints (5), i. e., problem PS|temp|Cmax is
considered. An optimal (or near-optimal) solution S′ of the resource-relaxation is in general resource-
infeasible related to the original planning problem. At certain points in time t ∈ T , demand for at least
one resource k ∈Rg exceeds the quantity available, i. e., a so-called resource conflict åi∈A g (S′,t) rik > Rg

k
for some k ∈Rg occurs. This conflict is caused by the simultaneous execution of operations i ∈A g(S′, t)
and can be resolved by introducing proper constraints, which prevent activities from all being in progress
at the same time. Suppose schedule S′ is a solution of PS|temp|Cmax and simulation shows at least one
resource conflict. If more than one resource conflict exists, we identify one resource k′ ∈ Rg and the
point in time tP, where the peak demand occurs, i. e., rg

k′(S, t
P) = maxk∈Rg , t∈T rg

k(S, t). At time tP we then
determine those two operations, say, j′ and j′′ that account for the largest amount of the peak demand, i. e.,
r j′k′ ≥ r j′′k′ ≥ rhk′ for all operations h ∈V \{ j′, j′′}. Let operations j′ and j′′ be the two operations that use
resource k′ foremost and j′ and j′′ be the two operations that finally release resource k′. Further, with j′0 and
j′′0 ( j′n′ and j′′n′′) we denote the first (last) operations of the jobs J′ := { j′0, . . . , j′, . . . , j′, . . . , j′, . . . , j′n′} and
J′′ := { j′′0 , . . . , j′′, . . . , j′′, . . . , j′′, . . . , j′′n′′}, i. e., the jobs containing operations j′ and j′′. In order to achieve a
feasible solution, a conflict set F := J′k′ ∪J′′k′ with J′k′ := { j′, . . . , j′} ⊆ J′ and J′′k′ := { j′′, . . . , j′′} ⊆ J′′ has to
be broken up. Usually this is done by considering disjunctive precedence relations (Pinedo 2012). In the
present case, the time lag between S j′′ and S j′ (S j′ and S j′′), which is needed in order to establish a precedence
relation, is not only affected by operations processing times, but also by waiting times that depend on the
realized schedule, and is therefore unknown in advance. Hence, because introducing precedence relations
to break up resource conflicts is not possible, we apply the following special type of resource constraint:

å
i∈F

rik ≤ 1 (k ∈R
O) (8)
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Set RO contains “dummy resources” for ordering purposes, which can be interpreted as a special kind of
cumulative resource with capacity RO

k := 1 (k ∈RO). Let k̃ ∈RO be the index according to conflict set F .
By choosing appropriate resource requirements, i. e., rik̃ := 1 for i ∈ { j′, j′′), rik̃ :=−1 for i ∈ { j′, j′′} and
rik̃ := 0 for i ∈ F \ { j′, j′′, j′, j′′}, we force operations in F to be carried out consecutively. Integrating
“order restrictions” (8) in the MIP model using equations (5) is straightforward. Summarizing, we give an
algorithmic description of the proposed simulation-based optimization algorithm.

Algorithm SSG (Simulation-based schedule generation)
1: m := 0, Fm := {0} (∗ Initialization ∗)
2: Create simulation model; Determine N = (V,E;d ), pi, rik and Rkt (i ∈V, k ∈R, t ∈ T )
3: Initialize constraint set CSm := {(2)∪ (3)∪ (4)∪ (6)∪ (7)} and MIP model MIPm :=CSm∪ (1)
4: while Fm 6= /0 do
5: Sm← Solve(MIPm)
6: Ŝm, rg

k(Ŝ
m, ·)← Simulate(Sm) (∗ Determine demand profiles for cumulative resources k ∈Rg ∗)

7: if rg
k(Ŝ

m, t)> Rg
k for at least one resource k ∈Rg and one point in time t ∈ T then

8: Determine tP, k′, rik′ (i ∈V, k′ ∈Rg) and operations j′ and j′′

9: Fm := J′k′ ∪ J′′k′ ← ConflictSet( j′, j′′)
10: CSm← OrderRestrictions(J′k′ , J′′k′) (∗ Create dummy resource km ∈RO and constraints (8) ∗)
11: m := m+1; MIPm := MIPm−1∪CSm

