Proceedings of the 2012 Winter Simulation Conference
C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A.M. Uhrmacher, eds

USING SIMULATION AND HYBRID SEQUENCING OPTIMIZATION FOR MAKESPAN
REDUCTION AT A WET TOOL

Anna Rotondo
John Geraghty
Paul Young

Enterprise Process Research Centre,
School of Mechanical and Manufacturing Engineering, Dublin City University
Dublin 9, Ireland

ABSTRACT

When rigid scheduling rules apply to wet tools, the development of Cycle Time (CT) optimization strate-
gies becomes a relevant challenge. The impact of sequencing optimization on makespan performance at a
wet tool is investigated here by means of a hybrid optimization model that combines an exact optimiza-
tion approach, based on an efficient permutation concept, and a heuristics, based on Genetic Algorithms
(GAs). The model also includes a scheduling module that reproduces the control logics governing wet
tools operating in a real semiconductor manufacturing plant and proves effective in generating efficient
and detailed schedules in short computational times. The realistic assumptions on which the scheduling
module is based allow the simulation of different tool configurations. The results obtained show that sig-
nificant makespan reductions can be achieved by means of a mere sequencing optimization as parallel
processing within the wet tools is better exploited.

1 INTRODUCTION

In manufacturing systems characterized by complex interactions between their components, small varia-
tions of operating factors, implemented at any production step, may have a significant impact on the over-
all system performance. As a result, Cycle Time (CT) reductions obtained at critical production steps
could generate considerable productivity improvements and eventually lead to a capacity increase at no
investment cost (Quek et al. 2007; Aydt et al. 2008). Hence, CT improvements also become strategic tar-
gets for companies that want to maintain competitive advantages, especially when they operate in highly
dynamic industries, such as the semiconductor industry (Kuo, Chien, and Chen 2011).

As the overall cleaning process constitutes almost 10% of the operations in a semiconductor wafer
manufacturing plant (Kabak, Heavey, and Corbett 2010), wet stations certainly represent critical produc-
tion steps for the semiconductor wafer manufacturing process. Automated wet tools can be classified as
batch chamber tools; they include several chambers, or tanks, each of which can accommodate a batch of
wafers, usually made of one or two lots. Due to the inherent complexities and the peculiar scheduling
constraints, simulation approaches are usually preferred to model wet tools (Govind and Fronckowiak
2003; Noack et al. 2008; Aydt et al. 2008); simulation models support investigations on the impact of op-
erational settings variations on wet tools performance (Noack et al. 2008). Using an optimization frame-
work for the metallization process, Noack et al. (2008) optimize dispatching rules and virtual queue ca-
pacity in front of a wet tool. The effects of various dispatching rules and recipe dedication schemes on
wet stations capacity is analyzed by Quek et al. (2007). Recipe dedication optimization at wet tools is also
investigated by Aydt et al. (2008); a symbiotic simulation control system is created to dynamically adjust
the recipe dedication settings at the available tools with respect to the current WIP level. Govind and
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Fronckowiak (2003) investigate the impact of scheduling policies, maximum waiting time for batching
operations and maximum internal buffer level on CT at wet tools by means of a hybrid simulation model
that combines transient entity modeling and a resident-entity approach. The results obtained suggest that
the toolset configuration significantly affects the relationship between the factors investigated and CT.
The effects of parallel processing within a wet tool on CT and throughput are analyzed using a flexible
simulation model by Mauer and Schelasin (1993). The results reveal how the asynchronous batch pro-
cessing in integrated tools decouples the inverse proportionality between CT and throughput and, as a re-
sult, higher CTs, due to parallel processing, can prove beneficial in terms of throughput and overall run
time. The model developed by Mauer and Schelasin (1993) is conceived as a flexible model which can be
easily adapted to mimic the behavior of any type of integrated tools, such as cluster tools. Cluster tools
are substantially different from wet tools; however, analogies can be made between the two classes of
tools. Studies on the effects on CT of parallel processing (Niedermayer and Rose 2003), tools configura-
tions (Koehler et al. 1999; LeBaron and Hendrickson 2000) and sequencing strategies (Dummler 1999)
conducted for cluster tools can provide useful information on scheduling strategies when analyzing wet
tools performances.

