Proceedings of the 2012 Winter Simulation Conference
C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A.M. Uhrmacher, eds

APPLYING MODEL-RECONSTRUCTION BY EXPLORING MES AND PLC DATA FOR
SIMULATION SUPPORT OF PRODUCTION SYSTEMS

Andras Pfeiffer, Botond Kadar
Gergely Popovics, Csaba Kardos
Zoltan Vén, Lérinc Kemény, Laszld6 Monostori

Fraunhofer Project Center on Production Management and Informatics at
Computer and Automation Research Institute, Hungarian Academy of Sciences
13-17 Kende str., Budapest, H-1111, Hungary

ABSTRACT

The paper introduces a discrete-event simulation-based decision supporting system aiming at
automatically mirroring the current state of a large-scale material handling system of a production system
in a digital model and supporting the analysis of diverse control settings and rules. The discrete-event
digital model is built in an automated way and all the data necessary for the model are taken from a
manufacturing execution system (MES) and additionally directly from programmable logic controllers
(PLC). Main focus is given to present the results of the PLC program code processing method (code
mapping) generating a structured dataset, as well as the model-reconstruction method for the simulation
software. The easy-of-use support tool is intended to be used both in planning and operation phases of an
automotive manufacturing company, thus the capabilities of model reconstruction and simulation are
tested on real-world data.

1 INTRODUCTION

1.1 Simulation-based Support of Production Systems

Simulation technologies are often used in supporting production control decisions and this is also
particular for large-scale manufacturing systems. Several different applications of discrete-event
simulation (DES) models in the control of manufacturing systems were presented in the two well-known
text books Banks (1998) and Law and Kelton (2000). The simulation models used for supporting or
evaluating production control decisions, generally, represent the flow of materials to and from processing
machines and also the operations of machines themselves (Rabelo et al. 2003).

Simulation models may capture the relevant aspects of a production system which cannot be
represented in a deterministic optimization model. The most important topics in this respect are the
uncertain availability of resources, uncertain processing times, quality of the raw material, unpredictable
human behavior and insertion of conditional operations into technological routings (e.g. rework).
Moreover, in case of a simulation model is used for supporting short-term or real-time decisions, it is
particularly important to have quick response time. For instance, regarding production control, the closer
we are to the short-term plans the more detailed simulation model is needed to accurately support factory
control and planning decisions (Scherer 1998). However, detailed models will have lengthy, unacceptable
response times. Consequently, special modeling logics are required to resolve this contradiction.

A further issue related to the usage of the simulation in real-time control decision-making is the
ability to map the exact state of the physical system into the digital world. This means that before each

978-1-4673-4781-5/12/$31.00 ©2012 IEEE

Pfeiffer, Kadar, Popovics, Kardos, Vén, Kemény, and Monostori

simulation run, the simulation model has to be parameterized at runtime in a way to represent the state of
the manufacturing system under analysis (i.e., the products under process on each machine tool, the state
of each machine tool, the buffers queued with the products waiting for the process, batch sizes, allocated
operators to machine tools and their calendar settings, etc.)

Summing up the related issues of closely connecting simulation with the physical world in large-scale
manufacturing systems, it can be stated that the three key issues of simulation are as follows

1. Data acquisition and validation for simulation input,

2. Quick response time of simulation runs and analysis,

3. The ability of creating the snapshot of the physical system status in the simulation model by

instantaneous feedback (Monostori at al. 2007).

1.2 Automated Simulation Model Building

Discrete event simulation is one of the most widely spread techniques to evaluate various aspects of a
manufacturing or logistics system (O’Rielly and Lilegdon 1999). However, the design phase of a
simulation project needs great resource expenditures. On the other hand, simulation is applied to long-
term planning, design and analysis of manufacturing systems. These models are termed “throw away” or
“stand-alone” models because they are seldom used after the initial plans or designs have been finalized.
As stated by Ryan and Heavey (2006) the most commonly used rule of a simulation project is the so
called “40-20-40 rule”. The rule states that time spent developing a simulation project can be divided as
follows: 40% to requirements and data gathering, 20% to model translation and 40% to experimentation.

Time-consuming requirements gathering phase contains input data collection and preparation.
Significant planning time reduction can be achieved by automating data gathering and preparation.

