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ABSTRACT

Emergent properties are becoming increasingly important as systems grow in size and complexity. Despite
recent research interest in understanding emergent behavior, practical approaches remain a key challenge.
This paper proposes an integrated approach for the identification of emergence with two perspectives. A
post-mortem emergence analysis requires a-priori knowledge about emergence and can identify the causes
of emergent behavior. In contrast, a live analysis, in which emergence is identified as it happens, does not
require prior knowledge and relies on a more rigorous definition of individual model components in terms
of what they achieve, rather than how. Our proposed approach integrates reconstructability analysis in the
validation of emergence included in our proposed component-based model development life-cycle.

1 INTRODUCTION

The analysis of individual, interacting components in a complex system cannot fully define the behavioral
properties of the system (Johnson 2006, Mogul 2006). These properties, called emergent properties, are
increasingly becoming important as systems grow in complexity, coupling, and geographic distribution
(Bedau 1997, Holland 1999, Johnson 2006, Mogul 2006). Examples of emergent properties include the
flocking of birds (Reynolds 1987), connection patterns in data extracted from social networks (Chi, Chan,
Seow, and Tam 2009), trends in big data analytics (Fayyad and Uthurusamy 2002), the Ethernet capture
effect (Ramakrishnan and Yang 1994), load-balancer failures in multi-tiered distributed systems (Mogul
2006), and router synchronization problems (Floyd and Jacobson 1993) among others. While the previous
examples have limited negative effects, malign emergent properties have been identified in power grid
blackouts occurring despite the functioning within bounds of all equipment (Force 2004). Another example
of negative emergence occurred in the UK health system in 2009, where a new requirement not to keep
patients waiting resulted in unwanted consequences. These included patients being given unnecessary
treatment to move them down the waiting list and the invention of a “hello nurse” to simply greet patients
upon arrival to reduce waiting time (Chen, Nagl, and Clack 2007). In this paper, we focus on component-
based simulation as a mean of studying complex systems, where individuals in the complex system are
abstracted as model components, and the system is studied as a simulation.

Because of undesired and unpredictable effects that lead to less credible systems that are difficult to
manage, techniques for the identification of emergent properties are becoming of crucial importance (Chen,
Nagl, and Clack 2007, Gore and Reynolds 2007). It is also important to determine whether identified
emergent behavior is detrimental or harmless to the system, in other words to perform emergence validation,
which, to the best of our knowledge, has not been addressed by current work. Most approaches focus
only on the observation of emergence in various biological, social, and AI contexts, on its philosophical
classification (Holland 1999), and less on measuring and advancing our understanding in the cause-and-
effect of emergence (Szabo and Teo 2012b). Previous studies show that despite a plethora of emergence
examples that have been identified and classified (Chen, Nagl, and Clack 2009, Holland 1999, Kubik 2003,
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Mogul 2006), few instances have been measured and explained (Szabo and Teo 2012b). A difficulty lies
in defining the variables that describe the system sub-components, or the micro-level, and the system as a
whole, or the macro-level, and the relationships between the micro-level and macro-level. There is a critical
need to understand the interaction between components at the micro-level the composed models, and how
this interaction leads to emergence at the macro-level. Moreover, existing approaches (Chen, Nagl, and
Clack 2007, Kubik 2003, Seth 2008) are currently only applied to simple models such as flocks of birds,
and have limiting assumptions and constraints when applied to more complex systems (Szabo and Teo
2012b). A key challenge is the need for abstractions of the micro and macro levels. These abstractions are
difficult to achieve in an automated manner, and hence most approaches rely on a post-mortem observation
of the simulation by a system expert (Gore and Reynolds 2008), instead of a live emergence identification
without a-priori knowledge (Kubik 2003). Moreover, current approaches assume that the system state,
sub-components and emergent behavior can be captured using a single variable and thus are not applicable
to cases where more than one variable is needed to capture micro or macro levels.

