
Proceedings of the 2012 Winter Simulation Conference
C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A. M. Uhrmacher, eds.

HIDDEN NON-MARKOVIAN REWARD MODELS :
VIRTUAL STOCHASTIC SENSORS FOR HYBRID SYSTEMS

Claudia Krull
Graham Horton

Otto-von-Guericke-University
Universitaetsplatz 2

39106 Magdeburg, GERMANY

ABSTRACT

We are interested in partially observable hybrid systems whose discrete behavior is stochastic and unobserv-
able, and for which samples of some of the continuous variables are available. Based on these samples of
the continuous variables, we show how the hidden discrete behavior may be reconstructed computationally,
which was previously not possible. The paper shows how Hidden non-Markovian Models (HnMM) can be
augmented with arbitrary rate and impulse rewards to model these partially observable hybrid systems. An
HnMM analysis method is adapted to find the probability of a sample sequence for a given model, as well
as likely system behaviors that caused the observation. Experiments illustrate the analysis method and the
possible complexity of the reward measure through a medical example and one from computer gaming.
The paper extends the class of partially observable systems analyzable via virtual stochastic sensors into
the continuous realm for the first time.

1 INTRODUCTION

Currently, partially observable systems are represented by unobservable discrete stochastic processes, which
output symbols at discrete points in time. Real systems often contain continuous elements, which have to
be discretized, loosing accuracy, or completely ignored. Virtual stochastic sensors (Krull, Buchholz, and
Horton 2011) have been developed to reconstruct hidden stochastic behavior based on observable behavior
of PODS systems. HnMM are used as computational model to represent the PODS systems. Different
analysis methods for HnMM are available that can perform behavior reconstruction.

To include continuous behavior, discrete stochastic systems can be augmented with rewards to represent
continuous measures such as performance or costs (SAN or SRN). These continuous measures can change
according to the discrete system state. We propose to augment partially observable discrete stochastic
(PODS) systems similarly to incorporate arbitrary continuous behavior in the form of rewards. We assume
that the discrete state of our system is not observable, but we have samples of some continuous measures
at discrete points in time. Our goal is to reconstruct the unobservable internal system behavior and / or
complete reward development based only on these sequences of reward samples.

One example of such a system from computer gaming tries to determine an opponents strategy (discrete
system) based on samples of the continuous opponents army size, corresponding to the HMM evaluation
task. Another example is a diabetic, where the doctor tries to determine the actual eating and insulin injection
times (discrete system) based on the measurements of the continuous blood glucose level, corresponding to
the HMM decoding task. For these hybrid models behavior reconstruction is currently not possible using
existing HnMM, these can only cope with discrete systems and output. However, the similarity between
(impulse) rewards and symbol emissions suggests that HnMM and existing solution methods are adaptable
to cope with continuous reward values.

978-1-4673-4781-5/12/$31.00 ©2012 IEEE

Krull and Horton

Our idea is to adapt the existing HnMM specification to include rewards instead of symbol emissions,
resulting in Hidden non-Markovian Reward Models (HnMRM). We will also adapt an existing reconstruction
algorithm to interpret samples of continuous reward measure instead of symbol emissions. This new model
class HnMRM and algorithms would enable analysis or identification of an underlying discrete stochastic
process based on samples of a continuous reward measure. This increases the space of analyzable POS
systems with the help of HnMM and extends virtual stochastic sensors into the realm of hybrid and
continuous systems with stochastic influences.

The paper will first review the state of the art on partially observable systems and corresponding analysis
methods. Then HnMRM are defined formally and the analysis approach sketched. Experiments show the
validity and applicability of the analysis methods.

2 STATE OF THE ART

2.1 Virtual Stochastic Sensors and Hidden Non-Markovian Models

Virtual Stochastic Sensors enable the analysis of unobservable processes in discrete stochastic systems.
Virtual sensors (Ibargüengoytia and Reyes 2006) use physical sensor readings to deduce the value of a
quantity of interest. In virtual stochastic sensors (VSS), the physical sensor readings and their relationship
with the quantity of interest are stochastic. Therefore the measurement of our VSS is a statistical estimate
of the true value. Hidden non-Markovian Models are the mathematical model that enables the modeling of
the stochastic relationships and the computation of the results of the VSS. (Krull, Buchholz, and Horton
2011)

Hidden Markov Models (HMM) (Fink 2008) form the formal basis of Hidden non-Markovian Models
(HnMM). HMM are discrete-time Markov chains (DTMCs) (Bolch, Greiner, de Meer, and Trivedi 1998)
that produce discrete output symbols based on the hidden DTMC state and given emission probabilities.
HMM are memoryless and discrete, because they are based on DTMCs. Three basic tasks are defined for
HMM: Evaluation determines the probability of a given trace for a given model, Decoding determines the
most likely generating path for a given trace and model and Training iteratively improves an initial model
to increase the probability of a given trace or set of traces (Fink 2008). Efficient algorithms exist for all
three HMM tasks.

