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ABSTRACT

In agent based modeling many approaches are used for modeling agents’ behavior. They range from relaxing
the rationality assumption to considering participants’ behavior in experiments. Important suggestions come
from qualitative research in particularly from social sciences. We propose an approach to model artificial
agents by applying Glaser and Strauss Grounded Theory.

As an example, we ran an experiment with human participants facing an incentive problem. We show
how the observed behaviors were coded to ground the behavioral rules of agents. We then compared the
results obtained with grounded agents simulation to human participants’ performance and to the theoretical
optimum obtainable with fully rational agents. This method can generate simulated data with statistical
distribution not significantly different from experimental data. This approach can be fruitfully applied to
several problems of social interactions in organizations and work groups.

1 INTRODUCTION

The importance of individual behavior at work is well known in the literature. For instance, Roy (1952)
observed different behaviors in response to a managerial incentive designed to increment production in a
machine shop. Industrial workers did not react as theory predicts, forcing managers to change the incentive
scheme, and consequently, triggering new reactions. For this reason individual behaviors and interactions in
the workplace cannot be ignored. More generally, Thompson (2003) devotes a whole chapter to the human
variable and states “The human actor is a multidimensional phenomenon subject to the influences of a great
many variables. [. . . ] Neither we nor organizations have the data or the calculus to understand organization
members in their full complexity, and the requirements of complicated technologies in complicated task
environments cannot be met if the full range of human variations comes into play within the organization”.

When modeling individual behavior, a common approach is suggested from the normative perspective
of individual decision making (Tversky and Kahneman 1986); in this case rational agents are considered.
Nevertheless, starting from the seminal contribution by Simon (1945) this assumption needs to be relaxed,
and boundedly rational agents should be considered. In this case the goal is more focused to model realistic
behaviors and one important source of inspiration comes from the observation of human participants’
behavior in experiments (Dal Forno and Merlone 2004; Boero et al. 2010). However, how to translate
the observed behaviors into computer code is not so obvious. Some interesting suggestions come from
qualitative research methods to analyze and interpret data. In particular, we apply these methods to the
data gathered when observing human agents interacting in situations close to those to be modeled. In this
paper we illustrate the approach coming from Glaser and Strauss (1967) later developed by Strauss and
Corbin (1998). This approach is called Grounded Theory and, according to Strauss (1987), it “is a style
of doing qualitative analysis that includes a number of distinct features, such as theoretical sampling, and
certain methodological guidelines, such as the making of constant comparisons and the use of a coding
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paradigm, to ensure conceptual development and density”. The use of Grounded Theory in multi-agent
simulations has been proposed by Andrews et al. (2005), but, to the best of our knowledge, an example
showing the steps used in the modeling process and a validation analysis (Sargent 1984) is still missing. In
this paper we make these aspects more explicit and the whole process more transparent. This way we show
how this methodological approach allows us to strengthen the use of experimental data for modeling some
classes of behaviors by means of the observation of human participants (Dal Forno and Merlone 2004)
giving replicability and methodological soundness. Grounded Theory implies a constant dialogue between
inductive and deductive processes, in order to more and more precisely define the theory of the phenomenon
under study. As Giorgino (1999) observes, Glaser and Strauss were rather vague–at least until 1987–on
giving a concrete procedure to build Grounded Theory. Turner (1981) was the first author to suggest that the
analysis might be the process highlighting the qualitative properties of the examined phenomenon towards
a better comprehension. In this direction, Strauss (1987) provided a guide to Grounded Theory, stressing
the fact that there are not fixed rules but rather rough indications, and that the suggested procedures have
to be adapted and even modified to the context. Since then, several authors published their contributions
towards the definition of a theoretical and formal construction procedure. Yet, the difficulty to make the
theory building/modeling steps explicit is far from being definitely solved. In order to show how Grounded
Theory can be effectively used to build artificial agents, we consider a problem which can be analyzed
both formally and with human participants experiments. This problem is modeled as a supervised work
group where incentives must be determined in order to maximize productivity. Since we make both the
empirical data and the code available upon request, our results are replicable. The experiment instructions
and the spreadsheet we used to code participants’ behavior are also available upon request. Also, other
scientists can use these data to build alternative theories on agents’ behavior.