12: else
13: Fm := /0 (∗ Ŝm is a feasible solution ∗)
14: return Ŝ∗ := Ŝm

A call to Simulate(Sm) maps schedule Sm that was obtained by solving model MIPm to the real world
production system, i. e., additional constraints and properties from the underlying production system are
considered. Functions ConflictSet() and OrderRestrictions() are invoked at the interface between the
simulation model and the optimization model. These functions create the MIP model to be solved in the
next iteration and post the conflict set information to the simulation model. To translate the results from
Solve(MIPm) to the simulation model, we use both the job starting times Sm

i (i ∈V ) and the precedence
relations that can be derived from Sm. Precedence relations in activity set V (i. e., S j ≥Ci for jobs i, j ∈V )
are stored in an internal database and can be accessed by dispatching modules that avoid jobs from a conflict
set to be executed simultaneously. Further, starting times Sm

i serve as earliest possible starting times for
the simulation of jobs. Notice, that in order to guarantee feasibility of a simulated schedule, simulation
starting times Ŝm

i can differ from optimization starting times Sm
i (see Figure 3). Suppose, for example, that

due to technical requirements (e. g., drying times) a minimum completion-to-start time lag CSdi j between
jobs i, j ∈V is prescribed, i. e., S j ≥Ci +

CSdi j.

i j

Cmi SmjCmiSmi

t

≥CS di j
τ

(a) Schedule Sm from Solve(MIPm).

i i j

Cmi Smj Ŝ
m
jĈmiŜmi := Smi

t

≥CS di jφ

(b) Adjustment of simulation starting times.

Figure 3: Transfer of optimization results to the simulation model.

Further, the simulation model contains an additional constraint that ensures machine tool calibration after a
certain number of parts have been processed. As a result job i has to be interrupted for f time units. Hence,
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in order to maintain feasibility, the starting time of job j has to be adjusted, i. e., Ŝm
j = Sm

j +f −t . Notice,
that the temporal constraint is not binding for Sm, so the slack t has to be considered when adjusting the
starting time of job j.

6 PRACTICAL APPLICATION AND COMPUTATIONAL RESULTS

In this section we illustrate our approach by means of a real-world problem instance and give some preliminary
computational results on its application. The algorithm for schedule generation was implemented using
the simulation software ExtendSim 8.0.2 and CPLEX 12.3 as solver. Computations were performed on an
Intel i7-980X computer with 12 GB RAM running on Windows 7 64-bit as operating system. The problem
instance considered in the following consists of manufacturing four different kinds of large display front
panels (ranging from 32” to 55”) and a total of 4,100 items to be processed. 140 operations and three
types of transport equipment as well as 20 machines are required. All operations have to be carried out
within a planning horizon of 65 days. Table 1 lists run times needed in order to achieve a feasible schedule.
Notice that in this problem instance only transport equipment with index k = 2 and Rg

2 = 32 is restrictive.
A feasible solution could be generated in less than 20 minutes, indicating the practical applicability of the
proposed approach. Figure 4 shows in more detail the resolution of the conflict set occurring in iteration
m = 1. Conflict set {J′2,J

′′
2 } is broken up by ensuring operations of J′2 to precede operations of J′′2 .

Table 1: Computational results for the real-world problem instance.

run times [sec] peak demand
iteration m Cmax [h] Solve(MIPm) Simulate(Sm) max

t∈T
r2(Ŝm, t)

0 1329 160 109 67
1 1344 165 114 45
2 1419 199 112 38
3 1447 159 110 32
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2 } in iteration m = 1.
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(b) Resolution of conflict set.

Figure 4: Resource conflict.

We conducted preliminary performance studies, where we chose problem parameters in order to generate
instances, which cover a wide range of practical application. The proposed approach was tested for
different product mixes and production volumes leading to varying numbers of operations and resources,
i. e., |V |= {50, . . . ,200}, |R|= {10, . . . ,45} and |Rg |= {1, . . . ,5}. Further, we considered different lengths
of the planning horizon and instances with rather strict or loose customer deadlines. It has turned out that,
due to the used discrete-time formulation, parameters |V | and d have a strong impact on the solvability
of a problem instance. In fact, already the model setup and presolve process, which is carried out by
the solver, requires significant time and memory for larger instances (i. e., d ≥ 10 weeks, |V | ≥ 175).
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In contrast, problem hardness is less affected by parameter |R|. This can be explained considering the
so-called resource factor RF that reflects the average fraction of the number of resources used per activity
(Kolisch, Sprecher, and Drexl 1995). If RF = 1 then each operation requests all resources. RF = 0 indicates
that no job requests any resource. Computation time for solving PS|temp|Cmax increases as RF increases.
In our case RF generally takes relative small values (RF ∈ [0.05,0.15]).