Due to the nature of the semiconductor manufacturing process, scheduling problems at wet tools are
often combined with scheduling problems at furnaces. Indeed, wet tools operations, such as wafer clean-
ing or etching, are usually followed by furnace operations for diffusion processes (Gan et al. 2006). The
integrated scheduling problem is characterized by relevant complexities due to the different maximum
batch sizes at the two batch tools and the possible presence of wait time constraints between the two pro-
cesses (Scholl and Domaschke 2000). Efficient schedules for the wet etch operations are fundamental to
ensure good performance for the furnace operations (Ham and Fowler 2008). Simulation and heuristics
are generally used to determine optimal dispatching rules (Scholl and Domaschke 2000; Ham and Fowler
2008) and analyzing the effects of furnace upgrades on the upstream flow (Gan et al. 2006; Yugma et al.
2012).

As several operations are usually performed at a wet tool and parallel processing is allowed, consid-
erable CT savings can be obtained by means of batch sequencing optimization. Mathematical program-
ming approaches and heuristics have been extensively used for solving sequencing and scheduling opti-
mization problems at wet stations. For these problems, as a result of management’s suggestions,
makespan minimization represents the most common objective function (Geiger, Kempf, and Uzsoy
1997; Zeballos, Castro, and Méndez 2010). Indeed, if the makespan decreases the throughput increases
and this avoids that wet tools could constitute a constraint to the factory output (Geiger, Kempf, and Uz-
soy 1997). Reducing the makespan also supports an increase in tool capacity and, hence, minimizes the
number of tools needed, with obvious advantages in terms of occupied clean room floor space (Geiger,
Kempf, and Uzsoy 1997). Moreover, decreasing the makespan leads to a lower inventory and contamina-
tion and results in greater profits (Bhushan and Karimi 2003). The observed research trend on wet stations
sequencing and scheduling optimization is towards the development of approaches able to deliver nearly
optimal solutions in a reasonable time for increasingly larger sized problems. Less rigid assumptions, es-
pecially those regarding the material handling system, are also considered in more recent models (Aguir-
re, Méndez, and Castro 2011; Lee, Lee, and Lee 2007). Tabu search is used by Geiger, Kempf, and Uzsoy
(1997); whereas Bhushan and Karimi (2004) develop a simulated annealing based approach to address
larger instances of the scheduling and sequencing problem at wet stations with one robot. Bhushan and
Karimi (2003) also adopt a Mixed Integer Linear Programming (MILP) approach to generate optimal
schedules at a wet station; based on the MILP approach, a two-step heuristic approach is developed. A re-
formulation of their MILP model is available (Karimi, Tan, and Bhushan 2004). A MILP approach was
also recently used by Aguirre, Méndez, and Castro (2011) to model the wet station scheduling problem
with several robots; the model proved more efficient than the one developed by Bhushan and Karimi
(2003) for solving medium-sized problems. As a more efficient alternative to the MILP approach, (Ze-
ballos, Castro, and Méndez 2011) suggest recourse to Constraint Programming (CP). Finally, Castro et al.
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(2011) develop an integrated model, based on MILP and discrete event simulation, for solving large-scale
wet station scheduling problems in reasonably short time.

In the studies reviewed here, the sequencing and scheduling problems are generally analyzed as an in-
tegrated problem; sequencing optimization affects the scheduling logics and the schedules generated by
the models are based on the assumption that a full control of batch transfers within a wet tool is possible.
However, this is not always the case in real manufacturing plants as wet tools internal mechanisms are es-
tablished by the tool vendor and are not easy to modify on the plant. This forces manufacturing engineers
to focus on makespan optimization strategies that prescind from variations of the scheduling logics. Fol-
lowing an approach similar to the one adopted by Dimmler (1999) for the optimization of lot sequences
at cluster tools, batch sequencing and scheduling are analyzed here as a disjoint problem. Based on the in-
ternal workings of a real wet tool, a quasi-analytical scheduling model is developed and coupled with a
hybrid sequencing optimization module. The scheduling algorithm generates detailed schedules compati-
ble with the constraints applied; the scheduling logic used proves effective in producing efficient sched-
ules, independent of the sequencing optimization module. The sequencing algorithm rearranges sequences
of batches waiting to be processed at a wet tool in order to find the optimal or sub-optimal sequence, that
is the sequence that minimizes the makespan; the optimization algorithm consists of a combination of an
exact and an approximated approach as full enumeration and GAs are used according to the problem
complexity. A sensitivity analysis on the efficacy of GA operators, for selection, mutation and cross-over
is also performed. Apart from the nature of the tools analyzed, the problem presented here differs from
the problem discussed in Dimmler (1999) as sequencing optimization is performed at a tool level rather
than at a station level. The choice of conducting sequencing optimization at a tool level has been made to
avoid the observation of misleading results due to the presence of ineffective assignment strategies.