The structure of the paper is the following. In Section 2 we describe the Grounded Theory approach;
Section 3 provides an exemplification of this approach on a model of interaction we have studied. In
Section 4 we present the experiment we conducted with human participants, and in Section 5 we suggest
how to apply the Grounded Theory to model agents’ behavior. Section 6 is devoted to the analysis of the
data we obtained and Section 7 to conclusion.

2 GROUNDED THEORY

According to Strauss and Corbin (1998), Grounded Theory is a theory that is derived from data systematically
gathered and analyzed through the research process. Grounded Theory does not test hypotheses, rather it
provides a method that enables researchers to analyze and interpret their data in order to have a theory
emerging from this analysis process. The basic idea of Grounded Theory is to read a textual database several
times and find interrelations between some aspects that emerge during the process. Starting with a research
situation, where the researcher’s goal is to find what is happening or how the players are managing their
roles, the observed behaviors are written. Then, by the analysis and the constant comparison of the data,
some of the observed phenomena are labeled; in the terminology of Strauss and Corbin (1998) they become
concepts. As concepts begin to accumulate they are grouped under more explanatory terms: categories.
By this process, as a theory emerges it is continuously compared to the data. The process continues in
order to saturate all the categories, that is, when no new information seems to emerge by coding. This
is called theoretical saturation (Strauss and Corbin 1998). By axial coding categories are related to their
subcategories in order to develop them according to their properties and dimensions. Furthermore, the
theory is integrated and refined by selective coding. At this point a theory grounded on the data has
emerged. Finally, it is necessary to test this theory and relate it to other existing theories.

Although Grounded Theory is mainly used in social sciences, some applications can be recently found
in other fields; for example, Jones and Alony (2011) apply it to information systems and Graham and
Thomas (2008) to knowledge management. Here, as mentioned in the introduction, we use Grounded
Theory to model participants’ behavior and code it in agent based simulations.
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3 AN APPLICATION TO AN OPTIMAL INCENTIVE PROBLEM

In order to illustrate how Grounded Theory can be used to model artificial agents’ behavior it may be useful
to apply it to an example studied in the literature (Dal Forno and Merlone 2004; Dal Forno and Merlone
2007; Dal Forno and Merlone 2010a; Dal Forno and Merlone 2010b). To this purpose we consider a model
of supervised work group in which a manager and two operatives cooperate. In this model the manager
acts as a principal while the two operatives act as agents; for a first survey of the principal-agent literature
when several agents are considered, the reader can refer to Macho-Stadler and Pérez-Castrillo (1997). This
literature assumes that “contracting parties are rational individuals who aim to achieve the highest possible
payoff” (Bolton and Dewatripont 2005, p.5). By contrast, with our approach, we are interested in observing
and modeling actual behavior of human participants to improve realism in simulation.

In the model of interaction we consider, agent i has a capacity c̄i to be allocated between effort li,
provided with his partner, and effort ui, provided with his manager. The joint production function for agents
1 and 2 is (u1 +u2)

α (l1 + l2)
β , where 0 < α < 1 and 0 < β < 1 are, respectively, the output elasticity with

respect to the joint effort with the manager and with the partner. Figure 1 illustrates the allocation of the
efforts exerted by the two considered agents.

Figure 1: Interaction in a model of supervised work group. Arrows indicate the agents’ effort allocation.

The agents have to decide both how much effort to exert, and how to partition it in the two complementary
tasks given the incentives provided by the manager. It is immediate to observe that the two tasks are not
additive; for a discussion the reader may refer to Spector (2003). Furthermore, agent i can observe the
level effort l−i his partner provides with him, but not the one which is provided with the manager. We
adopt the notation commonly used in the Game Theory literature (see for example Fudenberg and Tirole
(1991)); −i indicates the partner of agent i. Conversely, the manager can only observe the joint output and
the effort ui each agent provides with her. The manager’s profit is the supervised work group production
minus the incentives she pays to her operatives. Finally, agents’ retribution consists of a fixed wage w ≥ 0
plus the performance-contingent reward set by the manager. The performance-contingent reward is a linear
incentive bg proportional to the joint output of the work group and a linear incentive bi on the effort each
agent exerts with the manager. As in Dal Forno and Merlone (2010b) we assume that the operatives’
capacity is given and unused capacity cannot be used for other tasks; therefore, operatives’ cost function is

ci (ui, li) =
{

0 if ui + li ≤ c̄i

+∞ if ui + li > c̄i
i = 1,2.
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Therefore, the problem can be formalized as a bilevel programming problem:

max
bg,b1,b2

(1−2bg)(u1 +u2)
α (l1 + l2)