There is a gap between the abstraction of the macro (the system) and micro (the system sub-components)
levels in simple models and more complex models, and between having prior knowledge of emergence, and
having no information at all. It would be beneficial if these orthogonal perspectives were united in a single
approach to further the understanding of emergent behavior in complex systems as they are developed and
deployed in real life (Chen, Nagl, and Clack 2007, Holland 1999, Seth 2008). In this paper, we propose an
integrated approach that permits the identification of emergent behaviors in component-based simulation
models from two perspectives. If knowledge about emergence is available beforehand, our approach will
identify the model components and their interactions that are the most likely causes of emergent behavior.
Otherwise, our live emergence analysis approach aims to identify and validate emergence as it happens.
The contributions of this paper include:

• An integrated approach for detecting emergent behavior. Firstly, a post-mortem analysis identifies
the causes, in terms of model component states, that led to a previously defined emergent property.
Secondly, our live emergence identification approach relies on our proposed model component
definition to identify emergent behavior as it happens.

• A novel definition of model components in terms of what they achieve rather than how proposes to
offer a live analysis of emergence, as it happens in the simulation. This definition will also permit
the visualization of model component interaction and states leading to emergence and further the
understanding of the studied system.

This paper is organized as follows. We compare and contrast related work in Section 2. Section 3
presents our proposed approach, discussing post-mortem and live emergence perspectives. An example is
analyzed in Section 4. We present our concluding remarks and discussion of further work in Section 5.

2 RELATED WORK

Emergent behavior in component-based simulation model development has been highlighted since the
1990’s by Page and Opper (Page and Opper 1999), which propose a formal framework for analyzing the
complexity of composition and emergence. Their proposed definition uses the given components a and b
that are composed as a�b, an objective o, and the “satisfies” operator �. If a � o, then a satisfies objective
o. If a 2 o and b 2 o, but (a�b) � o, then we can say that the composition is emergent.

Gore and Reynolds denote emergence as a specific variable value and propose to highlight the lines in
the simulation source code that cause that particular value (Gore and Reynolds 2008). They further propose
a taxonomy for analyzing emergent behavior based on reproducibility, predictability, and temporality (Gore
and Reynolds 2007). Reproducibility refers to the repeatability of a simulation for a given set of inputs.
Predictable behaviors enable selective sampling towards testing user hypotheses. Temporality distinguishes
between the simulation reaching a final state and residing in a particular state. The proposed taxonomy
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allows system experts to classify a particular emergent behavior. Later work uses an emergent property
definition of a specific variable and its value in the simulation source code and identifies the lines of code
that led to that value.

Another approach to identify emergence proposes to look at a measure of the interaction between agents
in an agent-based model (Chan 2011). The interaction metric is an agent-specific counter that increases as the
agent interacts with other agents in the environment. Emergence is said to appear if the interaction measure
deviates from normality. This approach provides a straightforward measure of emergence. However, the
study considers only simple models such as Conway’s Game of Life (Gardner 1970) and the flock of birds
model (Reynolds 1987) in which emergence is a direct result of agent interaction, but does not address
cases where emergence is a result of indirect interaction between agents.

In the complex systems domain, emergence validation approaches can be classified in three main
categories, namely, grammar-based, variable-based, and event-based. Grammar-based methods employ
two grammars, LWHOLE to describe the properties of the system as a whole, and LPART S to describe the
properties obtained from the reunion of the parts (Kubik 2003). Emergence is defined as the difference
between LWHOLE and LPART S (Kubik 2003). While LPART S is calculated from the behavior of agents
without considering the agent interaction with the environment, LWHOLE is obtained as a reunion of all the
symbols generated by agents. This method does not require prior observation of the system to identify
possible emergent properties or behaviors, which makes it suitable for large composed models where such
observations are almost impossible. However, the calculation of LPART S considers all possible combinations
of agents states and thus is difficult to scale.

In variable-based methods, a specific variable is chosen to describe emergence. Changes in the values
of this variable are said to signify the presence of emergent behavior (Seth 2008). Seth (Seth 2008) proposes
G-emergence, a measure based on Granger causality to establish the relationships between a macro-variable,
representing a system property, and micro-variables, representing properties of the system sub-components.
This approach provides a clear process to identify emergence because it looks at measurable quantities
found in the system state, which is defined as the reunion of all sub-systems states. However, finding
a good variable to describe a system can be a difficult task that requires system expert intervention and
extensive observations of the system. Moreover, while Granger causality can be adapted to handle more
than one-to-one dependencies, G-emergence has yet to be defined in this case, and might not apply when
the macro-variable depends on more than one micro-variable.