This paper is structured as follows. In section 2, the system modeled in this paper is described and the
problem analyzed is defined. Section 3 illustrates the scheduling and sequencing modules of the model
developed. The model efficacy in generating optimal results is discussed in Section 4. Finally, conclu-
sions are drawn in Section 5.

2 SYSTEM DESCRIPTION

The wet tool modeled in this study operates in a real wafer manufacturing plant; its schematic layout is
shown in Figure 1.
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Figure 1: Schematic representation of the wet tool modeled

Conceptually, a wet tool can be considered as a series of tanks (T1-T6) filled with either etchant
chemicals, used to etch away the exposed photo-resist from the wafer layers, or deionized water, used to
terminate the etchant action. The succession of chemical and water tanks is not necessarily alternating as
reported in most research studies (Geiger, Kempf, and Uzsoy 1997; Bhushan and Karimi 2004; Zeballos,
Castro, and Méndez 2011); in real plants, consecutive chemical tanks can be observed. For some chemical
tanks, overexposure to the etchant will damage the wafers exposed; as a consequence, a Zero-Wait (ZW)
constraint is applied; this suggests that the batch must be moved out of the “unsafe” tank when the pre-
scribed exposure time is reached. The remaining tanks will be considered “safe” tanks as overexposure to
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the chemicals will not damage the wafers; these tanks can be used as local storage (LS) for a sensible time
interval that varies according to the chemicals. A “No-Intermediate Storage” (NIS) constraint also applies
to the wet tool modeled as no intermediate buffer is available between any two consecutive tanks. As a
consequence, before a batch can leave a tank, the following tank in the corresponding recipe has to be
available. A recipe describes the sequence of tanks that a lot should visit; an operation defines the pro-
cessing times in each tank.

Wafers are processed in lots of the same type. Moreover, two lots waiting in the tool internal buffer
and requiring the same operation can be batched together and loaded through a set of mechanical devices
onto a carrier. In this paper, the terms batch and carrier will be used indistinctively. For each batch, the
internal scheduler will generate a detailed schedule which lists the timestamps in and out of each tank ac-
cording to the recipe assigned to the batch, the tanks and robot availability. The carrier is moved by the
common robot to the first tank prescribed by the recipe or, if this is unavailable, the carrier will be placed
in the temporary waiting area, which can be occupied exclusively by unprocessed batches. The handling
system will move the carrier across the tanks following the associated schedule, which meets the schedul-
ing constraints illustrated above. Each tank is provided with an internal handler that transfers a carrier
from the common robot into the tank and holds the carrier in the tank until the process is complete. After
leaving the last tank, any carrier, independent of the recipe, visits the dryer before being unloaded by the
mechanical devices that also unbatch the lots. The processed lots, one or two according to the batch size,
return into the internal buffer where they are ready to exit the tool through a load port.

In the scheduling problem discussed here, the following assumptions are made:

e The recipes considered do not consist of visiting all the tanks in the same order. This means that
the batches can enter the different tanks in a different order. This is known as a “non-
permutation” schedule (Karuno and Nagamochi 2003);

A tank can process one batch at a time;

e The processing/transfer of batches is generally non-pre-emptive; the only exception is made for
transfers out of the dryer that are prioritised;

e The robot can move one batch at a time and cannot be used as a temporary storage for any batch;

e The robot is failure free; the tool is subjected to failures and regular preventive maintenance; re-
pouring operations also limit the tanks availability;

Transfer times within the tool are dependent on the origin and destination;

e Setups are needed for both robot and tanks; indeed, cleaning operations for the robot arms are re-
quired post every transfer involving chemical tanks.