β −b1u1 −b2u2

such that, given bg,b1,b2 operatives solve

maxu1,l1 w+bg (u1 +u2)
α (l1 + l2)

β +b1u1 − c1 (u1, l1)
maxu2,l2 w+bg (u1 +u2)

α (l1 + l2)
β +b2u2 − c2 (u2, l2) .

As proved in Dal Forno and Merlone (2010b), when considering fully rational agents the optimal
incentive scheme is 

bg = ε > 0
b1 = 0
b2 = 0

where ε is a positive number, as small as possible. In this case the optimal effort allocation is

(ui, li) = (
α

α +β
c̄i,

β

α +β
c̄i) i = 1,2

and the net production is

πN = (1−2bg)

(
α

α +β
(c̄1 + c̄2)

)α(
β

α +β
(c̄1 + c̄2)

)β

. (1)

4 THE EXPERIMENTAL DESIGN

We performed an experiment with human participants facing the formal problem presented in the previous
section. The purpose of the experiment was to observe the behavior of participants in the situations we
considered in our model. We collected the data from 54 undergraduates at the University of Torino (Biella
Campus). Participants were told how long the experiment would have taken (time varied slightly among
the groups but was around fifteen minutes) and that some extra time would be required for writing a
report explaining motivations behind their choices. In this way each quantitative data was supported by a
qualitative description.

Detailed written instructions for the experiment were given to the participants one week in advance,
so that they could discuss about it and increase their understanding of the game.

Motivating participants in experiments is a well-known problem in the experimental economics literature.
We encouraged participation in our students giving them up to 1 mark in addition to whatever their grade
would be in the final exam of the Math class (the maximum available grade is 30/30 and pass grade
is 18/30). Participants were also told that their actual incentive depended on their performance, that
is the total aggregate profit over the whole experiment (incentive = ranked performance normalized in
[0,1]). Economists and psychologists do not usually agree that monetary incentives improve performance
in laboratory experiments (Gneezy and Rustichini 2000). For example, Frey and Oberholzer-Gee (1997)
argue that monetary rewards may have a negative effect on intrinsic motivation. As the final exam allowed
the students to obtain up to 24/30, the remaining credits were the result of different optional activities
during the semester. This way the participants in these activities were only those well motivated to obtain
extra credits.

Since in particular, we were interested in observing a situation where the operatives are different in
terms of capacity, we considered three roles:

• manager,
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• high-capacity operative, and
• low-capacity operative.

The experiment was run in nine weekly sessions where two groups interacted separately; each participant
was allowed to take part only in a single session. One week before the first session, participants were
given the instructions for the experiment and a short explanatory discussion took place. For each session
we asked the participants to volunteer one week in advance. The day the experiment took place, roles
were randomly attributed and, while participants were aware of their own role, they were not aware of
the others’ one. Furthermore, no communication was allowed during the experiment in order to avoid
cheap talk issues. In particular, capacity and effort allocation remained private. This approach allowed the
participants to communicate across sessions. Yet, since roles were randomly attributed and the interaction
was the result of incentives and effort dynamics, we do not expect this kind of communication to affect
participants’ behavior too much. Finally, in each session of the experiment each participant was given
further instructions adapted to the role he/she was playing. These instructions are not reported for brevity’s
sake.

Each session consisted of five periods in which actions took place. Each period was divided into three
steps, where the experimenter was in charge of collecting and transmitting all the relevant information to
the participants:

1. incentives–manager plans the individual incentives b1 and b2 (privately communicated to each
agent) and publicly communicates the collective incentive bg;

2. efforts–once both personal and collective incentives have been learnt, operatives allocate their capacity
between the effort ui (privately communicated to the manager) and li (privately communicated to
the colleague);

3. production and payoffs–the experimenter calculates and publicly communicates the total production
and, accordingly to the incentives, payments (privately communicated to the agents) and net result
(privately communicated to the manager).

