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ABSTRACT 

This paper presents a comparison of three algorithm types (Bayesian Networks, Random Forest and Line-
ar Regression) for Predictive Maintenance on an implanter system in semiconductor manufacturing. The 
comparison studies are executed using a Virtual Equipment which serves as a testing environment for 
prediction algorithms prior to their implementation in a semiconductor manufacturing plant (fab). The 
Virtual Equipment uses input data that is based on historical fab data collected during multiple filament 
failure cycles. In an automated study, the input data is altered systematically, e.g. by adding noise, drift or 
maintenance effects, and used for predictions utilizing the created Predictive Maintenance models. The 
resulting predictions are compared to the actual time-to-failure and to each other. Multiple analysis meth-
ods are applied, resulting in a performance table. 

1 INTRODUCTION 

There has been significant research in the last decade about the introduction of predictive models in semi-
conductor manufacturing. This includes areas such as Advanced Process Control (APC) but also Virtual 
Metrology (VM) and Predictive Maintenance (PdM). In the case of VM and PdM there have been few ac-
tual implementations in fabs up to now. The Virtual Equipment has been developed to make it easier to 
evaluate the performance of the algorithms by comparing the predictions of different models in an auto-
mated and systematic way. This includes the possibility to alter test data by a combination of physical and 
statistical simulation. 

In this paper the focus will be on the comparison of PdM models on the filament failure prediction of 
an implanter and their sensitivity to noise in the input data. 

2 VIRTUAL EQUIPMENT FOR EVALUATION OF PDM MODELS 

2.1 Predictive Maintenance: Concept and Definition 

The pressure to reduce production costs forces manufacturers to optimize equipment utilization. In semi-
conductor plants operation is already extended to a 24 hours per day / 7 days per week continuous manu-
facturing. Classical time based preventive maintenance minimizes unscheduled equipment downtime and 
scrap production. To further optimize the resource usage the preventive maintenance action should be 
done at the latest possible time but when the equipment is still performing in its intended way. 

While the concept of Predictive Maintenance is already discussed for several years on a broader 
cross-industrial level (Mobley 2002, Dekker 1996, Liu 2008), tools in semiconductor processing are usu-
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ally still controlled only by methods of Statistical Process Control (SPC) and Fault Detection and Classi-
fication (FDC), but these techniques do not allow prediction of tool failures. Predictive Maintenance is 
usually not yet implemented in semiconductor processing due to the complexity of the used processes, but 
is supposed to be crucial to achieve major cost reductions to fulfill Moore’s law. Therefore, the ENIAC 
project IMPROVE was started to find (among other topics) best practice methods for the implementation 
of Predictive Maintenance in European semiconductor manufacturing sites.  

Typical semiconductor manufacturing tools are equipped with hundreds of sensors to control all com-
ponents of the tool and to achieve stable and reproducible conditions during the processing of a wafer. In 
many cases interactions of the components are observed but not well understood. In addition the variance 
of the sensor data over a long time period including maintenance events typically do not follow a normal 
distribution. In the course of  the IMPROVE project, several different methods and algorithms for PdM 
modeling have been proposed and tested (e.g. Schirru 2010, Scheibelhofer 2011, Susto 2011) utilizing a 
broad selection of machine learning and data mining methods.  

Bayesian Networks are already widely considered as suitable for the prediction of equipment condi-
tion (e.g. see Vachtsevanos et al. 2006) while methods based on decision trees are rather new for predic-
tion purposes. Both methods are robust with respect to the underlying statistical distributions and consider 
possible predictor interactions. For this reason Random Forests and Bayesian Networks with Soft Dis-
cretization have been applied to the use case of the prediction of filament breakdown in ion implantation. 
For reference they are compared to a simple linear regression model. 

2.2 Description of Virtual Equipment 

The aim of the Virtual Equipment is to test control methods, e.g. for Predictive Maintenance, in regards to 
different analysis methods before implementing them in the fab. This is done by applying different statis-
tical and physical simulation methods to generate test data based on historical fab data (for details on the 
simulation part of the Virtual Equipment, e.g. for Virtual Metrology, see Mattes et al. 2011). The test data 
sets are then split up into learning and test data. The algorithms use the learning data to teach a statistical 
model which is then used to predict the quality parameters of the test data. The predictions are finally ana-
lyzed and compared to both each other and the reference data in the original data set. This paper only uses 
a subset of the functionality of the Virtual Equipment which does not include physical simulation but only 
statistical alterations of the historical fab data to evaluate the sensitivity of the VM algorithms to noise. 