The objective of this scheduling problem is to minimize the makespan by means of strategies that re-
quire control changes easy to implement in a real manufacturing environment. The approach developed
should also generate fully detailed schedules for the batches to be processed; the schedules will include
the start and finish times of each batch in the different tanks and a record of the robot movements. Finally,
the problem analyzed here consists of a non-permutation scheduling problem with a shared resource, that
is the robot, and subjected to the ZW and NIS/LS constraints (Bhushan and Karimi 2004).

3 SIMULATION MODEL DEVELOPMENT

In order to investigate the impact of batch sequencing optimization on makespan at a wet tool, a simula-
tion model of the tool has been developed. The model presents a modular structure that provides high
flexibility and adaptability to the objectives of the analyses for which it is used. Two modules are funda-
mental for the analysis presented here: the scheduling module and the sequencing optimization module.

3.1 Scheduling Algorithm

The scheduling module generates detailed schedules for the batches to be processed at the wet tool based
on deterministic input data. Minimum processing times, internal transfer times, which vary according to
the origin and destination, and setup times used in the model are deterministic. Repouring operations in
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the chemical tanks and preventive maintenance are also modeled following the schedules implemented in
the real plant where the modeled tool operates. The control logics implemented in the internal scheduler
of the tool modeled, which is described in the previous section, is proprietary to the tool manufacturer and
cannot be easily modified in the plant. In the scheduling module, the actual scheduling logics is mimicked
by an algorithm based on a trial and error approach that uses fundamental equations to calculate feasible
schedules compatible with both scheduling constraints and robot and tanks availability. The equations
used are not reported in this paper as their illustration goes beyond the analysis purpose. The trial and er-
ror algorithm developed can be considered a conceptual generalization of the JAT algorithm proposed by
Bhushan and Karimi (2004). The two algorithms take the ZW and NIS constraints into account while
generating a batch schedule; they also consider the robot availability constraint before proceeding with
the calculation of the starting time for a batch at the next tank. However, fundamental differences between
the two algorithms exist and refer to the complexity of the production scenarios modeled. Different reci-
pes can be considered in the trial and error algorithm and, as a consequence, the FIFO logic used in the
JAT algorithm is no more applicable at a tank level; in other words, a non-permutation scheduling prob-
lem as opposed to a permutation scheduling problem (Bhushan and Karimi 2004) is analyzed here. An-
other difference between the two algorithms consists of the consecution between unsafe tanks and safe
tanks; in the algorithm developed here irregular successions of tanks, such as two following safe tanks,
can be modeled.

for 1 = 1 -> no. batches
3 = first tank to be wisited
while 7 & dryer
Calculate T&5 and TFy
if robot is available between TFj-2 and TS5
if tank j is available between TS5; and TF;
Update &; and e
3= 3+
else Calculate min TS; at which j is available and restart from
last safe tank {(j = j-x)
end

else Calculate min TF;-:* at which robot is available and restart from
last safe tank (j = j-x)

end
end
i = i+l

end

Figure 2: Pseudo-code of the scheduling algorithm

The algorithm works as per the pseudo-code above (Figure 2); it considers one batch at a time and
completes its schedule before considering the following batch in the sequence. While the schedule for a
batch is progressively calculated, the algorithm keeps a record of both the robot availability, @, and the
tanks availability, @, in order to avoid that more than one batch utilizes the same resource at the same
time. The record consists of an ordered sequence of arrays that contain the start time, 7, and the finish
time, TF, during which a resource (e.g. robot or tank) is utilized. Generally, 7S and TF refer to the start
and finish time in a tank. For each tank to be visited, the algorithm starts with checking the robot availa-
bility for a time interval that allows the robot to reach the tank, j-1, where the batch £ is currently kept, at
the calculated 7F;.;), complete its cleaning operation, where required, and be available for the next trans-
fer previously scheduled without any delay. If the robot proves available, @ is updated by inserting an
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appropriate time interval that includes [7Fy;.;), TSy] so that the chronological order is respected; a similar
record is kept for the robot positions corresponding to the relevant timestamps reported in @;. Hence, the
tank availability is checked for the time interval [7S;; TF}]. In case either the robot or the tank are not
available, the smallest time at which the unavailable resource becomes available for the required time in-
terval is calculated and, based on that, the start and finish times of the previous unsafe tanks are derived.
The iteration restarts from the first safe tank that precedes the tank currently assessed. This is because if
the newly calculated 7F);- for that safe tank, j*, satisfies the constraint on the overexposure time and there
exist a prolonged availability in that tank, the batch can wait in j* for a longer time than the prescribed
processing time and be transferred to the unsafe tanks at the newly calculated times. This will avoid re-
starting the schedule calculation from the very first tank in the recipe and will reduce waiting times in the
internal buffer. If the tank proves free, @, which is the @, instance for tank j, is updated and the next tank
in the recipe is considered. In case a resource’s unavailability forces schedule recalculations, @ and @,
are restored to their previous status.