In event-based methods, behavior is defined as a series of events which change a system or a sub-system
state (Chen, Nagl, and Clack 2007). A simple event type signifies a change in a sub-system state. It is
associated with a transition and has a duration. A complex event is defined as being either a simple event or
constituted from two complex events linked by a relationship. Emergence, defined as a complex event, can
then be reduced to a sequence of simple events. However, a detailed definition of the emergent property
in terms of simple and complex events is required for the analysis.

3 PROPOSED APPROACH

If emergent behavior is known beforehand, a key challenge is to identify the causes of emergence using a
method that is independent of the number of model components, and with an acceptable level of abstraction
to reflect model behavior and attributes. In the absence of an identified emergent behavior, the challenge
is the representation of the micro and macro levels to identify unexpected behavior as it appears.

We propose an integrated approach that captures these orthogonal perspectives, as shown in Figure
1. Firstly, if emergent behaviors are identified beforehand for a particular composed model, their cause
can be analyzed using a definition of emergent properties and an emergence taxonomy that leverages on
previous classification work (Holland 1999). In this post-mortem emergence analysis, we propose to identify
the causes, in terms of model component attributes and values, that lead to emergence. In contrast with
current work (Seth 2008), our proposed approach is not limited by the number of model components in the
composed model and can capture model characteristics with a high level of detail. The emergent behaviors
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that have been identified beforehand are also saved into an emergent property repository. We propose to
structure this repository using characteristics from various emergence taxonomies that look at a property’s
repeatability, reproducibility, and temporality, as well as whether it is a strong or weak emergence (Bedau
1997, Gore and Reynolds 2007). These characteristics will help further the understanding of unknown
behavioral properties as they appear.

If an emergent behavior is not known beforehand, we propose a novel objective-based representation
of model components that permits the identification of emergence as it appears in the simulation. Our
live emergence analysis defines a meta-component that specifies model components in terms of what
they achieve rather than how. We propose to obtain the composed model state from the states of its
model components. This constructed state is compared with the observed simulation state and significant
differences are noted, also based on an ontology-based representation of specific domain knowledge. We
propose the use of COSMO, our proposed ontology for component-based simulation, to represent simulation
and domain knowledge (Teo and Szabo 2008). Subsequently, properties identified as emergent are saved
into the emergent property repository. We envisage this repository as a collection of properly specified
and defined emergence properties that leverage on existing work in the classification of emergence with
respect to type, application domain, and specific occurrence among others. We employ reconstructability
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Figure 1: Integrating Orthogonal Perspectives in Emergence Validation.

analysis (Cavallo and Klir 1979) in two directions, namely, to determine the model components whose
interaction leads to emergence (in post-mortem), and to calculate a composed model state from the states
of its model components (in live analysis). Reconstructability analysis (RA) is an approach to discrete
multi-variate modeling developed in the systems community. RA decomposes the macro level into micro
level relationships that are specified in terms of relations and distributions involving subsets of variables. A
result of reconstructability analysis on a set of micro and macro variables specifies the inter-dependencies
among the micro variables that result in a macro variable with minimum errors and reduced complexity. A
variant of reconstructability analysis, called reconstruction, proposes the reverse of this process, namely,
constructing the macro level from the micro level. Another important point in our proposed approach is the
visualization and validation of emergent behavior. We propose to determine whether a particular emergent
behavior is beneficial or detrimental to the system by calculating and visualizing differences between the
system states when the emergent behavior occurs as a first step towards this, we propose to highlight to
system experts emergent behavior that differs, with respect to system states, than expected behavior.

3.1 Post-mortem Emergence Analysis

Our proposed post-mortem emergence identification approach assumes a-priori knowledge of emergent
properties and identifies the causes that lead to their appearance using reconstructability analysis (RA). Our
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approach relies on a representation of model components that captures component attributes and behavior.
More formally, model components are represented by meta-components, Ci = 〈R,Ai,Bi〉, which describe
the component required attributes R, specific attributes, A, and behavior, B, and are extensively used
throughout the life-cycle of a composed model. The required attributes are common to all components
and are generally employed for version control, e.g., author, location, lastUsed. Examples of
specific attributes include interArrivalTime, numJobsServiced, or speed, direction etc.
The component behavior describes the data that it receives and outputs as a set of states. The transitions
between states are defined as a set of triggers expressed in terms of input, time and conditions.