HnMM extend HMM by adding time dependency, stochastic firing times of transitions and time stamps
to symbol emissions. Furthermore, symbol emissions can depend on the current system state (Krull,
Buchholz, and Horton 2010) or on the state changes (Krull, Buchholz, and Horton 2011). HnMM are a
computational model and can use an augmented stochastic Petri net (ASPN) (Buchholz 2012) as user model.
These ASPN augment normal stochastic Petri nets as defined by Krull (2008) with output symbols at the
state transitions. One particular marking of the ASPN can be transferred into one state of the computational
model HnMM and one transition of the ASPN can result in multiple state changes of the HnMM. The
complete state space (set of all reachable markings) of the ASPN including output symbols attached to state
changes can be interpreted as an HnMM. The set of reachable markings and corresponding state changes
of the SPN forms the hidden part of the HnMM.

2.1.1 Formal Definition

The formal definition of HnMM uses the state space of a discrete stochastic model as hidden model part.
HnMM extend this state space by adding stochastic output to the states or state changes. An HnMM is
formally defined as a 5-tuple (S,V,T R,A,Π) with trace O and path Q (Buchholz 2012).

• S is the set of N discrete states of the system.
• V is the set of M output symbols.
• T R is the set of state transitions, where each T Ri = (dist,b(v),aging) can represent multiple state

changes, dist describes the continuous probability distribution function that governs a state transition

Krull and Horton

and b(v) : V 7→ [0,1] determines the output probability of every symbol for that transition, aging is
set to true, if the transition has a race age memory policy.

• A = {ai j}NxN describes the complete state transition behavior and ai j is the set of transitions that
can cause the state transition from Si to S j .

• Π = (π1, ...πN) is the initial probability vector of the discrete states and πi is the probability of the
system to be in state Si at time 0.

• O is a sequence of output symbols vt with time stamps et and also called the trace.
• Q is a sequence of system states st with time stamps et and also called the path.

The model λ = {A,Π} completely describes the dynamic behavior of the system and is therefore often
used. For a more detailed formal definition refer to Buchholz (2012).

2.1.2 Proxel-based Evaluation of HnMM

The Evaluation task aims at the computation of the probability of a given output sequence O for a given
model λ : P(O|λ). Evaluation is often used to determine the most likely model to have generated the trace.
If there are several models possible, the one with the highest trace probability is assumed to be the most
likely generating model. Krull, Buchholz, and Horton (2011) describe how to compute the Evaluation
probability using the so-called Proxel method.

A Proxel (s,~τ,ρ, p) is a probability element which contains all relevant information to compute the
future development of a system. In case of HnMM Evaluation a Proxel contains the current system state
s, the age of all enabled or race age transitions ~τ , an appropriate representation of the path that has lead
to the Proxel ρ and the probability of the combination p.

The Proxel algorithm starts with the initial system state(s) and probability 1. In discrete time steps
possible follow-up Proxels and state change probabilities are determined based on the current state and age
of the active state transitions. (Horton 2002; Lazarova-Molnar 2005) To include the given output sequence,
the generated follow-up states are tested for being able to produce the given trace, and are only pursued
further if they are valid given the trace. A follow-up state is valid, if there was a symbol, and the current
path may emit it, or if there was no symbol and the current path may emit none. All states reached at the
end of the given output sequence form the end points of possible system development paths. Adding up
their probabilities gives the desired Evaluation probability. (Krull, Buchholz, and Horton 2011)

2.1.3 Proxel-based Decoding of HnMM

The Decoding task is the computation of the most likely path for a given output sequence O and a given
model: argmaxq0...qU∈{S1...SN}U+1P(Q|O∩λ). Krull, Buchholz, and Horton (2011) describe how to compute
the Decoding path using the Proxel algorithm. The basic algorithm and modifications are the same as
above. Instead of accumulating probability when joining Proxels, the largest probability is taken and the
path has to be included in every Proxel. The Proxel with the highest probability at the end of analysis
of a given trace is the end point of the most likely generating path. Backtracking from there gives the
most likely generating path. A path describes one possible system development over the whole simulation
time, it usually contains a list of all state transitions and the corresponding time stamps. This completely
describes the system development, knowing the initial state. (Krull, Buchholz, and Horton 2011)