3.2 Sequencing Optimization Algorithm

The sequencing optimization module generates different batch sequences that are assessed by means of
the scheduling module; it selects the sequence with the minimum makespan. Contrary to the scheduling
logics that is proprietary to the tool’s manufacturer and cannot be easily modified, the sequence with
which batches are processed by a tool can be controlled by the plant automation system. The possibility of
paralleling processing within a wet tool and the difference between the recipes performed in terms of both
number of tanks to be visited and succession of tanks constitute a fundamental theoretical base for the ap-
plicability of sequencing optimization strategies to the problem.

The sequencing optimization algorithm adopts a hybrid approach. According to the length of the se-
quence to be optimized and the number of non-identical operations to perform, the optimization approach
will be either exact or approximated. The exact approach is based on an intelligent full enumeration ap-
proach and consists of assessing all the different sequences that can be generated from the original batch
sequence. Relevant batch sequences are those which differ from the previous ones considered in terms of
operation sequences. Indeed, two different batch sequences with the exact same operation sequence are
perfectly equivalent from a scheduling perspective. This means that when two or more batches in the se-
quence require the same operation, the number of different sequences to be analyzed proves less than a
mere permutation. It can be demonstrated that the number of non-identical permutations in a sequence
containing #; batches of operation i is given by the following equation

2 !
% (1)

1

# different sequences =

where the summation at the numerator consists of the sequence length and the denominator represents the
number of identical sequences in the full enumeration. The enumeration method used modifies the stand-
ard permutation algorithm so that the generation of identical item sequences is prevented. For longer and
more complex sequences, the sequencing optimization is based on a genetic algorithm (GA) approach.
Using this approach the search space is significantly reduced; different sequences are generated based on
the fitness of the parental solutions. A preliminary sensitivity analysis on the efficacy of several GA oper-
ators in generating optimal solutions was also conducted and the best performing operators for the prob-
lem analyzed here were chosen. The sensitivity analysis was performed on bigger problem sizes; se-
quences of up to 25 batches were considered; the sequencing algorithm performances proved robust with
respect to the problem size. In this paper, small problems are considered as, in the production scenario
modeled, longer batch sequences are not observed at a tool level. Two different operators for selection
cross-over and mutation were compared and the best performing operators were determined.
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The scheduling algorithm was verified by assessing the feasibility of the schedules generated; attention

was paid to both the constraints imposed and the utilization of common resources, such as robot and
tanks. All the schedules generated by the algorithm proved theoretically correct.

Model Accuracy
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Figure 3: Model accuracy with respect to level of details included in the model