Several approaches have been used for automating simulation model buildup by automatic input data
gathering and processing. As opposed to the “traditional” use of simulation, Son and Wysk (2001)
proposed that once the system design has been finalized, the simulation that was used for evaluation could
be used as the basis for system control. In their concept simulation is created by using neutral system
components, i.e., they made efforts to build simulation models for shop floor control system, generated
automatically. Park et al. (2010) suggest a naming rule in programmable logic controllers (PLC) program
codes to automatically identify objects and control logic in code giving a basic data set to build simulation
model. This approach needs a renaming process on PLC codes if naming rule suggested is not applied.
Bagchi et al. (2008) describe a discrete event simulator developed for daily prediction of WIP position in
an operational wafer fabrication factory to support tactical decision-making. Model parameters are
automatically updated using statistical analysis performed on historical event logs generated by the
factory, while “snapshot” of current status of production is generated by using the manufacturing
execution system (i.e., aggregated info of PLC).

The most widely spread applications of using PLC codes for generating simulation models aims of
verifying PLC codes themselves. Han et al. (2010) propose a prototyping to improve limitations of
existing control logic verification methods and ladder programming. The technique proposed by them
supports functionality verification of PLC code on low control level. Contrarily, PLC code process
method proposed by the authors is for evaluating the effects of changing PLC codes on the overall
system.

Several previous studies aimed at reducing the time needed by the development phase of a simulation
project of a manufacturing system highlights the importance of this topic. Wya et al. (2011) proposed a
generic simulation modeling framework to reduce the simulation model building time. The proposed
framework composed several software that contained information of layout and control logic of the
modeled objects. According to this approach layout and control logic of the manufacturing system must
be designed by the appropriate software.

Data needed to build simulation model of a manufacturing system are available in production
database or can be gathered. Nowadays majority of the enterprises are installing automated manufacturing
system consisting of PLCs. Subsequently, the topology and the control logic of the manufacturing system

Pfeiffer, Kadar, Popovics, Kardos, Vén, Kemény, and Monostori

needed for a simulation model are inherently kept in these PLCs. Consequently, building of simulation
models can be supported by data and control logic extracted from PLC codes.

The paper introduces an ongoing research of PLC program code and historical data processing
method that generates a structured dataset that can be used by manufacturing simulation software to
automatically create and parameterize a model.

2 NOVEL SOLUTION FOR SIMULATION-BASED SUPPORT OF PRODUCTION
SYSTEMS

2.1 Self-Building Simulation

The main goal of development is the enhancement of the simulation-based analysis and control system by
eliminating the manual data collection through automatic interfaces, creating a more realistic model of a
real production system. Furthermore, the self-building production simulation should provide both,
prospective (e.g. locate anticipated disturbances, identify trends of designated performance measures),
and retrospective (e.g. gathering statistics on resources) simulation functionalities. Self-building
simulation means that the simulation model is built up by means of the combination of the MES data as
well as the knowledge extracted from the MES data (e.g. resource and execution model). In addition to
the automatic model building feature, main requirement of the solution is to minimize the response time
of the experiments and to enable the quasi “real-time” applicability of the simulation.

Regarding the main operation modes of the simulator in the proposed architecture (Figure 1) are as

follows:

e Off-line validation, sensitivity analysis of the system. Evaluation of the robustness of system
against uncertainties (e.g., different control settings, thresholds and system load levels).
Consequently, this scenario analysis can point out the resources or settings which can endanger
the normal operation conditions.

¢ On-line, anticipatory recognition of deviations from the planned operation conditions by running
the simulation parallel to the plant activities; and by using a look ahead function, support of
situation recognition (proactive operation mode, Figure 1).

e On-line analysis of the possible actions and minimization of the losses after a disturbance already
occurred (reactive operation mode, Figure 1), e.g., what-if scenario analysis.

I MES - control and execution] - Reaction
; g (proactive,
production schedule reactive))]
| | — »{ Decision

maker

Prospective analysis f

and classification of o .
deviations Decision alternatives

evaluated

Simulation

Disturbance handling
mode (reactive)

Simulation

Prospective mode
(proactive)

— ___Decision 1
e e Decision 2
Threshold value _ C .

-- Decision n

- Time
Performance measure [~

of interest Plant j
> (e REaR R

G

Figure 1: Plant-level active disturbance handling realized by using reactive/proactive operation modes for
simulation (Monostori et al. 2007).

Pfeiffer, Kadar, Popovics, Kardos, Vén, Kemény, and Monostori

The model structure in the simulator is the same for the three operation modes; however, the
granulation (level of modeling details), time horizon, applied failure models and considered outputs
depend on the purpose of the experiments.

In the on-line modes the simulation models represent various virtual mirrors of the plants (or logistics
systems) and run parallel to the real manufacturing (or logistics) environment, simulating also the future
processes for a predefined short period. The performances of the predicted and the so far executed system
are compared (highlighted as “Performance measure of interest” in Figure 1).