The Virtual Equipment is implemented in MATLAB/Simulink. The physical/statistical simulation is 
done in Simulink with some MATLAB callbacks while the GUI and analysis uses MATLAB. The predic-
tion models are considered as black boxes and interfaced via wrapper classes that mainly provide methods 
for updating the model (learning) and making a prediction. 

3 DESCRIPTION OF THE USE CASE 

3.1 Problem Description and Motivation 

In semiconductor manufacturing ion implantation is the process step where the electrical properties of the 
silicon substrate are adjusted. The implanted ion species and the dopant level are responsible for the pre-
cise definition of the threshold voltage of the integrated n- and p-type transistors and are one of the most 
critical steps during the manufacturing process.  

The implanter tool is highly complex. Its core part as depicted in Figure 1 is operated in high vacuum. 
It consists of an ion source where the ionization of the implant species takes place, a beam line through 
which the ions are accelerated and directed towards the end station chamber where the wafer in process is 
positioned. A more detailed description of the ion implantation process can be found in (Ryssel and Ruge 
1978; Wolf 2003, chapter 12). Depending on the process requirements the ions are implanted in a wide 
range of dose and energies ranging over several orders of magnitude. This leads to an unequal degrada-
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3.2.2 Bayesian Networks with Soft Discretization 

3.2.2.1 Bayesian Networks Technique 

Due to the fact that all variables (predictors, response) are represented as “nodes”, and all conditional de-
pendencies between those variables/nodes are represented in (directed) arrows between the nodes, Bayes-
ian Networks are often referred to as a graphical modeling method (Pearl 1988). So models can be set up 
in a graphical way, defining all nodes and arrows with respect to the real relationships between the predic-
tor and response variables. After model learning, a probabilistic prediction can be made based on new da-
ta.  

For the Predictive Maintenance system described here, a simple network structure was chosen with 
only few predictors (the first 4 selected variables from Table 1), and the remaining time to failure (TTF) 
as response variable (Figure 2). The model structure was determined manually utilizing expert knowledge 
of process and maintenance personnel. For modeling, MATLAB and a modified version of Kevin Mur-
phy’s BNT tool box (Murphy 2001) have been used.  

 

 

Figure 2: Bayesian Network model for the prediction of the filament breakdown in the Bernas ion source 
of the implanter 

3.2.2.2 Soft Discretization 

When using Bayesian Networks, the data usually has to be discretized. This enables the use of faster 
learning and inference algorithms. For discretization, the data space of a variable is divided into a finite 
number of states, typically 10 states for the case study presented in this paper. This causes a trade-off be-
tween accuracy and required computational power. Due to the fact that the model will not be able to make 
predictions for combinations of discrete input parameter states that were not explicitly learned, soft dis-
cretization was introduced (Ebert-Uphoff 2009).  

During standard discretization, all data points are translated into discrete states. The model outcome 
will be a discrete probability distribution for the defined output node given a certain combination of states 
in the input nodes. Soft discretization enables to feed the model not only with discrete input data but with 
a probability distribution over all neighboring states to introduce probability already during learning. This 
eliminates the problem with combinations of input parameter values that have not been explicitly learned 
because all possible combinations already appeared, even with low probability. Therefore, soft discretiza-
tion enables extrapolation of the model outcome and the handling of unknown tool conditions. Due to the 
same reason, the amount of training data needed for model learning can be greatly reduced by soft dis-
cretization. 

In addition to the BNT toolbox, the soft discretization toolbox by Imme Ebert-Uphoff was used 
(Ebert-Uphoff 2009). 
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3.2.2.3 Reconstruction of Continuous Response from Discrete Probabilistic Output 

The output of a Bayesian Network is a distribution over several discrete states. When the nature of the re-
sponse variable is continuous, then the real signal has to be reconstructed from this. Different methods 
have been used and compared in this work: 
 
Most probable state reconstruction: 
This is the most simple way of reconstruction. For every inference result from every instance in the test 
data, the state with the highest probability is chosen. These states are then replaced by values that best 
represent the chosen state in the continuous data space. For calculation of the representative values, all 
n=10 discretization bins have been divided into q=10 quantiles. As representative value for bin i, the ith 
quantile is chosen. The resulting values are then smoothed using exponential smoothing. 
 
Probability-weighted reconstruction: 
For this method, the weighted sum over all representative values is calculated for reconstruction of a con-
tinuous value. As weights, the probability for every state from the probabilistic model output are used. 
The representative values are calculated as described for the most probable state method. Additionally, an 
exponentially smoothed version is tested in chapter 4. 
 