In each step, for each of the five periods of the session, written motivations of participants’ decision
were required. To this purpose group members received a form to be filled during the experiment. The
motivations provided by participants gave different kinds of information that enabled us to complement
the simple observation of their behavior in terms of given incentives and provided efforts. In particular, the
motivations our participants provided, allowed the modeling of artificial agents’ behavior to be grounded
on the rationale behind their choices. Since we were interested in the performance of the groups as a whole
as a result of the dynamics of members’ choices, we considered only the net production of each of the 18
experimental groups. The cumulated net productions are reported in Table 1.

5 APPLYING GROUNDED THEORY TO THE MODELING PROCESS

The approach we used in categorizing and labeling the different behaviors is one of the most used methods
in qualitative research and is explained in the following paragraphs; for further details the reader may
consult Glaser and Strauss (1967), and Strauss and Corbin (1998).

Since in the analysis of the data groups were behaving as whole units where both managers and their
operatives were interacting and adjusting each other, it was difficult to model roles separately. As a matter
of fact, all participants’ strategies seemed to be the result of both their initial assumptions on the game
and the other participants’ actions. A different approach would have been studying just one role at the
time, for example having one human participant interacting with artificial coworkers. This way, while it
would have been easier to understand a single role, we would have lost the joint construction of mutual
interaction between human participants.
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Table 1: Cumulated net production at the end of interactions of experimental groups.

Group Cumulated net production
1 25.6538
2 23.3699
3 26.9796
4 24.5496
5 27.4600
6 15.2775
7 27.6502
8 12.1146
9 19.4991
10 26.1298
11 28.5813
12 18.0891
13 21.8695
14 30.8273
15 26.8022
16 26.9981
17 28.5837
18 24.2502

Although several software tools can be used to analyze the data we collected, in this study we organized
our data using a spreadsheet. In this way the choices we made in the analysis process are more transparent.
The original material was organized as an ordered set of debriefing questionnaires partitioned according to
roles, i.e., manager, high-capacity operative and low-capacity operative. Through a process of joint analysis
of given motivations (qualitative data) and actual agent actions (quantitative data) we labeled each agent’s
behavior. The first important point was the distinction of actions performed on the first turn–mainly based
on participants’ expectations on the game–from actions performed in the following turns–as a reaction to
previous interactions. By writing the different observed behaviors we could develop several concepts that,
as they accumulated, formed different categories of behavior. Finally, when categories were saturated we
used axial coding in order to relate and fit the categories. Through this process we could categorize several
components of behavior both for operatives and managers; they have been coded using a spreadsheet. A
magnified detail is provided in Figure 2. There, each agent’s motivation (in italics) is reported in a cell.
Cells in bold type denote concepts, subcategories and categories which emerged from categorizing agents’
motivations. In particular, as it concerns the operative role, the categories of behavior we could identify
are reported in Table 2. In this table cτ

i ≤ c̄i is the capacity agent i devolves to efforts at time τ , while uτ
i

and lτ
i are, respectively, agent i’s effort with manager and partner at time τ . Function r is any convenient

behavioral rule used to determine the effort to be exerted.
As it concerns managers, the categories that emerged are reported in Table 3. In this table πτ

N =

(uτ
1 +uτ

2)
α (lτ

1 + lτ
2)

β −
(
1−bτ

1 −bτ
2 −2bτ

g
)

is the net production at time τ , and r1, r2, rg are the observed
behavioral rules used to assign respectively the two individual incentives and the one for the group.

By combining some of them we modeled the classes of behavior described in the following.

• manager M1 (individual punisher): at the first turn she gives both operatives a low collective
incentive and slightly higher individual incentives. At the next turns, if the net production has
increased, then she increases the individual incentive of the operative who exerted the higher effort
with her, otherwise (i.e., if the net production does not increase) she decreases the individual
incentive of the lower effort operative.
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Figure 2: Detail of the spreadsheet for operatives’ behavior categorization. Behaviors are in cells as emerged
by the analysis of the qualitative data provided by participants to the experiment. Cells in bold type denote
concepts (row 3), subcategories (row 2), and categories (row 1).

