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ABSTRACT

Simulation studies typically imply the generation and interpretation of data. Collecting, storing, and filtering
data can be expensive. Therefore, it is important to allow a user to specify these processes flexibly depending
on the modeling language, the model, and the objective of the simulation study. An instrumentation language
is presented and applied to collect, aggregate, store, and filter data generated during experimentation with
models specified in ML-Rules, a rule-based multilevel modeling language for cell biological systems.

1 INTRODUCTION

A simulation study can induce the need to execute hundreds of model configurations, with the need to
execute thousands of replications for each configuration. To explicitly select the data to be stored can
reduce the storage consumption and can speed up the process of storing and analysis. This is of even more
importance if aggregations of the values are already required during the computation of replications, e.g.,
for deciding whether a computation can be stopped because a certain state has been reached.

A common view on runtime efficiency is the efficiency of different computation algorithms/protocols,
e.g., Wang et al. (2009), or of data structures, such as differences in event lists (Vaucher and Duval 1975).
This view is an important first step but for real life applications data collection may add a significant penalty
to the execution time. Data collection is mandatory and an efficient realization can help to reduce the
overall time needed for computation and the capacity of the storage devices needed. In existing software
for modeling and simulation (M&S) data collection is either turned on by default, e.g., in SDML (Moss
et al. 1998), or it can be specified in the model, e.g., in BioNetGen (Blinov et al. 2004). Some software
packages provide visual means for selecting properties to be observed, but depending on the model this
procedure is often not feasible as a model can comprise thousands of entities. In addition, in the case
of models with a dynamic structure, e.g., Uhrmacher (2001), new model entities can be generated and
should be observed as well. To open an editor to let a user select what to observe would hamper any
experiment execution, especially if thousands of model entities appear and vanish in the course of a single
computation. Thus a convenient specification of advanced filtering and aggregation functions is needed,
and the following questions arise:

1. How could a general language for observation look like, if it is possible to create such a language?
2. Are there specific elements induced by the modeling formalism which play a role in observation?
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These questions are examined using JAMES II and the rule-based multilevel modeling language ML-
Rules (Maus et al. 2011). This language has been created for models in the realm of systems biology and
allows a rule-based definition of models which can be nested and exhibit dynamic structures. JAMES 1II is
an open source M&S framework, based on the plug’n simulate architecture (Himmelspach and Uhrmacher
2007), not restricted to any modeling means. It has been developed based on a strict separation of concerns
and already provides a basic mechanism for instrumentation (selecting what to observe) and observation
(determine what to do with the observed values). However, up to now, to use these mechanisms implies
using Java.

Another question is whether data collection belongs to the model or to the experiment the model is
used in. What can be observed depends on the model to be observed, what we are interested in depends
on the experiment. Observation is intrinsically bound to the model (as model attribute names have to be
used), but for a model more than one observation definition might exist. This is due to the fact that a model
might be reused in different experiments. However, an observation definition might be reused in different
experiments as well and thus we conclude that the observation definition should be separated from model
and experiment.

In the next section we give an overview of related work on observing data in scientific computing.
Section 3 describes the requirements analysis done based on a questionnaire, existing solutions, and personal
experiences of the development team. In Section 4 a general language for instrumentation is presented.
Section 5 demonstrates the usage of the language on experiments with models described in the ML-Rules
language. The subsequent sections sketch the realization which executes instructions specified in the
instrumentation language and illustrate some performance insights. We conclude with a discussion of the
achieved solution.

2 RELATED WORK

Solutions to the problem of selecting data to be observed are available for many M&S software products, but
to our best knowledge there is not much scientific work dealing with specification or efficiency considerations
of data collection.

A subset of the software packages for M&S provides visual instrumentation/observation means. For
example, Snoopy (Rohr et al. 2010) and COPASI (Hoops et al. 2006) allow a user to select in a check list
box the variables to be plotted. The latter also supports to create individual and reusable report definitions
by choosing diverse kinds of model as well as simulator objects to be observed and included in the report.
Such graphical approaches may not scale well in case of models with thousands of entities. Other packages,
e.g., BioNetGen (Blinov et al. 2004), allow to describe what to observe using BioNetGen expressions in
the model code. Thereby, model entities may be filtered and aggregated according to certain attributes. So
far the observation definitions are placed in the model file and they are restricted to BioNetGen models.
A comparable approach is made by MatLab/SimuLink which provides special export elements which can
be placed into the model description and thus observation gets also part of the model description. DEUS
(Amoretti et al. 2009) integrates observation functionality by extending the model as well: logging events
are scheduled as “normal events” but if they are executed they do not modify the model but record the
model’s state.