Our approach has three main steps as shown in Figure 2. Firstly, an emergent property is observed

Composed Model 
Simulation

EP values      values

Reconstructability 
Analysis

µP

Component-based 
Model

EP Definition

Figure 2: Post-mortem Emergence Analysis.

and specified as EP. Secondly, to identify the causes of EP, the composed model simulation is executed
and the model components, representing the micro level, are observed throughout the simulation run and
recorded as µP. The values of EP, or the macro level, are also recorded. Thirdly, we employ RA to
determine the relationship between µP and EP.

For a set of recorded values for the micro properties µPi j at every simulation time step j, and the set of
recorded macro properties EPj, we construct a system in which the inputs are µPi and the output is EP, and
the observations are µPi j and EPj at every simulation step j. Reconstructability analysis decomposes the
system (µPi j and EPj) into various subparts (that include subsets of µPi j, and EPj) that are then assessed
for statistical significance. This allows us to identify the interaction of model components in µPi that
has the highest influence on the emergent behavior EP. For example, for inputs A, B, and output C, five
model structures will be considered, namely, ABC, AB:AC:BC, AB:AC, AB:BC, AB:C. In model ABC,
A and B interact in their joint effect on C. Structure AB:C signifies that the output is independent of the
input. A structure AB:AC with the highest statistical significance means that the model has one predicting
component, AC. Reconstructability analysis promises to scale well in terms of the number of properties
and their observations. Moreover, in contrast to existing work, it also permits the formal and statistical
analysis of the influence of component interaction on the emerging behavior, which increases the insight
into the system execution.

3.2 Live Emergence Analysis

When previous knowledge about emergent properties is not available, we propose a two-step approach that
consists of the identification of an emergence set, and validation of the composed model states, as shown
in Figure 3. Existing specifications of model components that formalize the model component behavior
do not capture what the model component achieves, but focus on how the model component behaves. A
description of the purpose or objective of a model component that could be used to deduce the behavior of
the composed model will facilitate the identification of emergent behavior as it allows for the identification
of semantically different model states.
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Figure 3: Objective-based Approach for Identification of Emergent Properties.

Towards this, we enhance each component definition Ci with an added objective o(Ci) that describes
what the component achieves. The objective is defined using both textual description and a set of variables,
var(o(Ci)), with a type and a range of values that signify the objective is met. More formally,

var = {(type,values)|type ∈COSMO}

where the variable type is defined in COSMO, and can be of primitive types such as int or more complex
types. The variables also represent a subset of the attributes defined in the state machine. Thus,

o(Ci) = {(description,var)|var ∈ Am}

As such, the variables defining the component objective can change value with transitions. When these
variables reach values in the specified range, the objective is said to be met. For the Source component C1
in Figure 3, the objective can be defined as

o(C1) = (description,var(o(C1)))

where
description = Generates jobs every 3.5 seconds on average;var(o(C1))

= {numJobsGenerated, interArrivalTime} .

The attribute numJobsGenerated captures the fact that the Source component generates jobs, whereas the
interArrivalTime captures the second part of the objective description.

This objective-based definition of a component captures the relevant attributes that define the component
behavior, reducing the number of attributes considered in live analysis. However, several assumptions are
in place. Firstly, the objective must be defined as specified above, by the model component creator.
Secondly, the variables defining the objective must be already part of the component definition, as specified
by var ∈ Am. A higher level representation should have these objectives defined as independent of the
component attributes, with additional rules specifying when these objectives are met. This approach also
has its disadvantages and its study is part of our future work.

3.2.1 Identifying Emergent Properties

Our live emergence analysis proposes to present to the user an emergence set that contains simulation states
that are significantly different from a set of calculated composed model states. Informally, an emergent
state is a simulation state that is different by a semantic distance from a calculated state. Our approach
relies on the objective-based definition discussed above and presented in detail in (Szabo and Teo 2012a).
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As shown in Figure 3, our analysis is executed through the simulation run. At each time moment
k, our approach has three main steps. In the first step, the composed model state Srk is calculated using
reconstructability analysis as detailed below. In the second step, the simulation state S is calculated as the
reunion of model component attributes and their values. In the third step, the semantic distance DS(Srk,S)
is calculated. If DS has a value greater than a pre-defined threshold ε , then the simulation state S is added
to an emergence set ES.

Step 1. Calculation of Srk
To calculate Srk, we define each model component state s(Ci)|o, as the reunion of all variables var that are
defined in its objective o(Ci). The model component state s(Ci)|o is restricted to include only the model
component objectives. In contrast, the simulation state S is defined as the reunion of model component states
that contain all model component attributes and their values (including objectives). For the calculation of
Srk from s(Ci)|o, we propose to use a simplified version of a greedy algorithm adapted from (Jones 1985).

