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ABSTRACT

Microscopic traffic simulation models are applied in the analysis of transportation systems for years.
Nevertheless, calibration (and validation) of microscopic sub-models such as car-following and gap-
acceptance models is still a recent matter. The objective of the calibration is to adapt the simulation output
to empirical data by adjusting the model’s parameters. However, simulation results may vary from the
underlying real-world data, despite the calibration. To analyze these deviations the present paper compares
two different approaches of calibration using data from a single-lane car-following experiment on a Japanese
test track. It is demonstrated that the results of the two methods differ significantly. A recommendation
for the more appropriate method to use is given.

1 INTRODUCTION

At present about 100 different models for the simulation of traffic flow have been described in the literature.
An overview offer Chowdhury, Santen, and Schadschneider (2000), Helbing (2001) or Nagel, Wagner,
and Woesler (2003) for example. The complexity of these models ranges from simple, low-parametric
specifications like NEWELL’s lower-order model (Newell 2002) or the cellular automaton model proposed in
Nagel and Schreckenberg (1992) up to multi-regime models like WIEDEMANN’s psycho-physical perception
threshold model (Wiedemann 1974) or the model implemented in the MITSIM-lab open source simulator
(Ahmed 1999). Over the past years especially microscopic models became more and more important in
analyzing and benchmarking transportation systems.

This paper will concentrate on microscopic car-following models. To describe the process of car-
following a number of measurements are needed: For the objective vehicle, its velocity v(t) (as a function
of time t) and acceleration a(t) as well as the net distance g(t) to the vehicle driving ahead must be known.
Furthermore, measurements for the leading vehicle’s speed V (t) are necessary in order to describe the
driver’s reaction to the behavior of the vehicle in front. Additionally to these dynamics, the models depend
on a set of parameters pk, k = 1 . . .M, where M refers to the total number of parameters. Subsequently,
these parameters will be handled to be time-independent or at least to vary to a lesser extent than the
dynamics itself. Finally, in the case of non-deterministic car-following models, a yet to be described
stochastic process ξ for generating acceleration noise with an amplitude of D must be introduced (D = 0
for deterministic car-following models).

With this at hand, a general car-following model can be defined as an inhomogeneous stochastic
differential equation (SDE):

v̇ = F(g,v,V ; pk)+D ξ , (1)
ẋ = v. (2)

The headway or net distance to the leading vehicle in eq. (1) is defined by g = X − x− `, where ` is a
generalized vehicle length, i. e. the physical length plus the average distance between two vehicles when
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standing behind each other at standstill. The variable x in eq. (2) describes the position of the following
vehicle along the road whereas X denotes the position of the leading vehicle.

For a reliable application it is important to adapt a model to reality, that is to calibrate (and validate)
it to a particular traffic situation. This calibration results in an unique set of model parameters pk (or
ranges for each model parameter p1...M characterizing a group of different drivers) which suits best a certain
traffic situation, e. g. dense inner-city traffic or free-flow traffic on highways. Usually, this calibration
is carried out by a non-linear minimization (e. g. maximum-likelihood estimation, MLE) of the distance
between the model and a certain realization, i. e. a measurement for a unique driver in a particular traffic
situation. This realization is defined by the boundary condition of the lead vehicle’s speed time-series
V̂ (t) and an empirical time-series {ĝ(t), v̂(t), â(t)} for the following vehicle including the initial conditions
{g(0) = ĝ(0),v(0) = v̂(0),a(0) = â(0)}. For the execution of the calibration, two different strategies have
been followed so far.

1.1 Local Approach (Single-Step Prediction)

For the first approach, empirical data are used to fit the model function F(·) directly (in the following
called local fit), i. e. to maximize e. g. the following likelihood function:

E(lf) =
N

∑
t=1

logL
(

a(lf)(t)− â(t)
)

=
N

∑
t=1

logL
(
F
(
ĝ(t), v̂(t),V̂ (t); pk

)
− â(t)

)
, (3)

where the index t labels subsequent measurements in time and N denotes the number of data-points of
the underlying time-series. Usually, velocities or headways are more sensitive to errors in a car-following
model. Moreover, some data sets may not even include measured accelerations but provide accelerations
derived from velocities by numerical methods. Hence, the objective function for the maximum-likelihood
estimation in eq. (3) is rewritten to make use of velocities directly:

E(lf) =
N

∑
t=1

logL
(

v(lf)(t)− v̂(t)
)

=
N

∑
t=1

logL

((
v̂(t)+∆t ·F

(
ĝ(t), v̂(t),V̂ (t); pk

))
− v̂(t)

)
, (4)

where ∆t is the time-step size in the empirical data set. The error measure E(lf) in eq. (4) contains the
difference of the velocities calculated by the model and the velocities from the empirical time-series:
∆v = v(lf)(t)− v̂(t). This is typically done in the approaches followed e. g. in Toledo, Koutsopoulos, and
Ben-Akiva (2009).