Some software packages allow to setup observation via coding. Dalle and Mrabet (2007) presented
OSIF, an approach where via aspects, observation code is weaved into the models implementation at the
places one wants to observe data from. They argue that model and observation code should be separated to
keep the model readable and to increase the performance if some observations are not required in a model
use. Although of interest this approach has only a restricted general usage as it assumes that models are
coded in a programming language for which an aspect-oriented compiler is available. But if this holds true
it is the most efficient variant as the code for observation is only embedded if it is really required. The
authors do not define an extra language to specify which aspects shall be weaved into the code. This has
to be done with the normal means of the language used.
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In JAMES II instrumentation and observation is based on the plug-in schema and the observer pattern
(Dalle, Ribault, and Himmelspach 2009). What shall be observed is defined by specifying (coding) an
instrumenter which takes care of attaching observers to the observable entities a user is interested in. This
is comparable to the approach of Dalle and Mrabet (2007). In contrast to the aforementioned approach the
observer pattern adds a performance penalty induced by the observation code: calling an update method
if an observable entity has changed costs some time, independent from existing observers.

The last category, e.g., represented by SDML (Moss et al. 1998), automatically records every state
change without any chance to select what shall be observed.

Thus, the approaches are either based on coding in a programming language (e.g., Java), are restricted
to specific model types (e.g., BioNetGen), are part of the model description (e.g., BioNetGen, MatLab,
DEUS) or they collect all data (e.g., SDML).

3 REQUIREMENTS — OBSERVING MODELS AND COMPUTATION ALGORITHMS

The requirements collected stem from a small questionnaire, existing solutions, and personal experience
collected over several years of M&S software building and use. To get better feedback on requirements
imposed by potential users a small questionnaire has been developed and different users (biologists,
simulationists, visualization experts, computation algorithm/environment developer, and modeling means
developer) have been asked what they need. In summary the participants of this small survey found it
important to collect

state changes from specified model entities,

data from computation algorithm entities,

counts of model entities,

reactions/events/state transitions executed,

structural changes in models,

simple statistics (like averages, etc.) from specified model/computation algorithm entities, and
all changes, changes every n steps, every n time units, or when a specific expression becomes true.

These observations are needed to store or visualize trajectories of models, to observe data to steer
experiments (e.g., optimizations), to compute stopping criteria (e.g., compute until a certain state has been
reached), to control the number of replications to be computed, and to get data for an automated selection
of computation algorithms (e.g., to speed up the computation of the upcoming replications). Some parts
will be explicitly specified for an experiment (e.g., data to be collected due to the objective of the simulation
study) whereby another part might be implicitly specified by needs arising from using certain stopping
or replication criteria or by the optimization algorithm used. This implies that we need to allow multiple
instrumentations — those explicitly defined by users and means arising out of the experiment.

Further requirements stem from the environment the solution is developed for: JAMES II is not re-
stricted to any modeling language/formalism, and thus the instrumentation/observation should be usable
for any of those; JAMES II aims at an efficient execution of models at “any size”, and thus the instru-
mentation/observation should strip away unwanted data as early as possible, and data observation should
not be too expensive; JAMES II may be equipped with modeling means which allow to describe systems
which change their structure over runtime, where model entities might be added or removed; and thus the
instrumentation has to be able to observe changes in new model entities as well.

To maximize re-usability of models and observations the separation of model, experiment, and obser-
vation specification is recommendable.

4 AN INSTRUMENTATION LANGUAGE

To reflect the identified requirements above, an instrumentation language is designed which is inspired by
the structured query language (SQL). The grammar of the language is given in Figure 1.
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The INSTRUMENT keyword allows to select what to instrument (either model or simulator) with an
observer. With the OBSERVE keyword a user can define what he would like to observe. Observation can
be limited by conditions which have to be fulfilled before a new observation is made and by the frequency
the observations shall be made, i.e., only observe every n-th step or after n simulation time units.

In the specification (cf. Figure 1) the parts that are modeling means dependent constructs are put into
angle brackets. The language constructs depending on the specific means are the what statement, which
addresses the requirement to provide means for aggregation and statistical measures, the condition which
allows us to introduce advanced filtering mechanisms based on expressions, and the language specific terms
which generate keys to be used to identify group memberships.