Our algorithm incrementally adds states from the set {s(Ci)|o|i = 1 . . .n} to Srk that is initially empty.
An added state β is one which is relevant by the measure γ(β ,Srk), where γ is informally calculated as
how statistically different is Srk from Srk ∪{β}, and from previous sets Sr j, j < k, calculated at previous
simulation steps. Currently, we propose a simple measure of this statistical difference, by looking at the
Mann-Whitney-Wilcoxon significance tests over the sets of objective variable values from Srk, Srk∪{β}, and
the sets Sr j, j < k. In the future, we plan to study probabilistic models as discussed in (Willet and Zwick 2004).

Step 2. Observation of S
The composed model state is observed at time k is observed and collated as the reunion of all model
component attributes and their values, as in Step 2 of our proposed post-mortem analysis.

Step 3. Live Emergence Identification
To determine how different Srk is from S, we employ a semantic state distance metric, DS that looks at
the difference between similar attributes as defined in the COSMO ontology (Teo and Szabo 2008). The
semantic state distance, DS, measures the semantic differences between component attribute values for
attributes ai and a j, as

d(ai,a j) =





0 if related(ai, a j) and ||value(ai)− value(a j)||≤ ε

0.5 if related(ai, a j) and||value(ai)− value(a j)||> ε

1 if @a j ∈ A(Ci) s.t. related(ai, a j) = true

where related(ai,a j) signifies that ai and a j are related in the COSMO ontology.
If there is an unacceptable deviation in the observed parameters, i.e., ||value(ai)−value(a j)||≥ ε1 and

DS(Srk,S)≥ ε2, we highlight this state as a possible emergence state and add it to an emergence set, ES
as ES∪{S}. We repeat this for the entire simulation run.

3.2.2 Understanding Emergence

The live emergent property identification constructs an emergence set ES that contains possible candidates
for emergence. Of greater interest for system experts is to determine if the identified emergent properties
are beneficial or detrimental to the system. As a first step towards this validation of emergence, we propose
to highlight to the user the states in ES as they appear in the simulation run. Towards this, we propose
to represent the simulation run as a Labelled Transition System (LTS) (Srba 2001) and to highlight in the
LTS representation the simulation states that appear in ES. Because the size of ES may be too large to
facilitate proper visualization, we propose to highlight only significant ES states.

We base our proposed visualization on our previous time-based formalism for the representation of
a model component (Szabo, Teo, and See 2009). The formalism relies on the definition of each model
component as a mathematical function, f , as fi : Xi→Yi, where Xi = Ii×Si×Ti, and Yi = Oi×Si×Ti. Ii and
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Oi are the set of input/output messages, Si is the set of states and Ti is the set of simulation time intervals
at which the component changes state. Each node in the LTS represents an annotated composition state
given by the tuple S j=1,m = [{state(Ci)i=1,n}, fin, fout ], where state(Ci) is the state of component Ci, n is
the number of components, m is the number of simulation states, fin is the component that generated this
transition, and fout is the component that executed to exit this node. Labels are the tuple <function name,
duration, output>, where duration represents the function execution time.

We identify s as the LTS states that are also in ES, and determine all their neighboring states snear,
i.e., the states that have either an outgoing edge towards s, or an incoming edge from s. For these states,
we calculate the semantic state distance DS(s,snear), as defined above and highlight the states s for which
DS has a value higher than a threshold.

4 EXAMPLE

For simplicity, we employ a model of a flock of birds in which each component abstracts a moving bird
that changes its position based on a set of simple rules that defines its current position and the position of
the other birds in the flock. These rules are (i) separation - individual birds steer to avoid crowding the
other birds in the flock (ii) alignment - individual steers towards the average herding of local flockmates
and (iii) cohesion - individual moves towards the average position of local flockmates. The boid model
has been shown to exhibit emergent behavior of flocking, and of flocking after encountering an obstacle,
when the flock splits and reunites.