1.2 Trajectory Approach (Multi-Step Prediction)

For the second approach, first a simulation is run in order to solve the differential equations (1) and (2)
according to a given set of parameters pk and in compliance with the initial boundary condition stated above
as well as the boundary condition in time set by the lead vehicle. (In almost all microscopic car-following
models it is sufficient to only specify the lead vehicle’s speed V̂ (t) as input parameter.) As a consequence,
for the time period of the empirical data a dedicated simulation data set is generated.
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The trajectory created in this way is denoted as {g(tf)(t),v(tf)(t),a(tf)(t)}. In contrast to the local
approach, these trajectory data are compared to the empirical time-series (hence the name trajectory fit):

E(tf) =
N

∑
t=1

logL
(

v(tf)(t)− v̂(t)
)
. (5)

Here, in accordance to eq. (4), the index t labels subsequent measurements in time and N refers to the
total number of data-points, too. The trajectory approach had been followed e. g. in Brockfeld, Kühne,
Skabardonis, and Wagner (2003). In theory, these two approaches should be equivalent (compare e. g. Horbelt
(2001)). However, in the examples below it has been found that this is not necessarily the case. Often, it
is not clearly stated by the researchers which approach is chosen. Moreover, the relevant terms in eqn. (4)
and (5) look almost the same. In consequence, one cannot tell the difference between these two calibration
approaches from inspecting the objective function only.

2 MODELS AND DATA SET

For the present paper two car-following models have been analyzed by the different approaches of calibration:
The intelligent driver model IDM (Treiber, Hennecke, and Helbing 2002) and a simplified, linear approach
proposed in Wagner, Flötteröd, Nippold, and Flötteröd (2012).

2.1 Intelligent Driver Model – IDM

The IDM is a deterministic model, i. e. the amplitude of the noise term ξ in eq. (1) must be set to zero:
D = 0. According to eq. (6) the IDM is defined as follows:

v̇ = a

1−
(

v(t)
vmax

)δ

−

θ +T v(t)+ v(t)(v(t)−V (t))
2
√

ab

g(t)

2
 . (6)

This model consists of six parameters pk, k = 1 . . .6:

• vmax: The maximum speed of the modeled vehicle;
• θ : The average distance between vehicles at standstill (v = 0km/h);
• T : The safe time headway;
• δ : The acceleration exponent;
• a: The maximum acceleration;
• b: The maximum deceleration (defined as a positive value).

Because some model parameters are not sufficiently sensitive they have been set to fixed values: vmax =
33.3m/s, δ = 4. This corresponds to the default value defined in Treiber, Hennecke, and Helbing (2002).

2.2 Linear Model – LM

The linear model approach in Wagner, Flötteröd, Nippold, and Flötteröd (2012) is based on a classical
time-series analysis (ARMAX-type models, where ARMAX indicates auto-regressive, moving average
with external factors). The velocity of a following vehicle {vt}t={1,...,N} (with N the length of the time-series)
can be described as:

vt =
p

∑
i=1

ai vt−i∆t + εt +
q

∑
j=1

d j εt− j ∆t +b1 gt−∆t + c1Vt−∆t , (7)

where εt− j ∆t is a sequence of correlated external noise terms and gt−∆t as well as Vt−∆t denote the distance
to the leader and the velocity of the vehicle in front at the time-step before, respectively. By defining p = 1,
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q = 0 in eq. (7) a simplified model formulation is derived:

vt = a1 vt−1 +b1 gt−1 + c1Vt−1 + εt . (8)

The model in eq. (8) consists of three parameters pk, k = 1 . . .3 which don’t seem to show an immediate
physical meaning. In Wagner, Flötteröd, Nippold, and Flötteröd (2012) the following interpretation is
provided:

T =
c1

b1
,

α = 1−a1− c1,

τ =
1−a1− c1

b1
.