Being inspired by the behavior of real wet tools, the algorithm was validated by comparing the results
generated against those observed in the real system. Average Queuing Times (QTs) and Run Times (RTs)
were used as validation measures. QT is here intended as the time elapsing between the batch arrival at
the buffer upstream the wet tool and the time at which the batch leaves the tool internal buffer; this means
the waiting time within the tool is also included in QT. RT is intended as the time that a batch spends in-
side a tool, excluding the waiting time in the internal buffer. The sum of QT and RT is here called Cycle
Time (CT). The calculation of QT required the development of a module for simulating the assignment
strategy implemented in the real plant; the illustration of the strategy and the logics behind the assignment
module are beyond the scope of this paper. Whereas the QT predictions needed some improvements and
further details had to be included in the assignment module, the RT predictions proved very accurate
throughout the different steps of the assignment module development (Figure 3). In Figure 3, Phase 1 re-
fers to the initial model; in Phase 2, maintenance and repouring operations, setup times at each tank, max-
imum waiting times for batching operations and stochastic travel times from the upstream buffer to the
tool were included. Finally, during Phase 3, the assignment strategy logic was revised to reproduce the ac-
tual one more accurately, variable limits to the internal buffer capacity were also introduced. Figure 3
shows the scheduling algorithm efficacy in reproducing the internal mechanisms of the modeled tool. The
QT and RT prediction errors are always less than 0.7% and 1.5%, respectively. In order to evaluate the
efficiency of the scheduling logic implemented in the model, the production scenario used in Bhushan and
Karimi (2004) to illustrate the impact of rescheduling delayed tasks was simulated. The results obtained
show that the scheduling algorithm developed here is able to generate initial solutions that might prove
better than those reported in Bhushan and Karimi (2004); in particular, scheduling the 25 jobs reported in
one of the examples required 519.6 time units using the Bhushan’s algorithm against the 501.5 units esti-
mated by the scheduling algorithm illustrated in this study, thus obtaining 3.5% makespan reduction be-
fore the implementation of sequencing optimization approaches. The scheduling algorithm has also
shown good performance in terms of computational times as fully detailed batch schedules are generated
in about 0.01 seconds. All the experiments were run on a CoreDuo 2.4 GHz processor.

4 RESULTS

The potential benefits deriving from optimizing the sequence of batches entering a wet tool were first in-
vestigated using the full enumeration approach. Sequences of 4 to 8 batches were considered; the combi-
natorial complexity of this problem prevented longer sequences from being investigated as the results
would not be available in sensible times for practical implementations. For each sequence length, three
different sequences with different operations to be performed were randomly generated (Table 1); the op-
erations were chosen from a pool of 11 different operations (Table 2). These operations were grouped into



three recipes according to the tanks to be visited; recipes with five, three and two tanks were considered.
T1 represents the only unsafe tank in the tool; T3 and T4 are complementary chemical tanks where a
maximum overexposure of 13 minutes is allowed. TS5 and T6 are the rinse tanks associated with T3 and
T4; they can be use alternatively according to their availability. All transfer times were set equal to 5 se-

conds.
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Table 1: Operation sequences randomly generated and corresponding min and max makespan

# batches Operations Mall\i:l;)an Mai/leas);an
8 11 6 3 97.83 76.17
4 10 10 3 4 95.83 74.67
11 10 5 6 108.00 88.75
9 8 11 5 10 108.62 102.83
5 7 1 9 2 4 108.62 86.03
1 3 3 8 4 92.28 81.83
3 6 9 3 1 6 134.92 98.37
6 11 3 7 3 4 1 132.92 94.33
3 1 8 5 10 2 121.83 94.33
4 7 5 8 6 2 3 151.50 106.50
7 11 11 9 2 9 2 7 146.40 114.20
11 3 11 9 11 7 10 143.78 117.92
10 8 6 4 5 5 8 3 197.08 131.00
8 2 5 9 10 4 8 3 11 172.95 122.33
1 9 4 11 7 9 10 6 191.70 136.20
Table 2: Recipes and processing times for the simulated operations
Op Processing Times [mins]
’ T1 T2 T3 T4 T5/T6 Dryer
1 3 3 12 12
2 3.5 3.5 12 12
3 4 4 12 12
4 1 12 3 3 12 12
5 0.5 12 3 3 12 12
6 1.5 12 3.5 3.5 12 12
7 1 12 3.5 3.5 12 12
8 1.5 12 12
9 5.7 12 12
10 1 12 12
11 1 12 12
Makespan Variability
0.2
g
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Figure 4: Makespan variations caused by batch sequencing variations
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Based on the experiments conducted, a 25% makespan variation between the best and the worst
schedules was observed, on average. For the longer sequences, the makespan range reached 33%; Figure
4 shows the makespan variability generated by different batch sequences for a 8 batch schedule. This
suggests that considerable advantages can be gained by rearranging the sequence of batches to be pro-
cessed at a tool without intervening on the scheduling logic and, hence, at no implementation costs.