4.1 Post-Mortem Emergence Analysis

In post-mortem emergence analysis, a bird is abstracted as a model component with position and speed
as attributes, among others. Birds exhibit emergent properties, such as flocking. The macro level emergent
property identified a-priori as representing emergence is the fact that the relationship between the trajectory
of the center of mass (CM) of the flock of birds and the trajectories of individuals in the flock corresponds
to flocking behavior that is observed visually (Seth 2008). The simulation of the flock of birds is executed,
and data is collected, pre-processed, and collated into a file that is then supplied to Occam3, a widely used
reconstructability analysis tool (M. Zwick 2012).

Our example employs ten birds that go through a sequence of 20 position changes according to the
rules specified above, starting from random positions on the drawing panel. At each simulation step, each
bird changes position according to the rules specified above; we collect each bird position, as well as that
of the center of mass of the flock. We reduce the number of variables by computing the distance di from
the center of the environment, i.e., the center of the drawing panel. The values of di are saved into an
output file, similar to that shown in Table 1 for the first ten steps.

Table 1: Distance from the Center of Drawing Panel.
Bird 1 Bird 2 Bird 3 Bird 4 Bird 5 Bird 6 Bird 7 Bird 8 Bird 9 Bird 10 CM

53 209 128 67 43 104 121 130 118 95 69
45 174 112 65 44 91 104 111 103 81 65
40 129 88 60 43 72 81 84 80 61 61
39 76 59 51 38 49 52 53 55 38 62
38 27 42 34 37 31 19 30 31 23 69
54 32 48 11 57 9 31 53 42 36 80
59 71 69 13 75 18 70 102 81 69 101
56 113 100 42 94 51 111 153 125 109 131
58 154 136 79 118 92 155 202 171 153 169
82 195 175 125 151 140 200 247 213 202 213

To further reduce the number and values of the variables, we further discretize the distance values, as
f loor(di/100)+1. The results are then transformed into an Occam3 input file, as shown in Figure 4. An
Occam3 input file starts with the definition of the sub-component variables, which are defined as name,
cardinality, input/output, short name. For example, for variable b1, representing the first
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bird model component, there are four possible values, hence a cardinality of 4, and the variable is an input
value, hence value 1. Observations about the values of the variables follow after the data: token.

:nominal :data
b1,4,1,a 1 3 2 1 1 2 2 2 2 1 1
b2,4,1,b 1 2 2 1 1 1 2 2 2 1 1
b3,4,1,c 1 2 1 1 1 1 1 1 1 1 1
b4,4,1,d 1 1 1 1 1 1 1 1 1 1 1
b5,4,1,e 1 1 1 1 1 1 1 1 1 1 1
b6,4,1,f 1 1 1 1 1 1 1 1 1 1 1
b7,4,1,g 1 1 1 1 1 1 1 2 1 1 2
b8,4,1,h 1 2 1 1 1 1 2 2 2 2 2
b9,4,1,i 1 2 2 1 2 1 2 3 2 2 2
b10,5,1,j 1 2 2 2 2 2 3 3 3 3 3
cm,4,2,k ...

Figure 4: Occam3 Input File.

The input file is then uploaded to Occam3, which searches for the model, in terms of variables and
their values, that best defines the variables that describe the system, e.g., the centre of mass of the flock
(CM). As it can be seen in Figure 5, the best results identified by Occam3 are ABCDEGHK, ABCDFGHK,
and ABCDGHIK, representing the interaction between components A, B, C, D, E, G, H; A, B, C, D,
F, G, H; and A, B, C, D, G, I, H respectively. It is important to highlight that these Occam3 results
have been shown to reflect interaction (Willet and Zwick 2004). In other words, it is the interaction of
seven out of the ten birds that leads to the observed flocking behavior represented by the values of CM.

Figure 5: Micro-Macro Relationships Using Reconstructability Analysis.

To further validate this, we removed the second rule, i.e., alignment, from the definition of the individual
birds. Our results suggest that in this case there is no relationship between the micro level and macro level.
This is also confirmed visually, in that no flocking behavior occurs. Space constraints prevent us from
showing this visualization here.

4.2 Live Emergence Analysis

We define a bird model objective as: o(bi) = (description,var(o(bi))) where

description = Fly northbound with an average speed of 20km/hour;var(o(bi)) = {direction,speed}

For simplicity and for alignment with the previous example, we discuss a simplified case where a) the
speed of each bird is calculated based on the distance from the center of the drawing panel; and b) the
calculated state Srk is calculated at each simulation step by considering the reunion of bird states when
each bird in is executed in isolation, i.e., without interacting with other birds in the flock. This follows the
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grammar-based approach as proposed in Kubik (2003) but limits the study of systems where individuals
can also function independently, as is the case for well-known examples of emergence such as flocks of
birds and the game of life. The study of calculating Srk without this assumption is part of our future work.