Here, T denotes the anticipation time, i. e. the time-horizon a driver uses to predict the future behavior of
its leader. The parameter α describes a relaxation constant whereas τ represents the preferred headway to
the vehicle in front. For the analysis in the present paper a version of the linear approach with an absolute
term according to eq. (9) was chosen to improve the precision of fit:

vt = a1 vt−1 +b1 gt−1 + c1Vt−1 +d1 + εt . (9)

2.3 Time-Series Data

The data used for analyzing the two calibration approaches were taken from a 20 minutes driver experiment on
a Japanese test track recorded in October 2001 (Gurusinghe, Nakatsuji, Azuta, Ranjitkar, and Tanaboriboon
2003). The test track is a single lane circuit with a length of 3km (2× 1.2km straight segments and
2×0.3km bend segments). The recorded time-series data comprise nine different drivers in car-following
mode performing different driving patterns, e. g.:

• Driving at several but constant levels of speed up to 80km/h for a defined time interval;
• Varying speeds (regularly increasing/ decreasing speed);
• Emulating a number of acceleration/ deceleration processes (as typically found at intersections).

Figure 1 depicts quite different driving manners applied in the experiment by two subsequent sample
drivers (driver 4 and 5). Driver 4 (red) shows a more or less delayed reaction compared to its leader. This
behavior demands longer headways (fig. 1 c, red bars above g = 45m), a longer range of time without any
acceleration utilized (fig. 1 a, higher red bars around a = 0.0m/s2) and a need for greater accelerations in
order to keep up with the leading vehicle (fig. 1 a, red bars above a = 0.5m/s2). Driver 5 responds better (or
more adaptive) to its leader. This driving manner is characterized by smaller headways (fig. 1 c, no green
bars above g = 45m, higher green bars (light green marks) for 5m < g < 15m) and lower accelerations
(fig. 1 a, higher green bars (light green marks) for 0.1m/s2 < a < 0.5m/s2). The differences in velocity
between the two drivers (fig. 1 b) are smaller. This results from the limited velocity of around 80km/h
in the driver experiment. In reality, however, greater deviations in driving behavior – and therefore in
headways, velocities and accelerations – may occur. This is caused by the much greater number of drivers
acting in diverse traffic conditions. Nevertheless, the need for suitable calibration of car following models
arises even for this limited number of drivers in a controlled experiment.

All vehicles were equipped with a differential global positioning system (DGPS) storing the position of
each car in 0.1s time-steps. The speeds of the vehicles have been quantified independently by a real-time
kinematic system (RTKS). The other parameter like acceleration and net headway between vehicles were
derived from the stored vehicle’s positions. According to Gurusinghe, Nakatsuji, Azuta, Ranjitkar, and
Tanaboriboon (2003), the accuracy of the DGPS based location determination is about 1cm. The speeds
measured have got an error of less than 0.2km/h. Thus, these time-series data are particularly suitable for
the analysis of car-following behavior and the calibration of car-following models.
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Figure 1: Distribution of accelerations (a), velocities (b) and headways (c) applied by driver 4 (red) and
driver 5 (green). Darker green indicates an underlying red bar whereas lighter green signifies the absence
of such an underlying red bar.
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2.4 Application

Dependent on the times-series used an appropriate distribution need to be defined for the error-measures
E(lf) resp. E(tf) in eqn. (4) and (5). For the local method, the difference of the velocity calculated by the
IDM model equation and the speeds found in the empirical time-series described above ∆v = v(lf)(t)− v̂(t)
seems to be distributed according to L ∝ exp

(
-∆v2/2σ2

)
, where σ is the variance of the normal distribution.

Figure 2 graphically represents histograms for the difference of the calculated and empirical velocity for
two different drivers. Here, the fundamental shape of the probability density function for a GAUSSian

Dv  = v(lf)(t)  -   v̂(t)
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Figure 2: Histogram for the difference of modeled (IDM) and empirical velocity ∆v = v(lf)(t)− v̂(t) for
driver 4 (a) and 5 (b).

distributed stochastic variable can be seen in each sub-figure. (For the different behavior of the drivers
concerning car-following refer to Section 2.3.) This applies for both tested car-following models and also
for the case of the trajectory approach.

Note that indeed the likelihood functions in eqn. (4) and (5) do not obey a real normal distributions.
This is due to the fact that accelerations, velocities and headways are always bounded. Therefore, truncated
versions of the probability functions should be used in principle. However, the parameter estimation seems
to be quite robust against the details of the likelihood function L(∆v) – at least in the case of the empirical
data and car-following models used here.