The off-line operation mode refers to either the factory or individual plants, while in the on-line
modes the work of a plant-level decision maker is supported (Figure 1). The main goal of the decision
maker is to keep normal operational conditions as far as possible (e.g., daily schedule, or buffer levels)
and if it is not possible to minimize the deviances. In case of occurred or predicted disturbances, a
decision has to be made, whether to intervene, or not. In the former case an action has to be performed
with a limited scope (in space and time) in correspondence to the sphere of authority of the decision
maker (e.g., rescheduling or reallocate material flow to different buffers). The control action made in this
point incorporates the selection of the appropriate control policy and method, which might be supported
by the simulation-based analysis.

2.2 Proposed System Structure

In order to be able to realize the self-building concept regarding the simulation of a production system,
relevant input data and model elements have to be formalized and presented, e.g., in a relational database.

Figure 2 represents the dataflow of the (self-building) simulation architecture. The core of the
architecture is the main simulation relevant database, in which relevant data are gathered and maintained
(“Simulation DB” in Figure 2).

OPC Serv (PLCs) MES/SCADA

.. PLC Code

Production
System DB

\
| F—— !
- 1
: YISy 4 i W Simgl;tion < 1
1 * Structure expl. |control !
I logic .
! 1
: Results & :
| = settings 1
| ==, . 1
|| " ;
v TR i = |

P L U

Figure 2: Simplified structure of the proposed system

The physical structure of the system, basically the layout, identifies their dimensions and internal
distances, as well as the relations of these elements can be extracted from PLC codes. Even it is not easy
to reverse engineer them the topology of controlled system is incorporated in the PLC code (highlighted
as “Structure Exploration” in Figure 2). Second essential information of manufacturing systems is the
control logic of their elements. Control logic describes the response to be given on PLC’s output
depending on the input. The control logic consists of structured methods so variables and object’s
relationship can be transformed to the language of the simulation software.

It is also necessary to parameterize elements of the simulation model. Most of PLC codes do not
operate with these kinds of parameters of controlled elements however, (automated) manufacturing
systems usually apply MES and/or SCADA system that stores status changes of controlled elements and

Pfeiffer, Kadar, Popovics, Kardos, Vén, Kemény, and Monostori

timestamp of state change events (“Production system DB” in Figure 2). Possible states and parameters of
elements, as well as global settings can be retrieved by statistical evaluation accomplished on these data
as highlighted by “parameters, system status” in Figure 2.

Data preparation is carried out before the overall simulation. MES production system data is refreshed
on a real-time, formalizing the factory snap-shot, while PLC program codes are refreshed only if changes
are made on the real physical system. The redundant data (applying “Simulation DB”, Figure 2) storage in
the simulation model is compensated by the advantage of the shorter response time. Modeling real
production systems frequently brings up the problem of handling hundreds of resources in a simulation
model. Having the modeling objects in hand, which were created on the base of the conceptual model, in
our architecture the simulation model is created automatically based on the pre-processed data
(highlighted as “DES” in Figure 2).

The automatic generation of the model is followed by initialization. There, besides classical
parameter settings, the procedure involves the generation of input parameter specific model components
(entities such as products, tools, machines and the snapshot of the system to be modeled, more detailed
description can be found in (Pfeiffer et al. 2009)). Contrary to the previous phase, this one is carried out
for each replication. The simulation model incorporates a number of control settings (e.g., thresholds
values for buffer elements or dispatching rules for alternative machines) with which the simulation runs
can be manually initialized by simulation experts (“Dashboard” and “Results&settings” in Figure 2). The
simulation is started on the base of these statistics by generating random production orders which cover
the product type distribution calculated from the MES database. Naturally, instead of randomly generated
orders, the users of the simulation can also provide the input for the simulation model on the base of e.g.,
real customer order data. The simulation runs are repeated until the required number of replications is
obtained. Each replication is a terminating, non-transient simulation run.

In the last phase, the results are evaluated (critical values for defined KPI-s) and the results of the
evaluation process are interpreted by the decision-maker (e.g. in form of reports, highlighted as
“Dashboard” in Figure 2) who is responsible for taking the necessary actions. Several simulation results
and statistics are calculated inside the simulation model and a graphical user interface (GUI) is provided
for the visualization via a web browser of both, input settings, and statistical results (“Reports” in Figure 2).

2.3 Model-Reconstruction Method using Program Code Exploration

As mentioned above, several types of data are needed to build up a simulation model. In this section the
PLC program code mapping procedure is explained more in the details, as the most important part of the
automated input data preparation method, described previously in section 2.2.