2.2 Reward Modeling

Rewards are used to incorporate continuous measures of interest (e.g., performance, reliability, dependability,
performability) in different variants of stochastic Petri nets (Sanders and Meyer 1991; Muppala, Ciardo, and
Trivedi 1994). Rate rewards and impulse rewards are the two most common kinds. Rate rewards increase
or decrease a real valued variable according to the given system state or Petri Net marking. Examples of
rate rewards are the bandwidth of a network link or the storage cost for items in stock. Impulse rewards

Krull and Horton

increase or decrease a real valued variable instantaneously upon the completion of a given activity or firing
of a transition. Examples of impulse rewards are repair cost to be paid or profit generated by a sale.

Stochastic Reward Nets (SRN) (Muppala, Ciardo, and Trivedi 1994) use a stochastic Petri net as
description of the dynamic process of the system. The reward structure defines which states or transitions
influence the reward measure and how they do it. They are used for reliability prediction of systems.
Rate rewards depend on the number of tokens in a specific set of places of the net. Impulse rewards are
associated with the completion of activities of the SPN and firing of the corresponding transitions.

Sanders and Meyer (1991) augment Stochastic Activity Networks (SAN) with a reward structure.
SANs are similar to Petri Nets, but contain probabilistic transition behavior and gates, that can influence
or monitor the complete system state. Different types of rewards are considered, but they are all classified
as either rate-based or impulse-based. The time behavior of the rewards differs, some are of interest either
in system steady state or in the transient phase. We are interested in the transient system behavior and the
transient development of the reward measure since we assume to have a trace of samples of a continuous
reward measure that was generated by a particular system behavior. Impulse rewards and rate rewards that
accumulate over time are applicable, when considering the transient system behavior.

3 HIDDEN NON-MARKOVIAN REWARD MODELS

To extend Hidden non-Markovian Models with rewards, we have to treat the two kinds of rewards
independently. Impulse rewards are similarly to discrete symbol outputs in HnMM based on the completion
of a state change. However, impulse rewards are not associated with a probability. Rate rewards are
fundamentally different from symbol emissions. They are associated to a given discrete state of the system
and are accumulated continuously while the system remains in the given state. For HnMRM the rate is
always defined based on the model time unit.

3.1 Formal Description of Hidden Non-Markovian Reward Models

Formally an HnMRM is a 6-tuple HnMRM = (S,T R,A,Π,~ρ,rr) with trace O and path Q. S, A, Π and the
path Q remain as described in Section 2. The differences to the HnMM definition are the following:

• The HnMRM definition no longer contains a set of symbols. This has been replaced by the vector
~ρ = (ρ1, ...ρM), which is the vector of all continuous reward measures.

• The rate rewards are defined by the function rr(s,~ρ). It describes the changes to the reward vector
due to rate rewards in the form of a differential equation d~ρ

dt depending on the state and current
reward values.

• A transition T Ri = (dist, ir,aging) now contains a reward function, instead of the symbol emission
probabilities. ir describes the changes to the reward vector ~ρ due to impulse rewards depending
on the transition, starting state s, target state s′ and current reward values ~ρ .

• O is a sequence of measurements of one or more of the reward values ~ρ with time stamps et and
also called the trace.

These mode changes require changes in the reconstruction algorithms, which will be highlighted in the
following section. A complete description is omitted here and will be published in a more extensive format.

3.2 Evaluation and Decoding of HnMRM

Evaluation and Decoding of HnMRM follow the same scheme as in usual HnMM Evaluation and Decoding
as described in Section 2. The current reward value is included in the definition of a Proxel (see Section 2.1.2),
and updated continuously, as the possible system developments are followed. A path is also included in each
Proxel element, which describes the system development that lead to the current Proxel. A path contains
all state changes with the time stamps when they occurred, this completely describes the development of

Krull and Horton

the discrete system up to the given point in time and also the development of the continuous measures,
since these solely depend on the discrete system state. Essential changes in the Proxel algorithm are the
computation of the rate and impulse rewards and the question how to determine valid system development
paths.

3.2.1 Computing the Reward Measures

A special reward function computes the changes to the reward values depending on the current reward
value and system state or the state change that occurred. Impulse rewards are computed based on the state
change that occurred and can also depend on the current system state and reward value. Rate rewards are
updated in every time step of the Proxel analysis method and depend on the current system state and the
time interval covered by one Proxel time step. Since rate rewards are defined by differential equations,
their actual values have to be approximated. We use a simple Eulers integration scheme and an integration
time step that is smaller than the target time step (Proxel time step) (e.g. ∆t

10). Eulers method can be used
since the Proxel time step is already small and we are using a fraction of this as integration time step.