Linear regression reconstruction  
For this method, inference on the learn data is made. The resulting probabilities and the time to failure are 
used to learn a regression model that is then used for reconstruction utilizing the probabilistic predictions 
for new observations as input values for the regression model. Again, a smoothed and an unsmoothed 
version were used for the comparison in chapter 4. 

3.2.3 Random Forest 

A Random Forest (RF) model (see Breiman 2001) for regression consists of an ensemble of regression 
tree models (CART models, see Breiman et al. 1984). Out of the initial set of given observations a RF 
model does not use all of these observations for constructing each tree but only a bootstrap sample (see 
Efron 1979). Additional randomness comes from using only a random sample of predictors for determin-
ing each split in each tree. With this, RF models aim to reduce the variance of CART’s fitted values and 
to improve the prediction error. The method is also able to measure its own performance by using the ob-
servations not selected by the bootstrapping (out-of-bag or OOB samples) to test the model’s predictive 
power and calculate error rates (OOB error). 

The basic steps of the algorithm are the following (see Berk 2008):  
Let the response be a continuous variable, n be the number of given observations and mtry be the number 
of predictors used for each split in each tree. 

 
1. Draw a bootstrap sample of size n from the data (random sample drawn with replacement). 
2. Take a random sample of size mtry without replacement of the predictors. 
3. Construct the first regression tree partition of the data, i.e. the first split and repeat 

step 2 for each subsequent split in the tree. Do not prune. 
4. Drop the OOB data down the tree and store the assigned value, i.e. the mean of the 
5. Iterate the steps 1 to 4 a large number of times, e.g. 500. 
6. Use only the predicted values assigned to each observation when that observation was an OOB 

observation (i.e. not used to build the tree) to calculate the MSE. 
 

Aggregating the results of single tree models reduces variance and produces more stable models. Fur-
thermore the method does not overfit due to the law of large numbers as is proved in (Breiman 2001). Un-
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like with CART there is no graphical model output to visualize results and variable importance ranking. 
Although there are several graphical methods that aim to compensate this drawback, the procedure re-
mains a black box. By drawing a bootstrap sample of size n from the data, on average about one third of 
the samples are not used to build the corresponding tree as stated in (Breiman 2001). These OOB samples 
are used to test each tree and deliver an internal estimation of the test set error (see Breiman 2001 p. 11). 
On average each data point is among the out-of-bag sample around 36% of the time as mentioned in Liaw 
and Wiener (2002). Furthermore, the prediction error observed using OOB cases approaches the true pre-
diction error as the number of trees goes to infinity. 

For a detailed description of using RF for predictive failure detection on an implanter tool see 
Scheibelhofer (2011). 

3.2.4 Linear Regression 

Linear Regression attempts to fit a linear model on the relation between the predictors and the target value 
by computing coefficients that minimize the sum of squared residuals on the learning data set. In the case 
of this paper the sensor values are directly used as predictors. Predictions are calculated as the sum of the 
multiplication of the coefficients with their associated predictor value and a constant term: P(X) = CX + 
C0. In this paper Linear Regression is mainly used as a simple reference method and for that reason no 
second-order or interaction terms are used. 

3.3 Virtual Equipment Settings and Assessment Goals 

The input data used has been collected from the implanter over 8 filament failure cycles. It is split up by 
the Virtual Equipment into 60% learning data and 40% test data. The original order of the cycles is kept. 

The PdM model variants used are: 
 Bayesian Network with soft discretization and 3 different reconstruction methods both with and 

without smoothing of the results 
 Random Forest 
 Linear Regression without transformation of the predictors 

 
The Linear regression and Bayesian Network models have been implemented in MATLAB while the 

Random Forest model is implemented in R (see R project website) and interfaced to the Virtual Equip-
ment in MATLAB. The implementation of the linear regression uses the glmfit function of the MATLAB 
Statistics Toolbox. 

Automated Studies are executed with noise on the sensor data ranging from the noise in the input data 
set in 15 steps up to additional noise with an amplitude of 15% of the input data value. The input varia-
bles chosen for the different PdM models are the same five predictors, with the exception of the Bayesian 
Network PdMs, which does not utilize Sup-I due to calculation time restrictions (the size of the condi-
tional probability table and the time for its calculation increases exponentially with the number of directly 
connected nodes). 