2.3.1 Variable and Value Identification of the PLC Code

The PLC based data acquisition was carried out after a detailed inspection of the PLC program code, in
order to determine the blocks of the code, which are essential for the model building. During the
exportation of these blocks a suitable data format has to be chosen, which offers high level of data
consistency and simple accessibility to the data stored. Considering these requirements Instruction List (or
AWL) programming language was chosen as a textual export format. Since it is a low level programming
language, it has a strict syntax which allows less difference in the code, which is desirable for further
processing of the code.

However, the file format of the exported data is plain text, which contains no markup information
about the structure of the code and therefore it has to be included. This was accomplished by applying
grammar analysis. The grammar analysis is based on a grammar which comprises the rules and class
definitions concerning with the PLC code. An appropriate grammar is closely related to the IEC 61131-3
standard (IEC) and the analyzed PLC code therefore, it can be used to parse the PLC code and to create a
structured set of data, which highlights the desired information for model building. Grammar analysis can

Pfeiffer, Kadar, Popovics, Kardos, Vén, Kemény, and Monostori

be applied on different PLC codes and to be extended dynamically, which makes it able to be a part of
automated model generation. A software called ProGrammar was used to develop the grammar.

The test PLC code as all the PLC codes consists of blocks. One block describes the behavior of one
actuator (e.g. electric engine actuating the conveyor). Each block consists of two main parts, as
highlighted in Figure 3:

e In the first part the logical conditions and the corresponding data operations are stored.

e The second part of the block is for function block call. The arguments belonging to the call are

the input parameters which are needed to instantiate a block.

The grammar analysis results a structure called parse tree, which is a graph object that is composed of
the elements defined in the grammar. According to the scope of the analysis these elements can reference
various type of information: from the logical rules of operation to the logical or physical connection
between the elements.

In order to extract the required information from the parse tree its further processing is needed. This
can be achieved by a program, which is able to handle the parse tree and supports transferring the
processed results to a simulation environment. A technical computing software (Wolfram Mathematica) is
applied to process the parse tree, which is able to parse the input text by using a parsing engine of the
ProGrammar by an API.

In the paper a method is introduced which is purposed to reconstruct the physical topology of a
conveyor system. Therefore, the processing of the parse tree was executed in order to acquire the
information which is essential to reconstruct the connections between the elements of the conveyor
system,

Since the connections of the conveyor system can be represented by a directed graph, the data which
describe the connections can be stored in a matrix. Identifying all the elements of the system and their
connections makes it possible to create the connection reference matrix. However, this can be difficult
and requires general purpose methods, which are able to handle the code-specific differences of the input
data and that is the point where the flexibility of the created grammar is fundamental.

U "Status".EH55.Pos_Unten_OK

= L 60

BLD 103

U "Status".EH55.Pos_Unten_OK

= LU 61 - Block A part 1

BLD 103 .

UN “Status".EH55.Pos_Unten_OK Write input values

= L 62 to the appropriate

BLD 103 memory field
CALL "RB2G1R1P", "FG17-RB54" . "y fie
Element_Nr :=54

Von_RBV :="HS".Element(81, 2]
Von_RBR 1="HS".Element(0, 1]

BIOCk A- StartFVor =160
Verr_Vor :=L6.1
PosKoNak =l6.2
SE130 =L6.3 | l‘
SE135 = = ¢
Hardware_Stoerung:=L6.5 B 0(:‘ (A part <
VorwaertsRB = Define name and
RueckwaertsRB := arguments of the
PARA_TR = 5
PARAM :=WH16#101 called function
VisU ="VISU".ELEMENT[54)
StoerWort =
NOP 0

Figure 3: PLC program code part in instruction list format

Pfeiffer, Kadar, Popovics, Kardos, Vén, Kemény, and Monostori
2.3.2 Program Code Mapping

Automatic model reconstruction, in this context, can be considered as a mapping, which assigns the
corresponding information — extracted from the PLC program — to properties of the simulation object
instances. Properties such as identifier, type, physical and logical connections and other additional
parameters of the instances are extracted from the PLC program during the parsing process (Figure 4).
However, not all of the required information is accessible for the parser. This is mainly because of the
large number of device level connections, which are therefore not represented explicitly in the relatively
higher level PLC program. Including this missing information into the simulation model requests the
application of alternative methods.