3.2.2 Determining Valid Paths

In HnMM analysis a path is valid, if the symbol sequence emitted by the computed path matches the trace.
Validity is a binary criterion, since the symbols are from a countably finite set (see Section 2).

In HnMRM we are sampling and comparing continuous real-valued rewards, a uncountably infinite
set of values. There is no longer a clear boundary between valid and invalid paths. A computed reward
will hardly ever exactly match the sample from the trace. One obvious reason are computational errors
due to the discretization. The other reason is that computed reward values from the reconstruction and
sampled rewards from the trace are only compared at certain discrete points in time, where the Proxel
method computes the system state. The reward values can only be compared at the beginning and end of
each Proxel time step. If the time stamp of the measurement from the trace lies somewhere in between
those points, even an exact reward computation would never hit the correct sample value.

Therefore we define an epsilon value to determine an acceptable difference of the sample from the trace
and the computed reward value. If a reward sample falls within a time step, we determine its difference to
the computed reward value of the current path at the beginning and end of the time step. If the absolute
difference is smaller than epsilon, then the path is considered valid and the Proxel kept. If the difference
is larger, the path is invalid and the Proxel discarded. This results in an epsilon neighborhood around the
sample value for determining valid Proxels. The path is also kept, if during the time step, the reward
value passed the sample value, but is outside of the epsilon environment before and after the time step. A
larger epsilon value results in more valid paths, which ensures to retain valid paths in the end. However, a
larger value for epsilon also increases time and memory complexity, since more paths are valid, increasing
the total number of Proxels that are processed. A good tradeoff for epsilon has to be found, currently on
the basis of each model and sequence couple. A general guideline for choosing epsilon will need to be
developed in the future. A starting point would be to choose epsilon larger than the maximum possible
continuous reward change within one time step of the analysis method.

3.2.3 Cutting Off Irrelevant Paths

In the original Proxel algorithm (Horton 2002; Lazarova-Molnar 2005) the number of Proxels increases
exponentially with the length of simulation time. To keep the algorithm feasible, Proxels with a probability
below a certain threshold are discarded. This pruning introduces a small error and does not influence the
average system behavior. In HnMM analysis we stopped pruning the Proxel tree, since more likely paths
might become invalid later on. Keeping all valid paths was often possible, due to the enormous reduction
in state space by only following the valid paths (see Section 2). In HnMRM analysis we no longer have a
binary criterion for valid paths, and the number of paths is variable; the larger the epsilon-neighborhood,

Krull and Horton

the more paths are generated. Therefore we again prune paths below a given probability threshold. This
threshold needs to be defined dynamically, since the absolute probabilities are decreasing in every time
step. A small cutoff value ensures that the valid paths do not die out and that we will retain the most likely
path in the end, even though during the process it might be less likely than others which become invalid
later on. However, a larger cutoff threshold results in increased time and memory complexity. Therefore,
a good tradeoff has to be found, currently on the basis of each model and sequence couple.

Thus adapted, behavior reconstruction for HnMRM using Proxels is now possible.

4 EXPERIMENTS

The experiments in this section show that the analysis of HnMRM is possible using Proxels. Examples
for sample sequences and output paths are given. The absolute values of path and trace probabilities are
converted to a logarithmic scale, since they decrease fast. Both use cases are illustrated by comparing one
exemplary path and trace with the path reconstructed by the analysis method. The test cases chosen are
representative and the results for other test cases were very similar to the ones described here.

The first example from medicine shows the possible complexity of the continuous model part. It
contains two continuous variables related through differential equations, where only one of them can be
sampled. The second example from computer gaming furthermore illustrates the behavior of the Proxel
method regarding accuracy, time and memory complexity, when varying the sample interval and the epsilon
for the detection of valid paths. The experiment varying trace length is not shown here in detail, however
the results are commented on in the conclusion.

4.1 Glucose Insulin Metabolism of a Diabetic

This first example will illustrate the possible complexity of the continuous model part in an HnMRM. We
are considering the dynamics of the glucose insulin metabolism of a patient suffering from diabetes type
1, who is no longer capable of producing insulin and has to inject it regularly to retain a bearable blood
glucose level. We are using a simplified version of the short term development, meaning the day-by-day
development of glucose and insulin level and their interaction. The dynamics of the model have been taken
from a model for teaching (Hartlove, Shaffer, and Ragan 2001).