• manager M2 (group punisher): at the first turn she gives both operatives a low collective incentive
and slightly higher individual incentives. At the next turns, if the net production has increased,
then she increases the individual incentive of the operative who exerted the higher effort with her,
otherwise (i.e., if the net production does not increase) she decreases both individual incentives.

• operative O1 (partitioner): at each turn he uses all of his capacity partitioning it proportionally to
the individual and collective incentives.

• operative O2 (increasingly partitioner): he increases the used capacity over time and partitions it
proportionally to the individual and collective incentives.

• operative O3 (incentive averager): he uses his capacity proportionally to the ratio of incentives
just received with the average of the incentives so far obtained; the used capacity is partitioned
proportionally to the individual and collective incentives.

Table 2: Examples of operatives’ behaviors emerging from the data analysis and their formalization.

Behavior description Formal modeling
use the whole capacity cτ

i = c̄i

increase over time the capacity assigned to efforts cτ
i = c̄i

(
1− 1

1+τ

)
partition efforts according to received incentives

 uτ
i =

bτ
i

bτ
i +bτ

g
cτ

i

lτ
i =

bτ
g

bτ
i +bτ

g
cτ

i

diminishing efforts when incentives dropped
{

uτ
i < uτ−1

i if bτ
i < bτ−1

i
lτ
i < lτ−1

i if bτ
g < bτ−1

g
react to the effort provided by partner lτ

i = r
(
lτ−1
i , lτ−1

−i

)



Dal Forno, and Merlone

Table 3: Examples of managers’ behaviors emerging from the data analysis and their formalization.

Behavior description Formal modelization
incentivize mainly individual efforts bτ

g ≤ bτ
1,b

τ
2

incentivize mainly collective production bτ
g ≥ bτ

1,b
τ
2

reward who provides higher effort with the manager bτ
i =

{
bτ−1

i +δ if uτ−1
i > uτ−1

−i
bτ−1

i if uτ−1
i ≤ uτ−1

−i

punish who provides the lower effort with the manager bτ
i =

{
bτ−1

i if uτ−1
i > uτ−1

−i
bτ−1

i −δ if uτ−1
i ≤ uτ−1

−i

adjust incentives according to the trend of the net production


bτ−1

1 = r1
(
π

τ−1
N ,πτ−2

N

)
bτ−1

2 = r2
(
π

τ−1
N ,πτ−2

N

)
bτ−1

g = rg
(
π

τ−1
N ,πτ−2

N

)
• operative O4 (group effort limiter): at each turn he uses all of his capacity partitioning it proportionally

to the individual and collective incentives, but limiting his effort with the partner to the one he
observed the previous turn.

These classes are grounded on the data we collected and analyzed, therefore we do not introduce any
exogenous factor in the artificial model. Obviously, it is possible to model other classes considering the
available data.

6 DATA ANALYSIS

To be consistent with the human participants’ experiment, we ran the simulations for five iterations as in
the human experiment session; then we considered the cumulated net production at the end of the fifth
iteration. In the simulations we used the same parameter values as given to the human participants and
reported in Table 4.

Table 4: Parameters used in the experiments: α , β are output elasticities; c̄1, c̄2 are operatives’ capacities;
w is the fixed wage.

α = .7
β = .3
c̄1 = 10
c̄2 = 2
w = 2

With these parameter values, and assuming the groups incentive be bg = ε = .01, the fully rational
group’s net production πN is given by formula (1). Thus the cumulated net production over five periods
is 5πN ≈ 31.9215. As expected, this result is larger than any value of Table 1, confirming that the human
subjects did not behave as the theory predicts.

The cumulated net productions obtained with the grounded agents are reported in Tables 5 and 6, where
operatives in the rows have high capacity and operatives in the columns have low capacity. Again, the
cumulated net production (5πN ≈ 31.9215) of the fully rational group is larger and outside the range of
the distribution obtained with artificial agents. Furthermore, we observe that, with both kinds of manager
we modeled–individual punisher (M1) and group punisher (M2)–a work group composed by two group
effort limiter operatives leads to null production. Actually, in one of the human groups production dropped
to zero in the last interaction. However, all the other values of the cumulated production are in the range
[12.1146,30.8273] of the results obtained with human participants.