PLC-program Simulation model
A1 110 » ‘\
= L 43; > .
BLD 103; > Obj1
A #SSM_RBOL; > Obj2
= L 46 > R
BLD 103; » »| Propertyl, bj3
CALLFB 147,DB 201 (
Element_Nr =1, » P{ porperty2 ... fopertyl,
Von_RBV := Element[2, 2], > S
Von_RBR := Element[100, 1], ; perty2.... ertyl,
SE130 =L 43, > N
MW st =L 46, < Method1, rty2 ...
PARAM := WH16#101, > I »| method 2, ... flethod1,
VISU := ELEMENT[1]);
NOP 0; thod 2, ... hod1,

G

Figure 4: Basic concept of PLC program code mapping

The most important property of a model element instance is its type, because it essentially determines
the behavior of the object. In the PLC program each element is referenced by a unique identifier number.
In the declaration part of the program, the identifiers and the element types are matched. Based on this
assignment a map structure can be created, where the type of each element can be looked up. However,
there are certain references in the PLC program, where the elements cannot be identified unequivocally.
The lack of the identifier refuses using the map structure to obtain the type of the element and causes the
appearance of disconnected sequences of elements in the model.

Analyzing the system in consideration in details shows that the occurrence of these “unidentified
elements” are closely related to their neighbor elements, which together form a straight sequence of
elements, a so called pattern. These patterns also contain the previously unidentified elements hence, they
can provide the missing links between separated sequences of the model. Since the recognition of these
patterns is based on a priori knowledge about the system, defining them is an input parameter of the
reconstruction.

Extending the model with the data gained from patterns has disadvantages as a pattern contains no
information regarding the direction of the connections between the elements comprised. To avoid
collision with already reconstructed sequences, each pattern is assumed as bidirectional. Hence, except
the case when a pattern is in fact bidirectional, it is leading to including non-existing connections, which
can be confusing. Therefore, removing these unused connections is desirable.

Analyzing the graph of connections it turned out that in most cases one end of the pattern is
connected to a “regular” sequence of elements, which contains proper directional data. Therefore, it is
possible to determine the valid direction inside a pattern of elements by using the available directional
data of the surrounding elements. Figure 5 shows the basic idea of removing unnecessary connections.

Pfeiffer, Kadar, Popovics, Kardos, Vén, Kemény, and Monostori

Figure 5: Considering the directional data between E2 and E1 (or E4 and E5) it can be pointed out that the
direction inside the pattern has to match the direction of the elements outside the pattern.

Creating an algorithm, which is able to clean the graph from the non-existing connections, requires
proper identification of elements on the border of each pattern. These elements can be characterized as
follows: an element, which has only two neighbor elements, but has two inputs and one output or has two
outputs and one input. As it is shown in Figure 5 E2 and E4 fulfill these criterions, respectively. The basic
idea is that these elements have three connections, but one can be thrown away. Applying the following
steps the connections to be eliminated can be defined .

1. Search for an element with 2 neighbors and 3 connections (2 in + 1 out or 1 in + 2 out)

2. Create two sets of connections through the element: one that points from one neighbor element to

the other and one that points backwards.

3. Evaluate the intersection of each set and the set of original connections.

4. The intersection with less member equals the connection to be removed.

Iteratively applying the above described algorithm effects that each unnecessary connection
(according to the previously described criterions) could be removed, thus enabling the proper graph
representing the network of the connected objects.

2.3.3 Topology Graph Generation

The resulted matrix of the above introduced method is visualized by using the graph plotting features of
the Mathematica software. The nodes of the directed graph represent the elements of the conveyor
system, while the directed edges represent the connections between them (Figure 6). Since the gathered
data does not contain information about the layout of the system, the arrangement of the graph was used
instead. Nevertheless, by setting the parameters of the elements properly the real operation of the system
can be modeled.

Therefore, by gathering the relative coordinate data of each element, the graph can be used to provide
element arrangement data to the simulation model. Processing the parse tree results three different data
structure, which are the following.

1 — v
- d £
- . -
. =% e -
- - r
- ol -~ “; #
“ - . >
-]
pe - R
4 -
Yin, o N -
®
" - -t - 1 "‘
L] .
T .
‘.: *

Figure 6: Part of the reconstructed topology graph of a production logistics system.

Pfeiffer, Kadar, Popovics, Kardos, Vén, Kemény, and Monostori

e A list which contains all the existing elements of the conveyor system. These are the elements to

be created in the simulation model.

e A connection reference matrix, which describe the connection between the elements.

e An element arrangement table, which contains the relative coordinates of the elements.