Figure 1 (left) shows the graphical representation of the model. Circles represent states, solid arrows
state transitions, dashed arrows rewards. Positive rewards are shown in blue and negative ones in red.
There is only one system state and two transitions. Eating happens at randomly distributed intervals of
∼Norm(8,1) hours and increases the glucose level GL immediately by 1000 units (impulse reward). Insulin
injection happens at intervals of ∼Norm(8,1) hours and increases the insulin level IL immediately by 3000
units (impulse reward). Rate rewards: the insulin level decreases continuously, as insulin decomposes at a
rate depending on the current level. Glucose is “used” depending on its current level and a usage fraction
function that depends on the amount of insulin available UF(IL) (see Figure 1 (right)).

The measurement interval of the blood glucose level is Norm(3,1) hours, the insulin level is not
monitored and thus the sample sequence only contains glucose level samples.

The experiment was conducted using a sample sequence of length 33 samples which corresponds to
100 hours. The epsilon value was set to 80 and the cutoff threshold was 5. This means that every Proxel
with a logarithmic probability below maximumpathprob−5 was discarded, all in all 1123855 Proxels were
discarded during the analysis process. These were the best working parameters. A larger cutoff threshold
resulted in too many paths and an abort of the analysis due to memory overflow. A larger epsilon value
also increase the memory consumption unduly and let to an aborted analysis. A smaller cutoff threshold
and epsilon value lead to “dying out” of all valid paths due to no more Proxels being left in the too small
epsilon environment. The discretization time step of the Proxel method was chosen to be 1.0 time unit,
which was small enough for detailed reconstruction and small enough to not have two symbol emissions
within the same time step. Since the time stamps in the reconstructed path can only be multiples of the

Krull and Horton

Figure 1: A graphical representation of the insulin glucose metabolism model of a diabetic in the form of
a state space with associated rewards (left), including the differential equations describing the continuous
behavior of the two reward values and the tabular function describing the usage fraction (right).

discretization time step, all reconstructed time stamps will be whole valued. Computation time of the
Proxel analysis was moderate with 15.3 seconds. The example traces were generated using the simulation
software AnyLogic6 (A. 2007).

4.1.1 Illustration Experiment

Figure 2 shows an example analysis workflow with paths and trace for the diabetic model. The real system
traverses a particular system path during its development (left), this system development is completely
described by the state changes that happened and the time stamps when they happened. The real systems
insulin and glucose level can be deducted from these state changes. The trace (center) is generated by
sampling the blood glucose level of this real system development at random points in time, resulting in
a list of glucose level samples with time stamps. The analysis method then reconstructs the path of the
system that generated this trace most likely. This reconstructed path (right) is again a list of state changes
and time stamps. The chart on the right compares the glucose level development of the reconstructed path
(solid line) and the glucose samples from the trace (squares).

The most likely path depicted on the right has a logarithmic probability of−31.10495 which corresponds
to a real probability of 3.10E− 14. The conditional probability of the model traversing this most likely
path given the observed trace is 0.00062744 while the next most likely paths have conditional probabilities
of 0.00062737, 0.00062478, 0.00062475 etc. These likely traces with probabilities which are very close
to the most likely path differed slightly in the time stamps of the state changes, but not in their order. The
less likely traces showed larger differences in the time stamps.

The deviation of the time stamps of the reconstructed path and the real system paths is small, all except
for one are around 1 hour. The existing differences below 1 are due to discretization to the Proxel time
step ∆t = 1, which can only result in whole valued time stamps in the reconstructed path. Other differences
are due to the stochastic nature of the model and the fact that the actual generating path might not be the
most likely one yielding a similar sample sequence. The real path contains one more state change (insulin
injection), which is not detectable, because it happens after the last measurement. We can conclude that
the reconstructed path is very close to the real generating path for the given sequence.

The experiment was used to illustrate the possible model complexity. Rate rewards are here described
as differential equations, where the continuous reward values also depend on each other. Samples are only
available for one of the continuous variables, even though both are affected by discrete model behavior, and
show an interdependency. Regardless of this, the analysis method is capable of determining the probability
of trace for a given model and the most likely path for generating the trace. Even though finding working
values for the epsilon environment and the cutoff threshold was not trivial, we could show that the analysis
method is capable of dealing with the complexity of the modeling paradigm.

Krull and Horton

Figure 2: The actual generating path of the real system (left), the trace generated by that path (center) and
the most likely path reconstructed by the analysis method for the glucose insulin metabolism model.