To run the simulation for the trajectory method, the differential equations (1) and (2) need to be solved
under the initial boundary condition and the boundary condition in time set by the lead vehicle for a specific
set of parameters pk. In the present paper, a simple EULER forward scheme is used, i. e. the following
equations have to be iterated:

v(tf)(t +∆t) = v(tf)(t)+∆t F(g(tf)(t),v(tf)(t),V̂ (t); pk)+
√

∆t D ξ (t), (10)

g(tf)(t +∆t) =
∆t
2

(
V̂ (t)+V̂ (t +∆t)− v(tf)(t)− v(tf)(t +∆t)

)
. (11)



Nippold and Wagner

Following the definition above the parameter ∆t denotes the time-step size of the EULER scheme. Here,
equation (11) is necessary because the dynamic variable g(tf)(t +∆t) has to be computed from the change
of the coordinates of the lead and following vehicle.

3 RESULTS AND INTERPRETATION

In the first step, both, the IDM and the linear car-following model were applied to the empirical time-series
for the local and the trajectory calibration approach. Then, the resulting parameters of the trajectory
approach p(tf)k were used to create synthetic data. For these data the underlying model parameters are
known (and constant by definition). In the second step, the calibrations for the local and the trajectory
approach were repeated with this synthetic data set.

As an example, Table 1 presents the resulting model parameters pk (in column “estimate”) for driver 5
and the IDM model applied to the empirical time-series for the respective calibration approach (lf = local
fitting, tf = trajectory fitting). Additionally, some test statistics derived from the MLE are given. Note that
the last parameter σ is not part of a car-following model itself but refers to the variance of the underlying
likelihood function for the error-measures E(lf) resp. E(tf) (cf. eqn. (4) and (5)). The estimated parameters
look more or less realistic. Nevertheless, acceleration a seems to be quite low for the local or single-step
approach, whereas deceleration b has a huge magnitude for the trajectory or multi-step approach. The
calibration tasks for the two different approaches have been carried out for both drivers and models.

Table 1: Calibrated parameters for driver 5 and IDM applied to the empirical time-series.

pk estimate std.-error t-value signif. level
lf T [s] 1.2313 0.0159 77.4304 0.0000
tf T [s] 0.8227 0.0212 38.7759 0.0000
lf θ [m] 2.6447 0.0500 52.8700 0.0000
tf θ [m] 10.7198 0.4206 25.4850 0.0000
lf a [m/s2] 0.2227 0.0076 29.3177 0.0000
tf a [m/s2] 1.5213 0.0194 78.5980 0.0000
lf b [m/s2] 2.9613 0.0290 102.1166 0.0000
tf b [m/s2] 7.0945 0.7952 8.9213 0.0000
lf σ [m/s] 0.0514 0.0006 84.0384 0.0000
tf σ [m/s] 0.6400 0.0079 81.3791 0.0000

In theory, the local and the trajectory calibration approach should be equivalent and lead to similar
outcomes (cf. Horbelt (2001)). In the present case, however, at least some model parameters differ
substantially. Table 2 contains the differences between the two calibration approaches for any driver and
model. The columns ∆p contain the perceptual disparity of the trajectory calibration approach for the

Table 2: Deviations of model parameters pk between local (lf) and trajectory (tf) approach for empirical
data.

IDM
pk ∆p drv. 4 ∆p drv. 5
T 94% 67%
θ 690% 405%
a 190% 683%
b 51% 240%

linear model
pk ∆p drv. 4 ∆p drv. 5
α -89% 102%
β -3863% -136%
γ -415% 15%
δ 479% 453%
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respective driver and model related to the value of the local fit. For the IDM the parameter θ (average
distance between vehicles at standstill) varies significantly for both drivers, whereas all other parameters
differ much less for driver 4. For driver 5 the parameters for acceleration a and deceleration b differ to
a much greater extent in comparison to driver 4. In case of the linear model the sign changes for all
parameters except the absolute term δ for driver 4. Moreover, parameter β differs to a vast extent. For
driver 5 the sign changes for parameter β as well. The other parameter, γ and δ also differ significantly,
whereas parameter α has almost the same magnitude for the different calibration approaches.