4 RESULTS AND DISCUSSION 

Linear Regression, Random Forest and 5 Bayesian Network PdMs with different reconstruction methods 
are run in a study in the Virtual Equipment with added noise ranging from 0% to 15%. The input fab data 
is altered with the added noise and then split into 60% learning data and 40% test data. All algorithms use 
the same data set for predictions and the result is then analyzed and compared to the actual time to fail in 
the input data (see Figure 3 for a comparison of the actual time to fail and two of the predictions). Figure 
4 shows the root-mean-square error (RMSE) of the predictions on the learning data and the test data. 
Random Forest is shown to adapt the most to the learning data and does the best prediction on that but the 
performance on the test data set is considerably worse. Linear Regression actually performs worse on the 



Mattes, Schöpka, Scheibelhofer, Leditzky, and Schellenberger 
 

 

learning data than the test data which is mostly because of a part in the learning data where it predicts 
negative time to fail which could be cut off to improve performance. The Bayesian Network variants use 
the same soft discretization and therefore the predicted probabilities are the same. The difference is in the 
way the probabilistic values are reconstructed into a non-probabilistic time to fail prediction and if the re-
sults are smoothed over time. 

 

Figure 3: The predictions of two models over the filament failure cycles 

Figure 4: Root-mean-square error of predictions on test and learning data 
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Considering the difference between predictions and actual time to fail as a controlled statistical pro-
cess, we can compute a process capability index that represents the capability of the models to make pre-
dictions that are within given limits. Figure 5 shows the Cpk of the predictions considering a lower limit 
of 10 below the actual time to fail and an upper limit of 10 above the time to fail. Only Random Forest on 
the learning data keeps well within the limit and reaches a significant Cpk value. Considering the predic-
tion as a statistical process there is a high chance that it predicts with an accuracy within the limit. Linear 
Regression scores best as it has a similar performance over the entire filament failure cycle. 

Figure 6 evaluates that by splitting up the cycles in four parts. The important predictions are not those 
near the start of the cycle when the next maintenance is far away but instead the predictions that are made 
shortly before fail. The Bayesian Networks without smoothing after reconstruction and the Random For-
est algorithm make far more accurate predictions near the end of the cycle than at the start. 

The reason for this behavior is that Random Forests and Bayesian Networks are classification meth-
ods, while linear regression models allow extrapolation and therefore use all learning data to extrapolate 
the outcome near the breakdown. Classification methods rely much more on the learned failure condi-
tions. Due to the fact that the behavior near the breakdown seems to change physically (the root cause for 
this is yet undiscovered), both classification methods show better results near the breakdown (Figure 6). 

Another reason for linear regression showing relatively good performance in this case study is the 
strong linear relationship between the remaining filament lifetime hours and the most important predictor 
FIL-I. 
 

Figure 5: Cpk value (limits: -10/+10) of the predictions on test and learning data 
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Figure 6: RMSE of the predictions in the different parts of the filament failure cycle 

Figure 7 and 8 show the effect of noise on the performance of the models. Note that there is only one 
run per noise level so a certain amount of variance in the prediction quality is to be expected. The Bayesi-
an Network models with smoothing tend to perform better at higher noise levels as the probabilistic ap-
proach is not as susceptible to noise. Through soft discretization during model learning, small deviations 
are also considered already during model learning, which makes their better performance under noisy 
conditions reasonable. 

 

Figure 7: RMSE of the prediction depending on added input noise 
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Figure 8: RMSE shortly before fail depending on added input noise 

5 SUMMARY AND CONCLUSION 

This paper demonstrates the viability of the Virtual Equipment for comparing different PdM models be-
fore their integration in the fab. The automated studies evaluate both the accuracy of the predictions in 
different parts of the failure cycle as well as their sensitivity to noise. 

Main results of the application of the Virtual Equipment on three different PdM model types are: 
 while Random Forest fits very well on the learning data, its performance on the test data is aver-

age 
 the Linear Regression reconstruction variant of Bayesian Network PdM showed the best perfor-

mance shortly before filament failure on the test data 
 relying on the most probable state for the Bayesian Network PdM reconstruction is resistant to 

noise 
 Linear Regression works well seen over the whole failure cycle but it is not that good near the 

end of the cycle 
 

Future work will include: 
 Interfacing of more prediction algorithms to the Virtual Equipment 
 Extension of the automated study possibilities, e.g. repeatability studies (adding different noise of 

the same amplitude or assembling the learning/test data in different ways and evaluating the vari-
ance of the predictions) 

 Application of the Virtual Equipment to further test cases 
 Evaluation of the Virtual Equipment on other control applications 
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