Thus, most of the language is independent of the concrete modeling means the model to be observed
is realized in. However, as a prototype the language has been realized so far only for ML-Rules. In the
next section the ML-Rules specific replacements of the three constructs are introduced.

File = Header Queries

Header = "VERSION" number

Queries = { Query ";" }

Query = "INSTRUMENT" Target ObserveStatement WhereStatement GroupByStatement Trigger

Target = "MODEL" | "SIMULATOR"

ObserveStatement ::= "OBSERVE" What ["," What]

WhereStatement = "WHERE" (WhereCondition | "TRUE")

GroupByStatement ::= "GROUP BY" <language specific term>

Trigger = "EVERY" When

What = ( "COUNT" | (("SuM" | "AVG" | "MIN" | "MAX") "[" NumberType "]1") )
"(" <reference.to.target> ")"

NumberType = "DOUBLE" | "INTEGER"

WhereCondition = <reference.to.target> "=" Value | "IN" "{" Value {"," Value} "}"
{"AND" WhereCondition}

Value = Constant | <reference.to.target>

Constant = String | Double | Integer

When = (Integer "STEPS") | (Float "T")

Figure 1: Grammar of the instrumentation language.

Looking at our requirements we see that we capture with this language the collection of state changes from
specified model entities, data from computation algorithm entities, counts of model entities, reactions/events
executed, simple statistics (like averages, etc.) from specified model/computation algorithm entities, and
to record all changes, changes every n steps, or after n time units. Further on, the modeling means specific
parts have been identified and thus the language copes with the requirement of JAMES II that it should be
usable for different means. The set of user supplied queries can be extended by any number of additional
(generated) queries, i.e., queries generated by the experiment to get the data needed for optimizations etc.

A model/simulator might define what can be observed to ease the instrumentation process. An editor
created for this language might then make use of this knowledge to support users in defining instrumentation
queries. Checking whether the instrumentation created in the language can be applied to the real objects to
be observed is done while the instrumentation is performed, again editors might provide advanced means
for checking this in before.

5 INSTRUMENTING ML-RULES

ML-Rules is a recently developed modeling language for describing quantitative multilevel models in the
field of systems biology (Maus et al. 2011). The language design is based on a reaction-centric paradigm
and supports hierarchically nested variable model structures. Thereby, each level in the hierarchy may
has its own state and behavior. The state of model entities (called species) is characterized by attributes
(which may be of a string, boolean, or numerical type) and their enclosed content, i.e., a multiset of species
(called solution). Dynamics of a model are specified in terms of rule schemata, which are constrained by



Helms, Himmelspach, Maus, Rower, Schiitzel, and Uhrmacher

attributes and amounts of species. The stochastic rate with which a concrete rule instantiation will fire
is exponentially distributed, i.e., the semantics of ML-Rules grounds on continuous time Markov chains.
We do not want to go into more detail here and would like to refer the interested reader to the original
paper by Maus et al. (2011) instead. However, the following examples should give an impression about
the heterogeneity of produced data and the need for flexible instrumentation and observation of ML-Rules
models.

5.1 Adapting the Instrumentation Language to ML-Rules

Adapting the generalized instrumentation language to ML-Rules requires to define the statements in angle
brackets from Figure 1 for this particular modeling formalism. Thereby, language specific constructs like
attributed species, nested model structures, and rule schemata need to be considered.

Different statements require the description of a language specific <reference.to.target> to
access the desired information. For example, species.name references the name of a species and
species.quantity retrieves the species amount. Other targets denote specific attributes of a species,
which have a defined order in ML-Rules and can thus simply be referenced by species.attribute (n),
where n is an integer number. An example of a simulator target is matchings.propensity, which
retrieves the propensity of a rule schema matching.

For the identification of data in the produced output and for data aggregation, the <language
specificterm>beingpartofa GroupByStatement defines alanguage specific method for generating
defined keys. In the ML-Rules realization this could be, e.g., species.name, but also species.name
attribute aware and species.upwardhierarchy which take attributes of species or their lo-
calities within the hierarchical model structure into account when generating keys.