The GA model efficacy in generating optimal results was assessed by comparing the results obtained
using the GA approach against those generated by the full enumeration method. The GA model was suc-
cessful in generating the absolute optimum for all the sequences analyzed. The GA operators and parame-
ters were kept unchanged throughout the validation experiments; in particular, the population size was
kept constant and equal to 20; hence, the success rate in finding the optimum reduced for the larger prob-
lem instances. The GA operators used in the validation experiments are the elitist selection, the order 2
crossover (Starkweather et al. 1991) and the displacement mutation. After running the model 10 times per
sequence, an average success rate equal to 80% was observed for sequences shorter than 7 batches. A
30% success rate for 8 batch sequences suggested the need for increasing the population size for larger
problem instances; additional experiments performed for the 8 batch sequences showed that a larger
population size increases both the success rate and the convergence speed to the absolute optimum
(Figure 5). For the non-successful optimization repetitions, the relative deviations of the GA solutions
from the absolute optima were lower than 9% on average. For the worst case scenario, which consists of a
17% deviation from the optimum, a 12% makespan reduction was still obtained. The relative deviation, D,
, 1s calculated as follows

_ GA solution - Opt
" Max— Opt

A (2)

where Max represents the maximum makespan observed in the full sequence enumeration.
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Figure 5: GA convergence for different population sizes (8 batch sequence).
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It is worth noting that the analysis on GA performances and consequent decisions on GA parameters
should take into account not only the sequence length. Indeed, the sequence complexity also depends on
factors such as the number of non-repetitive permutations (Equation 1), the frequency of the optimal solu-
tion and the number of different solutions. These last two factors can be assessed only with a full enumer-
ation of the sequence permutations and, hence, an a priori GA parameters’ optimization proves difficult.
The quality of the initial solution, measured in terms of relative deviation from the optimum, did not sig-
nificantly impact the results; paradoxically, worse initial solutions seem to generate slightly better results.

Finally, keeping the GA parameters unchanged, the computational times for the GA approach slightly
increased with the number of batches in the sequence as a result of the higher complexity of the schedul-
ing operations (Table 3). The computational time savings with respect to the full enumeration method are
significant and increase with the sequence length.

Table 3: Average computational times for different sequence lengths [seconds]

# batches | Full Enumeration GA # batches Full Enumeration GA
4 0.71 1.07 7 47.35 2.09
5 1.44 1.38 8 1,071.74 2.38
6 7.01 1.88

5 CONCLUSIONS

The criticality of wet-etching in semiconductor wafer fabrication makes makespan optimization at wet
tools a fundamental source of productivity improvements for the overall manufacturing system. Complex
dynamics govern wet tools. The peculiar scheduling constraints applied suggest that, in order to be easy to
implement, makespan optimization strategies should avoid variations of the scheduling logics. This is be-
cause of both the rigidity of fundamental scheduling rules and the frequent circumstance that software
controlling the wet tools behavior is proprietary to the tools vendor, hence relevant variations in the con-
trol logics would prove expensive and not immediately implementable. The effects of sequencing optimi-
zation on makespan at a wet tool are investigated in this study by means of a simulation model. This
model consists of a scheduling algorithm combined with a sequencing optimization module. The schedul-
ing algorithm incorporates fundamental scheduling constraints and is inspired by a real wet-etch tool
scheduling logic. Comparisons with scheduling algorithms proposed in the literature show that the trial-
and-error scheduling algorithm is effective in generating efficient and detailed batch schedules; the higher
efficiency of the algorithm could prove advantageous for the generation of good initial solutions for opti-
mization problems that involve scheduling logics alterations. The sequencing optimization module, which
couples intelligent permutation and GAs, intends to exploit the possibility of parallel processing that is a
peculiar feature of wet tools. The order with which batches are introduced in a wet tool significantly im-
pacts the time needed to process the batches waiting at the tool as the makespan range achieves 33% for
the problem instances analyzed here.

Future research will focus on the development of alternative CT optimization strategies that do not in-
terfere with the scheduling logics. As previous studies have demonstrated the potential benefits deriving
from assignment strategy optimization, various assignment heuristics, easy to implement in a real system,
will be developed and assessed using both the assignment module and the trial-and-error algorithm. The
assignment module, that also governs virtual batching at the common buffer upstream the wet station, will
also be used to optimize maximum waiting times per lot/operation before the assignment decision is made
(See also Murray et al. 2008).
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