As we could not assume normality for the two distributions, in order to compare human participants’
to grounded agents’ results, we used the Kolmogorov-Smirnov test. We could not reject the null hypothesis
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Table 5: Cumulated net production over five periods for work groups supervised by an individual punisher
manager. The high-capacity operative’s behaviors are listed in the first row, and those of low-capacity one
in the first column.

Individual partitioner increasingly incentive group effort
punisher (M1) (O1) partitioner (O2) averager (O3) limiter (O4)

partitioner (O1) 24.4816 22.9076 24.3570 24.4816
increasingly
partitioner (O2) 17.5757 16.2225 17.5757 17.5757
incentive
averager (O3) 24.4816 22.9076 24.3570 24.4816
group effort
limiter (O4) 20.2975 17.8253 20.1553 0.0000

Table 6: Cumulated net production over five periods for work groups supervised by a group punisher
manager. The high-capacity operative’s behaviors are listed in the first row, and those of low-capacity one
in the first column.

group partitioner increasingly incentive group effort
punisher (M2) (O1) partitioner (O2) averager (O3) limiter (O4)

partitioner (O1) 24.6561 23.0538 24.5378 24.6561
increasingly
partitioner (O2) 17.5757 16.2225 17.5757 17.5757
incentive
averager (O3) 24.6561 23.0538 24.5378 24.6561
group effort
limiter (O4) 18.8999 17.4812 18.8040 0.0000

that the samples were drawn from the same distribution (p = 0.08527). This is a confirmation that the
classes we modeled are a good approximations of the behavior we observed in the human participants’
experiment. In fact, the code we used to obtain the results reported in Tables 5 and 6 emerged from
empirical analysis and led to behaviors not significantly different from human participants. Therefore, the
approach we suggest when considering Grounded Theory to model artificial agents seems to provide results
which, at least in this case, cannot be considered too far from the human behavior we observed.

7 CONCLUSION

When behavior plays an important role, artificial agents modeling presents a fundamental question. What
kinds of behavior should the artificial agents have in order to obtain realistic results from simulation?
We suggest a possible method which can be generalized and applied to any process of modeling actual
organizations or social interactions.

The method we propose can be divided in three steps. The first step consists in designing an experiment
which proposes the same interaction we want to study. This permits to set up the proper environment
for the problem under study. In the second step both quantitative and qualitative data are collected and
analyzed. The connection between quantitative and qualitative data is helpful for at least three reasons.
Firstly, it permits a control of internal coherence. Secondly, although the naked quantitative figure is
someway an abstract data and therefore, can be misinterpreted, the clothing provided by the qualitative
data allows the interpretation to be closer to reality. Thirdly, and this is connected to the third step of the
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method, the classification of extracted behaviors provides a direct way to code artificial agents’ behavior
answering the question posed above. This approach permits to embed what Turner (1983) calls a “[. . . ]
better understanding of repeated segments of human interactions in an organizational setting” into the
modeling of artificial agents.

Introducing some grounded artificial agents in the model of interaction, we could find that the different
combinations of agents’ behavior in the same work group may lead to a variety of outcomes in terms
of production and incentive schemes. The validity of the method relies on the fact that the most of the
outcomes of the artificial work groups are very close to the actual group performances we observed during
the experiments.

The novelty of this approach lies in filling–at least partially–the gap between normative and descriptive
theories of decision making. These two approaches in describing decision making take different perspectives
and, according to Tversky and Kahneman (1986), cannot be reconciled. As, in agent based simulation,
agents are often decision makers, the two different perspectives are reflected on the modelization process
as well. For example, when adopting a normative approach, we obtain a model in which starting from
the fully rational agent some assumptions are relaxed. Considering the inevitable tradeoffs for theories of
social behavior (Weick 1969), this kind of model combines simplicity and generality at the expense of
accuracy. By contrast, starting from a descriptive approach the model is more accurate and less simple and
general. When incorporating grounded agents in simulations we obtain a more accurate model which, at
the same time, allows a sort of “what if” analysis where simulation can be used to establish constructive
sufficiency (Young 1998).

Given our results, we believe that this method provides a more realistic tool that can be used successfully
to investigate interaction problems. Not least, it is more grounded to empirical data even in a context where
data are usually difficult to collect.
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