These data have to be transferred to the simulation software, where the simulation model can be built
up. The data transfer was carried out by using an SQL-server, which can be accessed by the built-in SQL-
client of the software applied. After a conversion of data, the topology of the examined system can be
generated by a graph creating command. The data received from parser can also be converted to a
connection table form. The simulation software (Tecnomatix Plant Simulation) and its internal connection
tables and methods are applied to generate the simulation object instances and run the simulation.

2.3.4 Parameterization of the Simulation Elements Generated

The “Production system database” is used by providing parameters of the elements and input data for the
simulation model (Figure 2). Directly and indirectly usable data are gathered from MES database, and
transformed as well as processed to the format that simulation software is able to apply (Kadar et al. 2010,
Pfeiffer et al. 2009.). The supposed simulation element parameterization method is demonstrated by an
example.

As test model elements were generated and connected based on the information stored in the low
level control devices of a conveyor system it is obvious to calculate the transportation time as the most
relevant information of a conveyor element. Production database of the test system stores data of the
number of pallets located on each conveyor sections as the function of time (Figure 7).

Number of pallets between two junctions
(part of historic data collection)

oL

Number of pallets

hme elnps;d .
Figure 7: Number of pallets located on a section of the conveyor system as the function of time

In Figure 7 each rising edge represents the event when a pallet enters the observed section and falling
edge is dedicated to the exiting event of a pallet. As the sequence of the pallets does not change between
two junctions on the conveyor system the entering and exiting time stamp of every pallet can be
calculated by a built in method of the simulation software. It also calculates the distribution of the
transportation time of every section of the test area and sets it as a parameter of the appropriate simulation
element.

3 PRELIMINARY SIMULATION RESULTS — CASE-STUDY

The proposed solution introduced in the previous section is tested on real data of complex conveyor
system in a large-scale manufacturing factory by using a part of the real PLC code of the running system.
The systems contains approx. 1500 elements and more than 20 PLCs formalizing a hierarchical control
structure. Main drawbacks of currently applied simulation methods enlisted by decision makers for testing
changes of either physical system or control system are as follows:
e specific building blocks, models of processes are redundantly implemented in separated systems,
which results in more development time and costs;

Pfeiffer, Kadar, Popovics, Kardos, Vén, Kemény, and Monostori

e there is no integrated design and analysis environment or system where the overall system and
processes can be analyzed;

e there is no factory-standard, uniform user interface;

e results of current simulations cannot be automatically adapted in real system;

e real-time daily use is not possible (manual changes required).

On the base of the above assumptions, the target of the research is to build a new simulation system in
which the simulation model is an inherent part of the control system hence, input comes automatically
from real execution system and support is provided to evaluation of simulation results.

This means the collection of data from PLC level, enabling reliable, automatically generated DES
models, furthermore, manual intervention regarding simulation (data collection, modeling,
parameterizing) can be reduced to a definitely low level. Two main operation modes (detailed in
section 2.1) has been identified by the users of the proposed system:

e off-line, i.e., planning level: Simulation is used for analyzing effects of changes in system, and

fed with historical input data and relevant production data for parameterization.

e on-line, i.e., execution level: Simulation is applied for short-term “what-if” analysis. In case of
certain deviation or disturbance has occurred decision maker is able to test several predefined
methods, scenarios for resolving problem.

Preliminary test runs were taken on a simulation model that was built automatically based on the data
on the PLC codes of a test area of the above mentioned conveyor system. The generated simulation
elements were parameterized based on the historical data of this section by the suggested parameterizing
method. Input data was also generated based on historical data and time dependent capacity limitations of
the output of the system were implemented in the simulation model as well.

The aim of the test run was to validate the simulation model by comparing historical data and
simulated data. The compared value was the number of pallets located in test area. This value is plotted in
the gear of time (Figure 8). Ramp-up phase of the simulation run can be recognized at the start phase of
observed time interval. In this phase there is significant difference between the real and simulated values
because at the initial moment of the simulation run the model does not contain any pallet. After the ramp
up phase the trend of the curves are similar that shows the simulated system behavior is similar to the
behavior of the real system. As uncertainty raises as the observed time interval of the forecast, this
phenomenon can be observed on this graph as well. On the right side of the diagram the curves are
deviating, because the uncertainty rises as the function of time.

As the test run revealed it is possible to represent the behavior of a manufacturing system by a
simulation model generated and parameterized automatically based on the information stored in low level
control devices of the system.

Consequently, these results of simulation experiments can be easily adapted in real factory, thus
enabling fast, flexible and smooth changes in factory, e.g., analyzing possible effects of changes in some
part of the PLC program code of the control system.