4.2 Example from Computer Gaming

As a second example we consider a simple computer game scenario, where a player holds an army and
may build up to two bases which can also be destroyed. We only consider the dynamics of one player. The
continuous variable is the players army size, while the building and destruction of bases form the discrete
process. We are an opponent and have samples of the other players army size only at random intervals
through a global statistics. Figure 3 shows a graphical representation of the model. Circles represent states,
solid arrows state transitions, dashed arrows rewards. Building a base takes a randomly distributed amount
of time ∼ NORM(10,1), bases are destroyed by a memoryless process ∼ EXP(0.1). Positive rewards are
shown in blue, negative ones in red. Rate rewards: when there are no bases, the army size decreases at
a constant rate of 5 per time unit, with one base it increases with 5 per time unit and with two bases it
increase by 15 per time unit. Impulse rewards: destruction of a base decreases the army size immediately
by 50 soldiers. Initially the player has no bases and an army with 100 soldiers.

We defined some standard values for the experiments. Epsilon is set to 10 soldiers, the sample interval
is distributed according to ∼ NORM(5,1) time units, the length of the test traces is around 200 samples
(1000 time units). Test sample sequences of the army size were produced using the simulation software
AnyLogic6 (A. 2007). The discretization step of the analysis method was again set to 1.0 resulting in only
whole valued time stamps in the reconstructed path. Computation time for the test cases was usually less
than one minute (except for very long traces) and can therefore be considered feasible.

Figure 3: A graphical representation of the computer gaming example model in the form of a state space
with associated rewards.

Krull and Horton

4.2.1 Illustration Experiment

An illustration experiment was conducted using a sample sequence of length 196 (1000 time units). The
epsilon value was set to 20 soldiers, meaning that every path that resulted in a reward measure diverging
more than 20 soldiers from the sample value of the trace was discarded and not followed further. A
smaller value for epsilon lead to all paths dying out, because all valid ones were eventually cutoff. A larger
value for epsilon also worked, leading to more valid paths. But it also lead to an unnecessary overhead
in computation time, since the rate rewards are constant, and their development moderate and not erratic.
Figure 4 shows an example analysis workflow for the computer gaming model. The real system traverses a

Figure 4: The actual generating path of the real system (left), the trace generated by that path (center) and
the most likely path reconstructed by the analysis method for the computer gaming example model.

particular system path during its development (left). This system development is completely described by
the state changes that happened and the time stamps when they happened. Army size and number of bases
can be deducted from this list of state changes. The trace (center) is generated by sampling the army size
of the real system development at random points in time, resulting in a list of army size samples with time
stamps. The Proxel-based analysis method then reconstructs the path that generated the trace most likely.
This reconstructed path (right) is again a list of state changes and time stamps. The chart on the right
compares the army size development of the reconstructed path (solid line) and the samples from the trace
(squares). The most likely path depicted on the right has a logarithmic probability of −262.430326, which
corresponds to a real probability of 1.066492e−114. The conditional probability of the model traversing
the most likely path given the observed trace is 0.0802. The next three likely paths have probabilities of
0.0778, 0.0698, 0.0677 etc. These paths differ slightly in the time stamps of the state changes, but not in
their order. Less likely traces also differed in the order of the state changes.

This experiment shows that we are able to reconstruct a system development path that could have
generated the given sample trace. The order of the state changes in the reconstructed path is very close to
the real path. Two state changes that occur in consecutive time steps are switched in their order, and the
last state change does not match. These are both not methodological errors, but due to statistical deviations
and too few information in the case of the last state change. Furthermore, all except two of the state
change time stamps in the reconstructed path are within one time unit of the real time stamp. The existing
differences below 1 are due to discretization to the Proxel time step ∆t = 1, which can only result in whole
valued time stamps in the reconstructed path. Other differences are due to the stochastic nature of the
model and the fact that the actual generating path might not be the most likely one. The small differences
between system and reconstructed path show that the reconstruction was successful.

4.2.2 Epsilon Boundary Experiment

This experiment varied the epsilon value, which determines the validity of a path 3.2.2. If the reward value
of a reconstructed path is within the epsilon environment of the current trace sample value, the path is
valid and followed further. If it is outside, the Proxel is discarded and the path not followed further on. In

Krull and Horton

the experiment epsilon is varied from 20 up to 225. For smaller values the paths “died out”, i.e. all paths
generated had reward values outside of the epsilon environment and were discarded.

Figure 5 (left) shows the number of paths still valid at the end of the sample trace with increasing
epsilon value. the number of paths increases linearly, since more traces are considered valid in every step.
Figure 5 (center) shows the computation time for the analysis with increasing epsilon value. The time
complexity also increases linearly, which is to be expected with a linear increase in paths to consider.
Figure 5 (right) shows the maximum path probability and cumulative trace probability with increasing
epsilon value, both as logarithmic probabilities. Both increase with increasing epsilon value, since more
paths considered are valid and their cumulative probability increases. The probability of the most likely
path also increases, since the pool of valid paths is larger. Paths considered invalid with smaller epsilon
values might have a higher overall probability than the others.