5.2 Example 1

This first example is a very simple one with the only purpose to give a brief introduction to some basic
principles and syntactical notations of ML-Rules and to provide first simple queries for instrumenting such
models. The example model comprises two species (“A” and “B”) and two rules, which describe how the
amounts of species change while the simulation executes:

A* 5 B(1)

B(x)? 2 B(x+1)
x<4

The first rule describes a conversion from species “A” to species “B”. The latter is characterized by
an attribute “1”, which is written between round brackets behind the species name. This attribute will be
incremented when the other rule fires. This second rule is specified in terms of a rule schema, i.e., depending
on the matched species different concrete rules may be instantiated. However, the rule is constrained to
only fire as long as the attribute of “B” is smaller than 4. The stochastic firing rate of a rule depends on
its transition propensity. In the example above, the propensities of both rules are adjusted during runtime
as they are proportional to the amount of reactants, i.e., “A” and “B(x)”, which may change over time and
can be accessed by using the “#” operator in combination with an identifier a reactant species is assigned
with (superscripts “a” and “b”).

Two different instrumentation statements are given in Figure 2. The results of the instrumentation
and observation (trajectories) have been used to generate charts. In both cases, the model is instrumented
to count the quantity of species (OBSERVE COUNT (species.quantity)). However, while the left
instrumentation example observes each species of the model (WHERE TRUE), the other one filters the data
to observe only species “B” (WHERE species.name = ’'B’). The GROUP BY statement is also different
in both instrumentations: in the left example observation results are simply grouped by species names and
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INSTRUMENT MODEL

OBSERVE COUNT (species.quantity)

WHERE TRUE
GROUP BY species.name
EVERY 1 STEPS;

Time

INSTRUMENT MODEL

OBSERVE COUNT (species.quantity)

WHERE species.name =

3:Y

GROUP BY species.name attribute aware

EVERY 0.5 T;

Time

1,000 1,000
= 800 — A _ 800 | —B) | |
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(a) Aggregated species counts; high resolution. (b) Counts of differently attributed B species; low resolution.

Figure 2: Different queries and results from instrumentation Example 1.

in the right example keys are generated according to the attributes of observed species, i.e., a distinction
between different attributes of “B” is achieved. Finally, the last statement in both instrumentations refers to
the trigger how often the data are observed, i.e., at each simulation step (EVERY 1 STEPS) and every 0.5
time units (EVERY 0.5 T). As can be seen in Figure 2, the latter may reduce the amount of data recorded.

5.3 Example 2

In the previous section the general usage of a concrete realization of our instrumentation language is shown
with the help of a rather simple model. Now we would like to give a more comprehensive and realistic
example of a biological model that motivates the need for flexible instrumentation of ML-Rules.

. Particles
' Late endosome
® //'—‘ézzijzb
)
Vesicle Rab7
O >
Ok ¢ /
Rab5 <
L
Early
endosome @ [ Lysosome

Figure 3: Illustration of the endocytosis and endosome maturation model.

The model illustrated in Figure 3 describes a process called endocytosis, that is the process by which
living cells engulf molecules or other particles from their environment. Thereby, the particles are wrapped by
vesicles which may subsequently fuse with other membrane-bound compartments to form early endosomes.
An endosome represents a sorting compartment that identifies the correct destination of absorbed particles
within the cell. For example, endocytosed receptor molecules may need to be recycled and therefore sorted
out early. Other molecules need to be directed to the Golgi apparatus and deleterious particles like toxins
and bacteria are transported to the lysosome compartment where they will be degraded. The latter transport
process, where endosome maturation plays a crucial regulating role, is subject of our example model.
During maturation, the pH of an endosome decreases significantly and a conversion of bound Rab proteins
has been observed (Conte-Zerial et al. 2008; Poteryaev et al. 2010).
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Figure 4: ML-Rules model of endocytosis and endosome maturation. An informal description is given in the
text. Parameters used for simulation: kg, = 103571, kfuse =2 X 1073571, kyeig = 10V 571, kpjpg = 1073571,
TPH =3, kunbinar = 1072571, kunbinas = 1072571, kyeeyete = 157", Kdegraae = 107257, initial solution § =
[200 Part + 1Cell[1 Lyso + 5000 Rab5 + 5000 Rab7]].