90

——Historical data

Result of simulation run W

40 ﬂ
30

A
Y ST
20 1 qu‘r\"\'\’*’vrlf\fr J‘\,Ph'l‘JA HV“"M ¥ W \ Vf \

Number of pallets

S S~ L - R < - . S < . .- . N
> : : : - E R Sl R

Elapsed time
Figure 8: Number pallets located in the observed test area

Pfeiffer, Kadar, Popovics, Kardos, Vén, Kemény, and Monostori

4 CONCLUSIONS

The paper revealed a discrete-event simulation approach applied for decision support of control related
production applications. Design phase is a significant part of a simulation activity; hence reducing time of
it significantly affects the effectiveness of the whole simulation. Automated data gathering supporting the
buildup of simulation models is a possible solution to achieve this goal and is also a solution to create
reusable models. Thus, self-building simulation has been introduced with three main operation modes to
be applied for decision support. Moreover, several approaches were studied in the topic and revealed that
PLC codes store information needed to build up a simulation model. A new procedure for extracting
topology and control logic data of system from PLC codes has been introduced. Data stored in production
database were used to parameterize objects of the model and generating input for simulation experiments.

The results introduced in the paper is intended to be applied on a real-world, automated intra-plant
logistics system of a manufacturing company in the near future. Two levels of application are considered,
planning and execution level.

At the planning level the proposed simulation-based system supports the decisions related to a
planning activities, by analyzing possible effects of changes in some part of PLC code of the control
system, by critical situation analysis of the overall material handling system, as well as by the evaluation
of throughput, bottlenecks, waiting times, number of pallets needed. Contrary, at the execution level the
main goal is to support decisions related to the anticipatory recognition of disturbances and to estimate
their influences (runtime simulation, monitoring KPI-s). This means testing predefined methods or
scenarios for resolving problems and deviations (e.g., buffer settings, routing of pallets).

ACKNOWLEDGMENTS

The research has been partially supported by the Hungarian Scientific Research Fund (OTKA) grant
“Production Structures as Complex Adaptive Systems” T-73376 and by National Office for Research and
Technology (NKTH) grant "Digital, real-time enterprises and networks", OMFB-01638/2009. The
research reported in this paper has received funding from the European Union Seventh Framework
Programme (FP7/2007-2013) under grant agreement No: NMP2 2010-228595, Virtual Factory
Framework (VFF).

REFERENCES

Bagchi, S., Chen-Ritzo, C., Shikalgar, S.T., Toner, M., 2008, A full-factory simulator as a daily decision-
support tool for 300mm wafer fabrication productivity, in Proceedings of the 2008 Winter Simulation
Conference edited by S. J. Mason, R. R. Hill, L. Mdnch, O. Rose, T. Jefferson, J. W. Fowler, pp.
2021-2029

Banks, J., 1998, Handbook of Simulation, Principles, Methodology, Advances, Application and Practice.
John Wiley & Sons Inc.

IEC. Iec 61131-3: Programmable controllers — part 3: Programming languages. Technical report, IEC.

Kadar, B., Lengyel, A., Monostori, L., Suginishi, Y., Pfeiffer, A., Nonaka, Y., 2010, Enhanced control of
complex production structures by tight coupling of the digital and the physical worlds, CIRP Annals -
Manufacturing Technology, 59, pp. 437—440. (http://dx.doi.org/10.1016/j.cirp.2010.03.123)

Kwan Hee Han, Seock Kyu Yoo, Bohyun Kim, Geon Lee, 2010, Rapid Virtual Prototyping of PLC-
Based Control System. ICAI'l10 Proceedings of the 11th WSEAS international conference on
Automation & information

Law, A., Kelton, D., 2000, Simulation modeling and analysis, McGraw-Hill, New York.

Monostori, L., Kadar, B., Pfeiffer, A., Karnok, D., 2007, Solution approaches to real-time control of
customized mass production. CIRP Annals Manufacturing Technology, 56(1), pp. 431-434.

O’Reilly, J.J., Lilegdon, W.R., 1999, Introduction to FACTOR/AIM. In: Proc. of the 1999 Winter
Simulation Conference, pp. 201-207.

Pfeiffer, Kadar, Popovics, Kardos, Vén, Kemény, and Monostori

Park, Hyeong-Tae, Kwak, Jong-Geun,Wang, Gi-Nam, Park, Sang C., 2010, Plant model generation for
PLC simulation. International Journal of Production Research 48(5), pp. 1517-1529.