Figure 5: Development of the number of valid paths (left), the overall computation time (center), the
maximum path probability and the cumulative trace probability (right) for increasing epsilon value.

The experiment shows that the algorithm behaves as expected when increasing epsilon, and does not
show an explosion in time or memory complexity. A general guideline is that epsilon should be chosen
large enough for valid paths to “survive” until the end of simulation time, but not much larger to prevent
the generation of too many likely paths with larger probability than the real one. This assumes that the
actual generating path will be among the first batch of “surviving” paths with small epsilon values.

4.2.3 Sample Interval Experiment

This experiment varied the sample interval used for generating the sample traces between Norm(5,1) and
Norm(30,1) in steps of 5 for the mean value. The epsilon value was set to 20 to prevent the “dying out”
of paths for larger sample intervals.

Figure 6 (left) shows the the maximum number of concurrent Proxels with increasing sample interval.
This corresponds to the maximum number of valid paths in each of the simulation time steps. The number
increases linearly with increasing sample interval size, due to the number of possible system developments
(Proxels) increasing in every time step of the Proxel method. Only when reading a sample and comparing
it to the reconstructed paths, Proxels are discarded. Now there are more Proxel time steps between two
successive samples, and the number of concurrent Proxels can grow larger. Figure 6 (center) shows the
computation time needed with increasing sample interval. This super-linear relationship is due to the linear
increase in concurrent Proxels resulting in an even larger increase in the overall computational effort.
Figure 6 (right) shows the maximum path probability and the cumulative trace probability with increasing
sample interval. Both increase with increasing interval, since there are more possible paths between two
samples, and consequently also paths with larger probability. However, the path with larger probability is
not necessarily closer to the actual generating system behavior. The results are therefore less reliable for
larger sample intervals, which is to be expected since less data is available.

The experiment shows that more frequent samples enable a more accurate and faster analysis. The
accuracy is higher because more frequent samples convey more information about the hidden process. The
analysis is faster, because with more frequent samples, the invalid paths can be detected and discarded

Krull and Horton

Figure 6: Development of the maximum number of concurrent Proxels (left), the computation time (center),
the maximum path probability and the cumulative trace probability (left) for increasing sample interval.

earlier on in the analysis, and and a smaller epsilon value speeds up the analysis further (see Section 4.2.2).
Usually we will not be able to influence the size of the sample interval, since we assume to have the
samples from the system, but knowledge about useful frequencies are nevertheless useful. Even though the
analysis is possible with quite infrequent samples, the results are not reliable, since the most likely path in
a larger set of paths generated with less frequent samples will often differ from the actual generating path.

4.2.4 Conclusion of Performance Experiments

The experiments with the computer gaming example model experiment suggest that the Proxel analysis
method can find likely generating paths and their probability for a given HnMRM and sample path.
Increasing the size of the epsilon environment or sample interval results in an increase in time and memory
complexity, but not unduly. An experiment varying the trace length was also conducted but omitted here
for reasons of space. When varying the trace length, the algorithm also behaves as expected. It does not
show an explosion of path number or time complexity. A linear relationship implies that traces of arbitrary
length can be analyzed with acceptable time consumption. Therefore we conclude that the method behaves
nicely, and we hope that it also enables the analysis of more realistic model specifications.

One idea for improvement of the tuning process the method is to determine the size of the epsilon
environment and the cutoff probability dynamically depending on the number of paths generated. However,
the size of epsilon and the cutoff value have an influence on the resulting probability values. Thus when
comparing different models, epsilon and the cutoff value should be fixed and the same for both models.
Only when trying to determine the most likely generating path, this dynamic tuning can be used.

5 SUMMARY AND OUTLOOK

The paper introduced the new modeling paradigm of Hidden non-Markovian Reward Models, which augment
existing HnMM with rewards. This enables the analysis of partially observable hybrid models with hidden
discrete behavior, and samples available of some of the continuous variables. HnMRM are formalized
and an adaption of HnMM analysis algorithms described. Experiments show that the analysis method is
capable of reconstructing hidden system behavior and that no unexpected explosion of computation effort
is registered when varying some parameters. An example from medicine illustrates the possible complexity
of the continuous part, having ODEs as rate rewards. Still the behavior reconstruction was possible. The
extension of virtual stochastic sensors into the continuous realm was successful. We can draw conclusions
from samples of continuous variables on unobservable continuous and discrete system behavior.