The ML-Rules model description in Figure 4 makes use of the capabilities of ML-Rules for modeling
variable nested structures. For example, Rule 1 in Figure 4 describes the process of endocytosis, where
a particle (“Part”) enters the cell and thereby is wrapped by a vesicle (“Ves”). Nesting is described by
putting the enclosed content within a pair of square brackets, i.e., “Cell[Ves[Part]]” describes a particle that
is wrapped by a vesicle which in turn is enclosed within a cell. Similarly, Rab proteins may also change
their location. The “?” operator is used to define a special variable, e.g., “C?” in Rule 1 or “E'?” in Rule
5, that binds the not explicitly mentioned remaining content when performing the rule schema matching.
Most of the species do not have attributes, however, endosome species are characterized by three attributes
describing their volume, a discrete state (‘early’ or ‘late’), and the pH. The values of these attributes may
frequently change, e.g., due to fusion with vesicles or other endosomes. Without going more in detail,
it should be obvious that the example model may produce a bunch of heterogenous data from which the
extraction of relevant information may be challenging. Again, we would like to present an exemplary
utilization of our instrumentation (Figure 5).

In the first example, the amounts of species filtered by a list of names are counted, similar to what has
already been presented in the previous section. However, here we are interested in the location of species and
thus the observations are grouped by the hierarchy above (GROUP BY species.upwardhierarchy).
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Figure 5: Different queries and results from instrumenting example 2. In all charts the x-axis describes
simulation time.

The usage of statistical aggregation functions over attribute values is shown in the next two ex-
ample queries. One leads to the observation of the summed, maximal, average, and minimal volume
(species.attribute (1)) of endosome species (WHERE species.name = 'Endo’). The other
aggregates over the third attribute (species.attribute (3)) of endosomes denoting their pH. In
addition, the amount of species is counted again and all observations are filtered by the second attribute,
i.e., only early endosomes are observed (species.attribute (2) = "early’).

The last query in Figure 5 gives an example of an instrumentation of the simulator (INSTRUMENT
SIMULATOR) rather than the model. The example shows the observation of sums of rule propensities
(matchings.propensity), which reveals, for example, that Rule 7 (decreasing pH of endosomes) is
the most active rule schema with the highest propensity among all rules most of the time.

6 IMPLEMENTATION ASPECTS

The language allows to specify any number of observation queries and thus the question arises how this
can be implemented in an efficient manner.
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The structure of the objects used by an observer are shown in Figure 6. An observer is attached to
a model/simulator by the instrumentation procedure and the language defined above is used to derive the
instances of the classes working together to filter and aggregate the data.

Schedule ,step* —"TFilter 1

@s,|@s, — — —
Visitor 1 Visitor 2 Visitor 3

[Data] [Data] [Data]

Extractor 1 Extractor 2 Extractor 3
Schedule ,time* KeyGen. X | |KeyGen. X | |KeyGen. Y

R e e
Filter 2

Visitor 4 Visitor 5
[Data] [Data]

Extractor 4 Extractor 5
KeyGen. Y | |KeyGen. X

Figure 6: Schematic figure showing the relation between schedules and filters as well as the encapsulation
of filters, visitors, data extractors and key generators in an observer.

The responsibility of the schedules in an observer is to control the execution of the observation. If
an observation is scheduled the filters will be used to check whether the information at the current time
has to be processed further. If the filters let data through the visitors will be applied to aggregate the
data according to the specification. Each visitor (see Gamma et al. (1995) for a description of the visitor
pattern) comprises a key generator, which effectively groups the data, and an extractor, which extracts the
data to be aggregated from the observed entities. This schema allows to group queries by their triggers so
that those to be executed are grouped and it makes sure that the model data structures will only be iterated
once per trigger event (independent from the number of queries provided).

To use schedules, filters, and visitors to realize the software executing the instrumentations defined via
the language, allows to reuse filters and visitors for different observation purposes and is the pre-condition
for a flexible instrumentation language which can then easily be extended to support further aggregation
techniques.

7 PERFORMANCE ASPECTS

To aggregate data over the model structure may consume a considerable amount of time. The worse it
might get

e the more frequent we do this observation,
e the more aggregated data we are interested in, and
e the more complex our filter expressions are.

Although the implementation already merges the jobs to be done so that only a single pass of the model’s
data structures is required we expect to observe an overhead. The question we try to answer here is how
expensive are the filters and the aggregation functions already implemented per execution?