Pfeiffer, A., Kadar, B., Szathmari, M., Popovics, G., Vén, Z., Monostori, L., 2009, Self-building
simulation tool for daily decision support in production control, In proc. of the 7th International
Workshop on Modelling & Applied Simulation, MAS 2009, 23-25 September, 2009, Tenerife, Spain,
pp.: 246-254.

Rabelo, L., Helal, M., Jones, A., Min, J., Son, Y.J., Deshmukh, A., 2003, A hybrid approach to
manufacturing enterprise simulation. In: Proc. of the 2003 Winter Simulation Conference, 1125-1133.

Ryan, J., Heavey, C., 2006, Process modeling for simulation, Computers in Industry 57, pp. 437450

Scherer, E., 1998, The reality of shop floor control — approaches to system innovation, In Shop Floor
Control — A System Perspective, Ed. Scherer E., Springer, 3-26.

Son, Y.J., Wysk, R.A., 2001, Automatic simulation model generation for simulation-based, real-time
shop floor control, Computers in Industry 45. pp 291-308.

Wya, J., Jeong, S., Kim, B., Park, J., Shin, J., Yoon, H., Lee, S., 2011, A data-driven generic simulation
model for logistics-embedded assembly manufacturing lines. Computers & Industrial Engineering.
60(1) pp. 138-147.

AUTHOR BIOGRAPHIES

ANDRAS PFEIFFER ecarned his PhD in 2008 at the Budapest University of Technology and
Economics. Currently he is a senior research fellow at Engineering and Management Intelligence
Laboratory of the Computer and Automation Research Institute, Hungarian Academy of Sciences (EMI,
MTA SZTAKI), project manager at the Fraunhofer Project Center at SZTAKI. His current interest
includes decision support in production planning and control, as well as the simulation and emulation
modeling of complex production systems, self-building simulation systems. Email address:
pfeiffer@sztaki.hu

BOTOND KADAR is a senior researcher at EMI, manager of the Fraunhofer Project Center at SZTAKI.
He obtained his MSc and Ph.D. degrees at the Budapest University of Technology and Economics,
Hungary, in 1993 and 2002, respectively. His current interest includes production control, simulation and
multi-agent approaches for production engineering and manufacturing systems and he is involved in
several research and development projects from these fields. Dr. Botond Kadar is author or co-author of
70 publications with over 120 citations. Email address: kadar(@sztaki.hu

GERGELY POPOVICS graduated in 2008 at the Budapest University of Technology and Economics.
Currently he is a research associate at EMI, systems engineer at the Fraunhofer Project Center at
SZTAKI. His current interest includes the simulation modeling of complex production systems and
automatic identification technologies. Email address: popovics@sztaki.hu

CSABA KARDOS graduated in 2012 at the Budapest University of Technology and Economics.
Currently he is a systems engineer at the Fraunhofer Project Center at SZTAKI. The fields of his interests
cover simulation of complex manufacturing systems and self-building simulation. Email address:
kardos@sztaki.hu

ZOLTAN VEN graduated in 2006 at the Budapest University of Technology and Economics. Currently
he is a research associate at EMI, project manager at the Fraunhofer Project Center at SZTAKI. His
current interest includes reconfigurable manufacturing systems, as well as the simulation and emulation
modeling of complex production systems, self-building simulation systems. Email address:
ven.zoltan@sztaki.hu

LORINC KEMENY graduated in 2010 at the Budapest University of Technology and Economics.
Currently he is a software engineer at the Fraunhofer Project Center at SZTAKI. Email address:
lorinc.kemeny(@sztaki.hu

Pfeiffer, Kadar, Popovics, Kardos, Vén, Kemény, and Monostori

PROF. LASZLO MONOSTORI acts as Deputy Director Research of SZTAKI, Head of the
Engineering and Management Intelligence Laboratory, and Director of the FhG Project Center. He is also
full time professor at the Dept. of Manuf. Sc. &Techn. Budapest Univ. of Techn. and Econ. He is a
Fellow and Council Member of the International Academy for Production Engineering (CIRP); Full
Member of the European Academy of Industrial Management (AIM), International Federation of
Automatic Control (IFAC). He is Editor-in-Chief of the CIRP Journal of Manufacturing Science and
Technology; Associate Editor of Computers in Industry, as well as the Measurement, and member of the
editorial boards of other international scientific periodicals. For his research achievements published in
more than 370 publications resulted in about 1800 independent citations and for his development
activities — among others — the Dennis Gabor Prize was given to him in 2004. Prof. Monostori is a
corresponding member of the Hungarian Academy of Sciences and member of the Hungarian Academy
of Engineering. Email address: laszlo.monostori(@sztaki.hu