In the event that operations time windows are expanded due to broad customer deadlines, the number
of iterations required to find feasible solutions increases. This results from the way of creating order
restrictions. Consider conflict sets Fm, Fm+1, Fm+2 occurring in consecutive iterations. If time windows
are tight, usually Fm∩Fm+2 = /0 holds. In contrast, if time windows are large, the conflict sets are likely
to have common elements, i. e., Fm∩Fm+2 6= /0. In other words, breaking up conflict sets Fm and Fm+1

can lead to a new conflict set Fm+2 that consists of operations from Fm and Fm+1. Notice, that setting
|RO|= 1 in equations (8), always leads to disjunctive conflict sets in iterations m and m+2, but increases
computation times required to solve the corresponding MIP models (because of the increasing resource
factor of resource k ∈RO). Clearly, the more cumulative resources are considered the more iterations are
required. However, because breaking up a certain conflict set F for resource k′ ∈Rg can avoid resource
conflicts of the remaining resources k ∈Rg \ k′, iterations do not increase linearly with |Rg |. This is due
to temporal time lags between operations j ∈ F and the remaining operations, which cause operations
i ∈V \F to be shifted in time too, when F is resolved.

7 REACTIVE PLANNING

Recall, that the glass manufacturing process is affected by stochastic events, e. g., stochastic scrap-rates
and stochastic processing times, which can hardly be anticipated. As a consequence a schedule, which is
based on estimated data (e. g., mean values for processing times and scrap-rates) may become infeasible
when released to the shop floor. To overcome this problem, we use a predictive-reactive approach. First,
a (predictive) baseline schedule Ŝ∗ is generated with the help of algorithm SSG. To maintain resource
feasibility when executing Ŝ∗, the operation sequences mk := {i0k , i

1
k , . . . , i

nk
k } (i∈Vk, k ∈R∪Rg), which are

implicitly given by Ŝ∗, where Vk := {i ∈V |rik > 0} and Ŝ∗
ihk
≤ Ŝ∗

ih+1
k

for h = 0, . . . ,nk−1, are considered to be

fixed and will not be changed when rescheduling is carried out. In contrast, as time feasibility depends on
the realization of processing times and scrap rates, starting times have to be rescheduled during execution.
Assume the realized value of the scrap-rate of operation i to be higher than the planned value (compare
Figures 2 and 5). Thus, starting operation j at Ŝ∗j with respect to di j, as originally planned, will lead to
starving of operation j, undesirable idle-times and additional setup-costs.

Operation i

qi = 75 items

τi = 10 minutes/item

ϑi = 15 minutes

σi = 37.5 % (plan = 17%)

pi = (qiτi)+ϑi = 765 minutes

zi = 25 items

Operation j

q j = qi · (1−σi) = 47 items

τ j = 5 minutes/item

ϑ j = 60 minutes

σ j = 20%

p j = (q jτ j)+ϑ j = 295 minutes

z j = 10 items

Legend:

q : Production lot size

τ : Processing time per item

ϑ : Machine setup-time

σ : Scrap-rate

z : Transportation lot size

idle-time

i

j

j

ϑi

δi j = 455 min

δ rsi j = 580 min

ϑ j ϑ j

ϑ j

Ŝ∗j Ŝrsjt1i j t2i j

Figure 5: Rescheduling of operations start times.



Ehrenberg and Zimmermann

In light of the practical application, we restrict the periods in time, where reactive rescheduling techniques
can be applied. Rescheduling actions can only take place, when a transportation lot, that was completed
by operation i is ready for operation j. The rescheduling points are denoted by t1

i j, . . . , t
nl
i j , where nl is the

number of transport lots transported from i to j. Assuming that scrap items are evenly distributed within a
production lot and that the mean of the realized processing times of items already processed is appropriate
to estimate processing times of the remaining items, new time lags d rs

i j can be computed, which lead to

new start times Ŝrs
j .

8 CONCLUSIONS AND FUTURE RESEARCH

We presented a simulation-based scheduling approach, which relies on iteratively solving resource-relaxations
of the underlying planning problem. Preliminary computational studies indicated both the effectiveness
of the approach and its applicability to real-world planning situations. Further, we showed how to extend
the approach by rescheduling techniques in order to cope with stochastic effects. Some of the described
characteristics of glass manufacturing (e. g., temporal constraints, transportation equipment), can also be
identified in other production systems. Thus adopting our approach to a broader field of application seems
worthwhile. An important area of future research is the generation of robust schedules and the refinement
of rescheduling techniques applied. A further challenging issue is to reduce the times needed to generate
solutions. Here, besides the use of heuristics from the field of project scheduling, so-called fix-and-optimize
techniques can be applied, where decisions made on former steps are fixed on successive steps. Moreover,
improved methods for integrating temporal constraints in simulation models should be investigated.
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