If each individual is executed independently, the direction of flight does not change and remains
northbound (e.g., “N” in Table 2(a)). However, the value of the distance increases rapidly and each
individual bird leaves the panel within four simulation steps (e.g., “-” in Table 2(a)). Table 2(a) and 2(b)
present the collated results for the first five birds.

Table 2: Observation of the Flock of Birds.

(a) Independent Individuals

Bird 1 Bird 2 Bird 3 Bird 4 Bird 5
120, N 114, N 135,N 111, N 98, N
155, N 193, N 146, N 180, N 150, N
360, N 394, N 387, N 380, N 350, N
539, N 571, N 560, N 558, N 538, N

-, N -, N -, N -, N -, N
-, N -, N -, N -, N -, N
-, N -, N -, N -, N -, N
-, N -, N -, N -, N -, N
-, N -, N -, N -, N -, N
-, N -, N -, N -, N -, N

(b) Entire Group

Bird 1 Bird 2 Bird 3 Bird 4 Bird 5
53, S 209, N 128,N 67, S 43, N
45, S 174, NW 112, N 65, S 44, N
40, S 129, NW 88, N 60, SW 43, N
39, S 76, NW 59, N 51, SW 38, N
38, N 27, NW 42, N 34, NW 37, N
54, N 32, NW 48, N 11, NW 57, N
59, N 71, NW 69, NW 13, NW 75, N

56, NW 113, NW 100, NW 42, NW 94, N
58, NW 154, NW 136, NW 79, NW 118, NW
82, NW 195, NW 175, NW 125, NW 151, NW

Step 1. Calculation of Srk
In the case where individual birds are considered in isolation, and the measure of statistical difference
looks at distances greater than ε = 150, Srk = {Sr1,Sr3,Sr4}, where Sr1 = {(120,N)(111,N),(114,N),
(111,N)(135,N),(111,N),(98,N)}, Sr3 = {(360,N)(111,N),(394,N),(111,N)(387,N),(111,N)(380,N),
(111,N)(350,N)}, Sr4 = {(539,N),(571,N),(111,N)(560,N),(111,N)(558,N),(111,N)(538,N)}, i.e., the
first, third, and fourth line in Table 2(b).

Step 2. Observation of S
S represents the reunion of all the system states, as S = {Si|i = 1 . . .10}, representing each line in Table
2(a) respectively.

Step 3. Live Emergence Identification
It is evident that the states representing the data in Table 2(a) are different from the states in Table 2(b),
with the most significant differences appearing when flocking occurs. This is because without flocking,
there are still individuals that follow their own individual flight path, similar to the case when they are
considered independently. In particular, for ε = 150 for the distance attribute, and a similar threshold to
distinguish directions with respect to their cardinal point, e.g., N and NW are closer than N and S, the
most significant difference occurs between Sr4 and S4.

5 CONCLUSION

This paper proposes an approach for the identification of emergent behavior in component-based simulation
models with two orthogonal perspectives. In post-mortem emergence analysis, the emergent behavior
has been observed, and the purpose is to identify the causes, in terms of model components states and
interactions, that led to the emergent behavior. In live emergence analysis, the emergent behavior is identified
as the simulation is executed, as any simulation state that deviates from a calculated composed model
state. We exploit reconstructability analysis in both post-mortem and live analysis, to identify significant
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interactions between components that leads to emergence and to obtain a calculated system state that is
then compared to the simulated state respectively.

Our approach is a first step towards the automated identification and validation of emergent behavior
in complex systems. Our initial experiments on using a flock of birds model highlight the feasibility
of our proposed approach and its applicability to more complex models, but also important points for
future work. First, reconstructability analysis requires several observations of the composed model in order
to determine the relevant variables for reconstruction. Towards this, future work includes applying our
proposed conceptual method to various real-life examples such as road traffic and social networks models.
Another important issue remains how to leverage on the existing body of work in the classification of various
emergent properties, by properly annotating and classifying properties in our proposed emergent property
repository. Lastly, while we propose the visualization of emergent behaviors to increase understanding,
the question of whether a particular emergent behavior is harmless or detrimental remains an open challenge.
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