For our experiments we use the second example model and we used four different sets of queries (see
Figure 7). Query 1 contains a simple count statement with no filtering, Query 2 a count statement with
filtering and Query 3 contains three aggregations with filtering. Query 4 is a combination of Queries 1-3.
Further on we let the computation run without any observation at all to get the pure computation time.
The machine configuration used is an Intel 990X, Hyperthreading activated, 3.47GHz with 24 GB of RAM
(DDR3, PC3-10700), Windows 7 64Bit operated, Java 1.7 64Bit, James II 0.8.6 with an Dhrystone index
(Java) of 198.19GPIS. Data is written to two 2TB discs combined using a MARVELL RAID-0 VD (ca.
209 MB/s).
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Query 1:
INSTRUMENT model OBSERVE COUNT (species.quantity) WHERE TRUE GROUP BY species.name EVERY n STEPS;
Query 2:
INSTRUMENT model OBSERVE COUNT (species.quantity) WHERE (species.name = ’'Endosome’ AND
species.attribute(2) = ’late’) GROUP BY species.name EVERY n STEPS;
Query 3:
INSTRUMENT model OBSERVE SUM[DOUBLE] (species.attribute(1l)), AVG[DOUBLE] (species.attribute(l)),
MIN[DOUBLE] (species.attribute (1)), MAX[DOUBLE] (species.attribute (1))
WHERE species.name = ’'Endosome’ GROUP BY species.name EVERY n STEPS;
ini Ini
= 200} 1(0m10 z 2001 ||0m10
< kel
£ 00100 g 0o100
g 180 1| T no g 180 71| T no
iz 2
[} [}
£ 160| . £ 160| .
= =
= = = — — —
) MOJDEJDD]EEJEE DR 01 (10 i e
1 2 3 4 1 2 3 4
(a) Runtime of observation code without data storing. (b) Runtime of observation code including time for direct

writing of the observations to the disc.

Figure 7: Test queries (top) and runtime results (bottom). Presented are the minimal runtime values for
each of the setups. The 4th setup comprises all three queries in the same run and the red line indicates the
computation time without observation. The instrumentation interval n is coded in the colors.

In our first experiment we turned off the writing of observed data to the disc as we are interested in
the pure overhead induced by observation. In our second experiment we turned on data storing to show
that the overhead shown in the first experiment gets worse the more to be done. Data to be written is
proportional to the frequency with which the data is collected. In our example to collect data after every
step leads for Query 4 to approx 300 MB, every 10th step to 30 MB and every 100th step to 3 MB of data
on the disc per single computation.

For Figure 7(a) we used the minimal values for the computations among the replications as these are
the closest approximation of the theoretical speed. As expected, the effort to collect data for each single
step is higher than the effort to collect data only for each 10th or 100th step. The overall effort is too low
to identify any additional speedup between 10 and 100 in the example we used.

Figure 7(b) shows the results with activated writing to a disc. The time differences already identifiable
in Figure 7(a) become more prominent in this second experiment. We have not executed further experiments
with larger data sets as the overhead gets already visible using this rather “small” amount of data written.

The most complex query (Query 4) is still only a subset of what could be queried from a model. This
short performance analysis shows for a single example model that the number of entities to be observed,
and even more important, the frequency at which they are observed play an important role for the overall
performance. Thus the performance study shows that collecting data can be expensive and that it is better
to carefully select what to observe and when to observe.

8 CONCLUSION

Collecting data is of central importance in executing simulation studies. Therefore, flexible means are
required. We identified a set of requirements for such means. To those belong, the ability to work on
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selected changes from specified model entities, selected data from computation algorithm entities, counts
of sets of selected model entities, data about sets of selected reactions/events executed, variable model
structures, simple statistics (like averages, etc.) from specified model/computation algorithm entities, and
to record all changes, changes every n steps, or after n time units. To address these requirements we have
presented a first proposal of a language to describe what shall be observed during computing a simulation
model. The SQL-inspired language provides basic constructs to select what to observe, when to observe,
and how to observe the data. In applying the language to observe the computation of ML-Rules models, it
has been shown that the language allows a compact specification of collecting, storing, aggregating, and
filtering observations. Thereby, the effort to adapt the language to the needs of models defined in ML-Rules
proved reasonable. Only three statements in the language need to be kept flexible so that references to
models in a modeling language can be made. Our performance study indicated an overhead introduced
by observation which gets worse the more to be observed and stored: it shows that the runtime overhead
is mostly caused by the frequency of observation. The need for a selective instrumentation is once more
illustrated by the observation of the file sizes. Future work will deal with using the language for further
modeling means.
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