Figures 3 and 4 graphically represent these calibration results for a selected time range of the empirical
data set for driver 4 and 5. The calibration results derived from the local approach (solid lines) almost
perfectly fit the empirical time-series data (black solid line with circles). There are very low deviations
between the two different models for both drivers. For the trajectory approach (dashed lines), however,
significant differences between the empirical data and the fitted curves can be seen for both models. This
emphasises once more the deviations between the two approaches presented in Table 2. Furthermore, even
the shapes of the trajectory curves differ between the two models at certain times: e. g. between 560 and
570 seconds for driver 4 and 580 and 590 seconds for driver 5.

For a further investigation of these deviations the accelerations, velocities and headways created by the
simulation for the trajectory approach were taken as a “synthetic” time-series. In this way, the underlying
parameters are a priori known and constant. Table 3 shows the resulting model parameters pk again for
driver 5 and the IDM model applied to this synthetic input. Here, the first row “data” contains the “true”
value for each parameter derived from the first trajectory calibration run. Underneath, the results for the
local (lf) and trajectory (tf) fitting of the synthetic data are presented. Again, the calibration for the synthetic
data was carried out for both drivers and models.

Table 3: Calibrated parameters for driver 5 and IDM applied to the empirical time-series.

pk value/ std.- t-value signif. level
estimate error

data T [s] 0.8227
lf T [s] 0.9057 0.0007 1209.9162 0.0000
tf T [s] 0.8171 0.0006 1286.4422 0.0000

data θ [m] 10.7198
lf θ [m] 9.7808 0.0083 1176.0091 0.0000
tf θ [m] 11.8066 0.0237 497.4898 0.0000

data a [m/s2] 1.5213
lf a [m/s2] 1.4396 0.0015 933.5420 0.0000
tf a [m/s2] 1.5798 0.0023 677.0998 0.0000

data b [m/s2] 7.0945
lf b [m/s2] 6.3250 0.0551 114.7104 0.0000
tf b [m/s2] 6.3377 0.0124 511.5440 0.0000

Table 4 summarizes the results for calibrating the synthetic data set for each model and driver.
In case of the IDM car-following model the parameters of the two analyzed drivers only differ to a

smaller extent. The trajectory approach seems to perform better especially with regard to the accelerations a
and decelerations b. For the simpler (and weaker) linear model the trajectory approach definitely performs
better. In particular for driver 5 rather poor results can be seen for the local approach reproducing the
synthetic input data.
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Figure 3: Sample section for calibration results for the linear model (red) and IDM (blue) for driver 4.
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Figure 4: Sample section for calibration results for the linear model (red) and IDM (blue) for driver 5.
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Table 4: Deviations of model parameters pk between local (lf) and trajectory (tf) approach for synthetic
data.

IDM

pk
drv. 4 drv. 5

lf tf lf tf
T 103% 98% 91% 101%
θ 70% 117% 110% 91%
a 94% 100% 106% 96%
b 70% 109% 112% 112%

linear model

pk
drv. 4 drv. 5

lf tf lf tf
T 79% 88% 105% 116%
θ 87% 107% 28% 76%
a 79% 126% -22% -67%
b 87% 112% -36% 59%

4 CONCLUSION

By the utilization of synthetic input data (with a priori known model parameters) the weaker performance
of the local fitting approach in comparison to the trajectory approach can be determined. The calibration
results of the trajectory approach are much closer to the underlying, “true” parameters, which the synthetic
data set is based on.

This weaker performance of the local or single-step approach cannot easily be explained. Apparently,
the determination of the trajectory contains more information than what is comprised in a car-following
model’s acceleration or velocity function alone. Note that these two different methods for computing
the model’s answer to the behavior of a leading vehicle are in fact quite different: While the trajectory
approach definitely includes a memory (the auto-correlation function of this acceleration does only decay
after several seconds), the local approach is memory-less. Here, the objective function (acceleration,
velocity or headway) may fundamentally change within the next 0.1s, while in the trajectory approach a
variation of these values takes some time. This delay is due to the objective function being directly linked
to the speeds and net distances from the previous time-step. Speeds and net distances themselves cannot
change very rapidly in a car-following model. However, this seems to be only a part of the full answer
and should be explored into more detail in future.

As running a precise simulation is the final goal of any calibration endeavor, it seems that the trajectory
approach is in fact better than a local fit. Hence, one should not only do a calibration in a single-step
manner but in addition (or maybe as the one and only approach) run a simulation with the best-fitting
parameters to receive reliable results. This will become important especially in the case with lane changing
models that still present a big challenge for any calibration approach.
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