HnMRM show great potential for the analysis of real systems since these often contain not only discrete
parts but exhibit hybrid behavior. To increase algorithm efficiency it will be necessary to find guidelines for
certain algorithm parameters such as the size of the epsilon environment, the cutoff value and the sample
interval (if we can influence it). A more dynamic tuning of epsilon and the cutoff boundary would speed
up decoding. It will also be necessary to test the paradigm using real systems and data. Further ideas for
HnMRM are to determine the most needed item of missing data, e.g. answer the question where would

Krull and Horton

we need more samples for a more accurate result. Further extensions of the HnMM paradigm are possible
when considering influences of the continuous on the discrete model part. One could also define impulse
rewards as samples of continuous or discrete distribution functions.

REFERENCES

Borshchev A. 2007, September. “Multi-Method Simulation Modeling using AnyLogic”. INFORMS
Roundtable Fall Meeting, Seattle. www.anylogic.com XJ Technologies.

Bolch, G., S. Greiner, H. de Meer, and K. S. Trivedi. 1998. Queuing Networks and Markov Chains. John
Wiley & Sons, New York.

Buchholz, R. 2012, March. Conversive Hidden Non-Markovian Models. Ph. D. thesis, Otto-von-Guericke-
University Magdeburg.

Fink, G. A. 2008. Markov Models for Pattern Recognition. Berlin, Heidelberg: Springer.
Hartlove, J., D. Shaffer, and S. Ragan. 2001. “The Maryland Virtual High School CoreModels - Glucose-

Insulin Model”. http://mvhs1.mbhs.edu/mvhsproj/glucose/glucosetea.pdf.
Horton, G. 2002. “A New Paradigm for the Numerical Simulation of Stochastic Petri Nets with General Firing

Times”. In Proceedings of the ESS 2002, edited by R. Rimane, 129–136: SCS European Publishing
House.

Ibargüengoytia, P. H., and A. Reyes. 2006. “Constructing Virtual Sensors Using Probabilistic Reasoning”.
In MICAI, edited by J. G. Carbonell and J. Siekmann, 218–226.

Krull, C. 2008, April. Discrete-Time Markov Chains: Advanced Applications in Simulation. Ph. D. thesis,
Otto-von-Guericke-University Magdeburg.

Krull, C., R. Buchholz, and G. Horton. 2010, October. “Matching Hidden Non-Markovian Models: Di-
agnosing Illnesses Based on Recorded Symptoms”. In Proceedings of ESM 2010. Hasselt, Belgium,
edited by G. K. Janssens, A. Ramaekers, and A. Caris, 133–138.

Krull, C., R. Buchholz, and G. Horton. 2011, February. “Virtual Stochastic Sensors: How to gain Insight
into Partially Observable Discrete Stochastic Systems”. In The 30th IASTED International Conference
on Modelling, Identification and Control, Innsbruck. Austria, edited by R. Fox and M. H. Hamza.

Lazarova-Molnar, S. 2005, November. The Proxel-Based Method: Formalisation, Analysis and Applications.
Ph. D. thesis, Otto-von-Guericke-University Magdeburg.

Muppala, J., G. Ciardo, and K. S. Trivedi. 1994. “Stochastic Reward Nets for Reliability Prediction”.
Communications in Reliability, Maintainability and Serviceability 1 (2): 9–20.

Sanders, W. H., and J. F. Meyer. 1991. “A Unified Approach for Specifying Measures of Performance,
Dependability, and Performability”. In Dependable Computing for Critical Applications Vol 4, edited
by A. Avizienis and J. Laprie, 215–237. New York, NY, USA: Springer-Verlag New York, Inc.

AUTHOR BIOGRAPHIES

CLAUDIA KRULL received her German Diploma in Computer Science from the University of Magdeburg,
in 2003. She is a research and teaching assistant in the Simulation and Modeling group since then. In
April 2008 she defended her PhD Thesis. Her research interests include the analysis of partially observable
discrete stochastic systems via virtual stochastic sensors. Her email address is claudia.krull@ovgu.de.

GRAHAM HORTON received his German Diplom in Computer Science from the University of Erlangen
in 1989. He received his PhD in Computer Science in 1991 and his Habilitation in 1998 from the same
university, in the field of simulation. Since 2001, he is a Professor of Simulation and Modeling at the Com-
puter Science Department of the University of Magdeburg. His research interests include efficient solution
algorithms for Markov chains, state space-based simulation methods, innovation and idea engineering. His
email address is graham.horton@ovgu.de.

mailto://claudia.krull@ovgu.de
mailto://graham.horton@ovgu.de

